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Abstract

Light plays an important role in human well-being.
However, most computer vision tasks treat pixels without
considering their relationship to physical luminance. To ad-
dress this shortcoming, we introduce the Laval Photometric
Indoor HDR Dataset, the first large-scale photometrically
calibrated dataset of high dynamic range 360◦ panoramas.
Our key contribution is the calibration of an existing, un-
calibrated HDR Dataset. We do so by accurately captur-
ing RAW bracketed exposures simultaneously with a profes-
sional photometric measurement device (chroma meter) for
multiple scenes across a variety of lighting conditions. Us-
ing the resulting measurements, we establish the calibration
coefficients to be applied to the HDR images. The resulting
dataset is a rich representation of indoor scenes which dis-
plays a wide range of illuminance and color, and varied
types of light sources. We exploit the dataset to introduce
three novel tasks, where: per-pixel luminance, per-pixel
color and planar illuminance can be predicted from a single
input image. Finally, we also capture another smaller pho-
tometric dataset with a commercial 360◦ camera, to exper-
iment on generalization across cameras. We are optimistic
that the release of our datasets and associated code will
spark interest in physically accurate light estimation within
the community. Dataset and code are available at https:
//lvsn.github.io/beyondthepixel/.

1. Introduction
Natural light has shaped the way our human visual sys-

tem evolved [13], plays a key role in driving our circadian
rhythm [16], and affects our mental health [47] and social
organization [11]. It has also been shown [54] that human
vision relies on stable properties of light, measured in terms
of luminance (in cdm−2), in order to perceive object fea-
tures such as shape and color.

Natural light is also at the heart of photography and
computer vision. However, most if not all computer vi-
sion approaches consider pixel values as a 3-channel in-
put to be processed without considering the relationship be-

tween pixel intensity and luminance. This is understandable
since modern digital cameras pursue a goal different from
measuring physically accurate perceived brightness: they
strive to create visually pleasing photographs. In doing so,
their internal image signal processors (ISP) perform a se-
ries of operations on the measured light (denoising, contrast
enhancement, tonemapping, etc. [34]) in order to produce
pixel values which, while visually appealing, no longer cor-
respond to the physical properties of the environment.

Modeling camera ISPs and inverting their image for-
mation process has been the subject of many works (e.g.
[67, 29, 55]). Here, most approaches aim at recovering
an image where pixel values are linearly proportional to
the scene radiance (or luminance). Closely related are
approaches for capturing high dynamic range (HDR) im-
ages [15], or predicting HDR from low dynamic range
(LDR) photographs [17, 39, 49, 41, 45]. While linear pixel
values can be extremely useful for physics-based vision ap-
plications (e.g. [27]), the scale factor to absolute luminance
is still unknown. Can we go beyond (linear) pixel values
and recover per-pixel luminance from a single image?

In this paper, we propose the Laval Photometric Indoor
HDR Dataset: what we believe to be the first large-scale
dataset to help the community answer this question. The
novel dataset of physically accurate luminance and colors
acquired in a wide variety of indoor scenes. Our key idea
is to leverage the camera and RAW captures of an existing
dataset of HDR indoor 360◦ panoramas that was previously
captured [20]. We contribute by carefully calibrating the
camera with a chroma meter to determine the per-channel
correction factors to be applied to each panorama. Our anal-
ysis shows that the Laval Photometric Indoor HDR Dataset
contains a wide range of illuminance (e.g. [0 lx, 7000 lx])
and color, expressed in correlated color temperature (CCT)
(e.g. [2000K, 8000K]), capturing the diversity of indoor
environments. We also explore the luminance and color dis-
tributions of individual light sources in the dataset, which
span several orders of magnitude of average luminance.

We present three novel learning tasks that are enabled by
our calibrated dataset. Given a single image as input, we ex-
plore how per-pixel luminance, per-pixel color, and planar
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illuminance can be estimated. More importantly, we also
consider what information must be available for accurate
light prediction. Indeed, democratizing the process of cap-
turing physical luminance begs several important questions:
can luminance be accurately estimated using conventional,
uncalibrated cameras? If so, is HDR imagery needed or is a
single, well-exposed shot sufficient? Is a generic approach
appropriate or do methods need to be finetuned to specific
cameras? We provide initial answers to these challenging
questions by presenting learning experiments on our novel
dataset, as well as on another, smaller photometric dataset
captured with an off-the-shelf 360◦ camera. By publicly re-
leasing the calibrated datasets and associated code, we hope
to spur interest in the community and help it consider the
physical light measurements that lie beyond the pixels.

2. Related work
Radiometric camera calibration A large body of work
has tackled the recovery of the camera response function,
the (usually proprietary) non-linear tonemapping curve ap-
plied by cameras [26]. This can be done for example from
multiple exposures [15], an image sequence [35], or even
from a single image [43, 44, 42]. This can also be done
jointly with other tasks, e.g. vignetting correction [36].

HDR reconstruction Fusing multiple low dynamic range
(LDR) images at different exposures into one high dynamic
range (HDR) image has been studied extensively [60, 15].
The overlapping exposures can be leveraged to simultane-
ously linearize the input images and reconstruct the radi-
ance. Images must be aligned if the camera moves [65], and
more complex treatment must be given to avoid ghosting if
the scene is in movement [24, 33, 56]. HDR images can
also be reconstructed from image bursts [38], specialized
optics [64, 51], or even during NeRF [53] training: from
RAW inputs [52], non-overlapping exposures [31], or by
using a dedicated network [22]. While we leverage HDR
reconstruction techniques to build the Laval Photometric In-
door HDR Dataset, we wish to recover absolute luminance
values: we must therefore use specialized tools for acquir-
ing these measurements.

Inverse tonemapping Algorithms for recovering HDR
from LDR images (known as inverse tone mapping) have
been proposed. This was done by inverting tonemapping
operators [58, 5, 6], expanding the dynamic range via edge
stopping functions [59] or by employing scene-specific
iTMO [37]. Recently, deep learning methods have been
proposed, for example by predicting the exposure stack that
is then fused with HDR methods [17, 39] or by directly pre-
dicting the HDR image [70, 41, 49, 62, 68]. Of note, [45]
models each stage of the camera pipeline using individual

networks. In this work, we employ a Unet (similar to [45])
to explore novel tasks enabled by our photometric dataset.

Photometric calibration HDR images store relative lu-
minance values. Multiple techniques can be used to identify
the (linear) photometric calibration coefficients of an imag-
ing system to retrieve absolute luminance: measure the illu-
minance of a scene using a chroma meter and compare it to
the integration of a calibrated 180◦ fisheye lens [32], use a
luminance meter to measure the luminance of an incoming
direction and compare directly with the corresponding pixel
of the camera [57], or employ a calibrated display [46].
Here, we follow [32] to calibrate our dataset.

Color prediction and post-capture white balance To
our knowledge, no current method allows for the prediction
of photometric color from a single LDR image. Closely re-
lated, automatic white balance (or illuminant estimation, or
color constancy) has been thoroughly explored in computer
vision [7, 9, 10, 18, 12, 21, 63]. For example, correcting
the white balance based on presets [3] allows the network
to understand the color temperature of a scene. While most
of these works assume a single illuminant, correcting for
multiple illuminants has also been explored [30, 23, 4]. In
these works, no absolute color values are obtained.

Luminance prediction Prediction of HDR at physical lu-
minance is a relatively new task. Of note, Wei et al. [66]
tackle the problem, but their dataset is limited to stores, only
luminance without its chromaticity is available, and the ex-
posure is given as input in the experiments, hence the net-
work does not learn to predict illuminance from the visual
features in the scene. We believe that ours is the first large-
scale HDR dataset containing absolute colorimetric infor-
mation of the luminance maps.

3. The Laval Photometric Indoor HDR Dataset
3.1. Base dataset

We rely on the existing Laval Indoor HDR dataset [20]
(herein referred to as “Laval dataset”) which comprises over
2300 HDR panoramas captured in a large variety of indoor
scenes. The data was captured with a Canon 5D Mark III
camera and a Sigma 8mm fisheye lens mounted on a tri-
pod equipped with a robotic panoramic tripod head, and
programmed to shoot 7 bracketed exposures at 60◦ incre-
ments along the azimuth. The resulting 42 photos were shot
in RAW mode, and automatically stitched into a 22 f-stop
HDR 360◦ panorama using the PTGui Pro commercial soft-
ware. As with other HDR datasets (e.g. [15, 1, 33, 45]), the
Laval dataset captures up-to-scale luminance values. In this
work, we explicitly calibrate for the unknown, per-channel
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Figure 1. Setup used for the capture of the calibration dataset. The
original Canon 5D Mark III camera used for the Laval dataset (left,
graciously provided by the original authors) captures a bracket of
images at different exposures while the chroma meter CL-200a
(right) measures the illuminance and chromaticity of the scene.

scale factors in order to recover calibrated luminance and
color values at every pixel.

3.2. Capturing a calibration dataset

We can photometrically calibrate the Laval dataset by
first capturing a “calibration dataset” to determine the per-
channel scale factors for the camera. The estimated scale
factors can then be applied to the panoramas to obtain accu-
rate luminance and color values.

To capture the calibration dataset, we place the camera
side-by-side with a Konica Minolta CL-200a chroma me-
ter, as shown in fig. 1. We then simultaneously acquire a
bracket of 7 RAW exposures from the camera and a reading
from the chroma meter. To ensure a match to the images
from the Laval dataset, the exact same camera parameters
(retrieved from the EXIF header in the RAW files) were
used. We found that a total of 5 exposure configurations
(differing mainly by the aperture used1) were used to cap-
ture the Laval dataset — we therefore captured brackets for
each of the 5 camera configurations at each scene to ensure
proper calibration across all panoramas. The chroma meter
measures both the scene illuminance (in cd sr−1 m−2, or lx)
and its chromaticity (in the CIE xy color space).

The PTGui Pro software was then used to merge the dif-
ferent exposure images into one HDR image. Vignetting
correction is applied by PTGui using a polynomial model
optimized during a previous panorama stitching from over-
lapping images. Since vignetting varies with the aperture,
the model’s parameters are computed for each of the 5 expo-
sure configurations. This process was repeated in a variety
of scenes (different from the scenes in the original dataset)

1f/4, f/11, f/13, f/14, f/18, with f/4 and f/14 representing the vast ma-
jority (98%) of the Laval dataset.

with diverse illumination conditions. In all, 135 scenes were
captured to establish the calibration dataset.

3.3. Illuminance computation

To compute the illuminance from the captured HDR
image, we first geometrically calibrate the camera using
[40] with the projection model from [50] (implemented in
OpenCV). Using the recovered lens parameters, the cap-
tured fisheye images are re-projected to an orthographic
projection. The (uncalibrated) illuminance E can then be
computed for each color channel using

E =
π

N

N∑
i

L(i) , (1)

where L(i) is the value of pixel i, and N the number of
pixels in the (circular) image. Eq. (1) derives from the CIE
illuminance equation and is explained in the supplementary.

3.4. Calibration coefficients

The uncalibrated illuminance from eq. (1) can be com-
pared to the absolute illuminance measured with the chroma
meter. To obtain per-channel illuminance, the xyY color
value captured by the chroma meter is converted to RGB
(see supplementary). A linear regression identifies the coef-
ficients to be applied to the Laval dataset to obtain the pho-
tometrically accurate HDR panoramas. For example, the
regression for the f/14 capture configuration for each RGB
channel has coefficients of determination (R2) of (0.985,
0.987, 0.989) for (R, G, B) respectively, indicating the high
reliability of the fits. The uncertainty on the calibration is
discussed in the supplementary.

3.5. Photometric correction

All panoramas from the Laval dataset were regenerated
with PTGui Pro, and each one corrected according to the
linear coefficients of its capture configuration. In total, after
filtering out the few panoramas that were oversaturated, we
have 2362 HDR photometric panoramas of physically accu-
rate luminance and color at 3884× 7768 pixel resolution.

4. Visualizing the dataset

In this section, physical properties of the entire scene and
of individual light sources are derived for each panorama
in the Laval Photometric Indoor HDR Dataset. For visu-
alization of photometric colors, each pixel is expressed as
the correlated color temperature (CCT) of its luminance (cf.
supplementary). We now explore the diversity in the dataset
by computing statistics of the different physical parameters
of scenes and light sources present therein.
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Figure 2. Correlation between the CCT (K) and the mean spheri-
cal illuminance (lx) of the photometric panoramas of the dataset.
The distributions of CCT (top) and mean spherical illuminance
(right) of the data are also displayed. Only the data with a
CCT in [2000K, 8000K] and a mean spherical illuminance in
[0 lx, 3000 lx] are included to better see the trends (2187 out of
2362 panoramas). Points are color-coded according to their CCT.

4.1. Entire scene

We represent an entire 360◦ panorama as its mean spher-
ical illuminance (MSI) [14] and CCT (cf. supplementary).
The correlation between both quantities and their distribu-
tions over the entire dataset is presented in fig. 2. As can be
observed in fig. 2, the majority of panoramas in the dataset
possess relatively low MSI and CCT (bottom-left quadrant
in the plot). Indeed, the median MSI and CCT of the dataset
are 461 lx and 3654K respectively. Figs. 3 and 4 illustrate
the dataset, showing visual examples sorted by MSI and
CCT respectively. For example, fig. 3 shows that scenes
with lower MSI correspond to basements and bedrooms
with curtains and artificial lighting (incandescent, compact
fluorescent and/or “soft white” LED), whereas scenes with
higher MSI correspond to well-lit public spaces, often con-
taining very bright ceiling lights or large windows on a
sunny day. Similarly, fig. 4 illustrates that scenes with lower
CCT have predominantly artificial lighting, whereas higher
CCT can be due to strong outdoor lighting from windows
and/or more neutral surface reflectance.

4.2. Individual light sources

To provide a more fine-grained analysis of the dataset,
we detect and segment light sources in panoramas using
the approach by Gardner et al. [19]. In total, 11 060 light

sources are detected, for which the mean CCT and lu-
minance are computed. Overall, the average mean lumi-
nance for all the light sources included in the dataset is
27 874 cdm−2 (median of 3854 cdm−2), and the average
mean CCT is 3648K (median of 3380K).

A total of 406 randomly selected light sources were
manually labeled in order to study the physical properties
and diversity of three types of light sources differentiated
by their visual appearance: elongated “tubes” (190 sam-
ples), point-type “bulbs” (105 samples), and large “win-
dows” (111 samples), including skylights and windows with
curtains. Fig. 5 shows examples of detected sources and the
correlation between their CCT and average luminance val-
ues for each category.

Of all three categories, “tubes” have the most com-
pact distributions, with standard deviations of 465K and
2957 cdm−2 for CCT and luminance respectively, as they
all tend to use the same fluorescent lighting technology.
These types of lights are mostly used in public spaces, thus
their properties are expected to be similar. In compari-
son, the standard deviations of the CCT and luminance for
the sources labeled as “bulbs” are 1090K/95 381 cdm−2

and 1395K/6821 cdm−2 for the “windows”. As these
numbers suggest, the average luminance of the “bulbs”
varies considerably more than the “tube” category, as
their area (size) and purpose differ and can be found
both in public and private spaces. The “bulb” category
also shows a wide diversity in CCT, as it contains dif-
ferent types of lighting technologies (tungsten, compact
fluorescent, or LED) that are difficult to separate visu-
ally. They are the category with the highest average lumi-
nance, with mean/median values of 59 701/26 058 cdm−2,
compared to “tubes” (3212/2330 cdm−2) and “windows”
(6087/3032 cdm−2), as they are small but very bright light
sources that are usually scattered by diffusers or reflectors.

The “windows” category is the most diverse group of
light sources, especially regarding the CCT, as the spectral
properties of the incoming light depends on multiple fac-
tors, such as the time of day, weather, geographical position
and orientation of the room, the scene outside the window,
human-made light modifiers (curtains and blinds), etc. That
category also contains the hottest light sources. The total
intensity of the light also varies greatly, as panoramas were
taken during the day and at night, during sunny and cloudy
days. The first and fourth image of the bottom row of fig. 5
show the impact of curtains on the average luminance of
the light penetrating in the scene, compared to the windows
(other examples on the third row) without curtains. Human-
made light modifiers also have an impact on the “bulb” cat-
egory due to the lampshade and type of fixture used, reduc-
ing the average luminance perceived, as it can be seen in the
first and fifth examples of the second row of fig. 5. The sky-
light shown in the fifth example of the third row of fig. 5 has
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Figure 3. Example scenes with mean spherical illuminance (MSI) close to the quantile values. Greyscale images below show the corre-
sponding log-luminance maps (color scale shown on the right). The percentiles and corresponding measured MSI are indicated above the
images. Images are reexposed and tonemapped (γ = 2.2) for display.
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Figure 4. Example scenes with CCT close to the quantile values. Colored images below show the CCT map of the scenes, with corre-
sponding scale shown on the right. The percentiles and corresponding measured scene CCT are indicated above the images. Images are
reexposed and tonemapped (γ = 2.2) for display.

a very high CCT, due to the blue color of the sky, compared
to the other lateral windows, indicating that the orientation
in space of the window (and the view accessible from it) has
an impact on the spectral properties of the light in the scene.

5. Learning to predict photometric values

Our main goal is to develop algorithms that perform
physically accurate lighting predictions from real-world
photographs captured “in the wild.” It is our hope that the
proposed Laval Photometric Indoor HDR Dataset helps the
community make strides towards this goal. Here, we intro-
duce new tasks that are enabled by our dataset, and analyze
the conditions necessary for accurate light prediction.

5.1. Prediction tasks

We present three novel learning tasks that are enabled by
our dataset. Given a single image as input, each task aims
to predict the following values.

1. Per-pixel luminance: we wish to recover the lumi-
nance (in cdm−2) at each pixel in the input. For clarity,
losses are attributed independently to two subtasks: extrap-
olating HDR values from LDR inputs (similar to [45], see
sec. 2); and predicting the scalar exposure to appropriately
scale the HDR values to luminance. Here, we wonder how
different degradations (e.g. noise, quantization, tonemap-
ping) on the input affect the prediction.

2. Per-pixel color: we wish to estimate the color at each
pixel in the input by predicting its CCT. We augment the
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Figure 5. From top to bottom: examples of light sources labeled as tubes, bulbs, and windows (left), and correlation between the CCT and
the average luminance of the light sources (right). Each light source is centered in the frame, with its average luminance/CCT indicated
above. The mean/median values of each category are: “window” 4946K/4626K; “tubes” 3293K/3290K; “bulb” 3506K/3294K. Images
are reexposed and tonemapped (γ = 2.2) for display.

white balance (WB) of the input using [2] so that the col-
orimetry of the scene is unknown and wish to see if the net-
work is able to correctly identify the true CCT, as well as
predicting the CCT for saturated pixels.

3. Planar illuminance: we wish to predict the (scalar)
planar illuminance. This is computed using eq. (1) from a
180◦ photometric HDR image, but can it also be done from
a narrower field of view (FOV)? We also explore the impact
of the information provided in the input: can a single LDR
image, at arbitrary exposure, be sufficient? Is HDR neces-
sary, or alternatively, is the ground truth exposure needed?
The input to each of these tasks are adapted to measure if
a deep learning architecture can understand the photometry
of a scene from limited data.

5.2. Learning architecture and per-task data

Fig. 6 summarizes the architecture used for the experi-
ments. A UNet [61] with fixup initialization [69] (imple-
mentation from [25]) takes an image as input and outputs
an image of the same resolution. It consists of 5 down/up
sampling with skip connections, with 6 residual blocks [28]
at each level and 6 bottleneck layers. The decoder part of
the UNet is used for pixel prediction tasks. Additionally, a
subnetwork is added at the center of the bottleneck layers
of the UNet, consisting of a 4-layer MLP, and outputting

LDR

HDR

Color

Exposure

Illuminance

Figure 6. Architecture used for learning tasks. The learning archi-
tecture is based on a Unet with fixup initialization (green), with an
added subnetwork for scalar prediction tasks (blue). The input is
an LDR image of varying degradations and field of view (FOV).
The outputs depend on the task: per-pixel luminance prediction
outputs an HDR image and its (scalar) exposure; per-pixel color
prediction outputs a CCT map; and illuminance prediction outputs
an illuminance scalar only.

a single scalar. This subnetwork is used for scalar predic-
tion tasks. Every inner layer uses ReLU activation, and the
last layers of the decoder and subnetwork have tanh acti-
vation function. The outputs are normalized in logarithmic
scale accordingly. Each network is trained with the Adam
optimizer with learning rates of 10−6 for luminance and il-
luminance tasks, and of 10−5 for color.
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Input RMSE↓ siRMSE↓ HV3↑

Linear 116.2 83.4 96.4
Gamma 121.9 84.1 96.4
Quantized 125.4 83.8 95.9
Noise 116.3 84.2 96.6
All 121.0 84.7 96.0

Table 1. The effect of input degradations on the prediction of the
per-pixel luminance. The rows indicate the degradation applied
to the input of the network. Each input is reexposed and clipped
in the range [0,1], and different transformations are applied: none
(”Linear”), tonemapping (with γ = 2.2) (”Gamma”), 8-bit quanti-
zation (”Quantized”), additive gaussian noise with variance drawn
uniformly in the [0, 0.03] interval (”Noise”) and all 3 degradations
compounded (”All”).“HV3” is the HDR-VDP-3 metric [48].

180◦ 120◦ 60◦ 60◦–120◦

Input RMSE↓ R2
↑ RMSE↓ R2

↑ RMSE↓ R2
↑ RMSE↓ R2

↑

HDR 22.0 0.969 20.6 0.969 51.8 0.861 49.7 0.839
LDR+scale 47.8 0.830 50.9 0.834 57.4 0.819 52.8 0.876
LDR 123.7 0.406 124.1 0.374 122.0 0.402 126.5 0.423

Table 2. Illuminance prediction at different FOV with different
levels of information as input. The network is trained and eval-
uated on: the photometric HDR (”HDR”), the reexposed photo-
metric HDR clipped in the range [0, 1] with (”LDR+scale”) and
without (”LDR”) knowledge of the exposure. Additionally, the
network is trained on multiple FOVs: full hemispherical 180◦ (in
equirectangular projection), 120◦, 60◦, and randomly varying in
the [60◦, 120◦] interval (using perspective projection).

The architecture is adapted to each task. For the per-pixel
luminance task, an HDR image in the same exposure as the
given input is predicted. The subnetwork predicts the ex-
posure needed to scale the predicted HDR to absolute lumi-
nance. Here, different degradations are applied to the input:
clipping, reexposing, gamma tonemapping, 8 bits quanti-
zation and additive gaussian noise. For the per-pixel color
task, the subnetwork is omitted and the decoder outputs a
CCT map from a WB-augmented input. For the planar illu-
minance task, the subnetwork outputs the illuminance and
the decoder is discarded. Since the planar illuminance is not
defined for 360◦, the input is a hemisphere, in equirectan-
gular projection or rectangular projection with a given FOV.
The photometric dataset is randomly split 80%-10%-10%
for train-val-test respectively for all experiments below. For
computational efficiency, all HDR panoramas are rescaled
to 64 × 128 resolution with an energy preserving scaling
function, except for illuminance prediction where we ex-
tract perspective projection at 160× 120.

5.3. Experimental results

Per-pixel luminance Here, the input is reexposed so that
its 90th percentile corresponds to 0.8 and is clipped in the
[0, 1] range. We then explore the effect of degrading the in-
put on the prediction. We experiment by tonemapping the

input (γ = 2.2), by quantizing it to 8 bits, by adding gaus-
sian noise (with variance drawn uniformly in the [0, 0.03]
interval), and by combining all three degradations. Here,
the decoder predicts an HDR image in the same scale as the
input LDR, and the subnetwork predicts the scalar which
multiplies the HDR to obtain the luminance map. The re-
sults in tab. 1 show the RMSE and its scale-invariant version
(siRMSE) [8] (both weighted by solid angles), and HDR-
VDP-3 [48] to measure the visual quality of the prediction.
We observe that the network is robust to the degradations.

Per-pixel color Here, we explore the capacity to predict
the per-pixel CCT, having as input a LDR image with ran-
dom WB augmentation. The HDR input is first reexposed
so that its 90th percentile maps to 0.8, clipped to [0, 1], and
the WB is augmented to a random preset using [2]. The
predictions are scored using RMSE as well as the relative
error between the prediction and the ground truth. Fig. 7
shows qualitative results of color prediction. The mean rel-
ative error and RMSE are 4.25% and 173.0 on the entire
test set. We observe that the network struggles with larger
color variations across the image. However, CCT is accu-
rately predicted despite color changes in the input.

Planar illuminance Here, we experiment with three
types of inputs: a photometric HDR image (”HDR”), a lin-
ear LDR image (reexposed HDR clipped to the [0, 1] inter-
val) with (”LDR+scale”) and without (”LDR”) knowledge
of the exposure. In addition, we also evaluate the impact of
the FOV of the input. We experiment with FOVs of 180◦,
120◦, 60◦, and uniformly random in the [60, 120]◦ interval.
The image is stored in an equirectangular representation for
180◦, and perspective projection for the other, lower FOVs.

Tab. 2 shows the results of these series of experiments.
We report the RMSE and R2 for each combination of input
type and FOV. First, observe that the experiment with a FOV
of 180◦ with the HDR image (top-left in tab. 2) amounts to
learning the illuminance integration (eq. (1)). Unsurpris-
ingly, narrowing the FOV results in decreased performance,
due to the hidden lights beyond the FOV which may di-
rectly affect the planar illuminance. Limiting the photomet-
ric input information by clipping the HDR but keeping the
correct scale (LDR+scale), reduces the scores moderately.
The network now has to predict the amount of light beyond
the clipped pixels. Discarding the scale from the input sig-
nificantly worsens the results, indicating that full dynamic
range (HDR) and/or knowing the absolute exposure are both
necessary conditions for accurate illuminance inference.

6. Generalization to another camera
We now present experiments to evaluate the usefulness

of our proposed dataset for predicting luminance and color
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Figure 7. Examples of color prediction. The first row indicates the RMSE percentile: the RMSE (relative error). The “input” is the
calibrated HDR reexposed, clipped, with a random WB augmenter [2]. Other rows show the ground truth and predicted CCT maps, and
the relative error map. Colormaps for both the CCT and the relative error are shown at the right.

values from images captured with another camera. To this
end, we rely on the Ricoh Theta Z1, an off-the-shelf 360◦

camera, and captured a small dataset of 74 calibrated HDR
panoramas (referred to as “Theta dataset”) using the same
process as in sec. 3. In addition to the bracketed RAW im-
ages, we also capture well-exposed LDR images (in jpeg
format) produced by the camera. This small experimen-
tal dataset will also be released publicly. As opposed to
[46] which calibrated this camera for photometric measure-
ments, we calibrate for color as well as luminance.

Architecture and data The network architecture for each
task is kept the same as in sec. 5. The networks are first
trained on the calibrated Laval dataset with synthetically de-
graded LDR inputs (all degradations). The Theta dataset is
split 40%-10%-50% for train-val-test respectively. The pre-
trained networks are then fine-tuned on the Theta dataset
(with jpeg images as input) with the same learning rate.

Experimental results Tab. 3 shows the results of the ex-
periments for each task (cf. sec. 5.1). We experiment with
a degraded LDR as input to the models pretrained on our
dataset and the jpeg image of the camera as input to the pre-
trained and fine-tuned models. The input images have 120◦

FOV for the planar illuminance prediction task, and all jpeg
images are captured with the same white balance setting.

Directly providing the jpeg images as inputs to the pre-
trained model (2nd row in tab. 3) results in significantly de-
graded performance across most tasks as compared to using
degraded LDR images. This shows that the domain gap be-
tween produced jpeg images and simulated LDR images is
still wide. Fine-tuning the networks on jpeg inputs is there-
fore necessary to obtain performance similar or sometimes
slightly better than those obtained on the synthetic LDR.

Luminance Color Illuminance

Input RMSE↓ siRMSE↓ HV3↑ RMSE↓ rel ε↓ RMSE↓ R2
↑

PT LDR 130.6 86.9 95.5 334.0 11.97 153.2 0.469
PT Jpeg 170.0 100.6 90.3 676.4 25.06 141.9 0.314
FT Jpeg 156.7 96.4 91.4 177.9 5.52 143.3 0.385

Table 3. Domain adaptation on a real-world dataset for which a
jpeg image of a scene, as well as the calibrated luminance map, are
captured with a Ricoh Theta Z1. Here, “HV3” refers to the HDR-
VDP-3 metric [48]. We report performance on all three tasks from
sec. 5.1. Each row corresponds to degraded LDR and jpeg as input
to the pretrained model (“PT LDR” and “PT Jpeg” resp.), and jpeg
as input to the fine-tuned model (“FT Jpeg”).

7. Conclusion

We present the Laval Photometric Indoor HDR Dataset,
the first photometrically accurate, large-scale dataset of
HDR panoramic images. Our calibration method relies on
a carefully curated calibration dataset of RAW exposure
brackets captured with the original camera and a chroma
meter. We also capture another small calibrated dataset
with a Ricoh Theta Z1 for experiments on jpeg inputs. We
present baselines for three novel tasks: per-pixel luminance,
per-pixel color and planar illuminance predictions. We hope
this new dataset will spur and catalyze research by empow-
ering others to explore novel photometric and colorimetric
tasks in computer vision, such as white balance prediction
under multiple illuminations, physically based inverse ren-
dering and ”in the wild” image relighting.
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search Alliance Canada. The authors thank Mojtaba Parsaee and
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