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Abstract

We address the challenge of getting efficient yet accu-
rate recognition systems with limited labels. While recog-
nition models improve with model size and amount of data,
many specialized applications of computer vision have se-
vere resource constraints both during training and inference.
Transfer learning is an effective solution for training with
few labels, however often at the expense of a computation-
ally costly fine-tuning of large base models. We propose
to mitigate this unpleasant trade-off between compute and
accuracy via semi-supervised cross-domain distillation from
a set of diverse source models. Initially, we show how to
use task similarity metrics to select a single suitable source
model to distill from, and that a good selection process is
imperative for good downstream performance of a target
model. We dub this approach DISTILLNEAREST. Though
effective, DISTILLNEAREST assumes a single source model
matches the target task, which is not always the case. To al-
leviate this, we propose a weighted multi-source distillation
method to distill multiple source models trained on different
domains weighted by their relevance for the target task into
a single efficient model (named DISTILLWEIGHTED). Our
methods need no access to source data and merely need
features and pseudo-labels of the source models. When
the goal is accurate recognition under computational con-
straints, both DISTILLNEAREST and DISTILLWEIGHTED
approaches outperform both transfer learning from strong
ImageNet initializations as well as state-of-the-art semi-
supervised techniques such as FixMatch. Averaged over
8 diverse target tasks our multi-source method outperforms
the baselines by 5.6%-points and 4.5%-points, respectively.
Code: github.com/Kennethborup/DistillWeighted

1. Introduction

Recognition models get more accurate the larger they are
and the more data they are trained on [21, 36, 45]. This is a
problem for many applications of interest in medicine (e.g.
X-ray analysis) or science (e.g. satellite-image analysis)
where both labeled training data, as well as computational
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Figure 1: Average test accuracy over five target tasks with
different methods for weighting source models for distilla-
tion. Our methods outperform the baselines and transfer
learning from ImageNet. See Section 5.3 for details.

resources needed to train such large models, are lacking.

The challenge of limited labeled data can potentially be
alleviated by fine-tuning large-scale “foundation models”
[13, 21, 45]. However, fine-tuning is computationally ex-
pensive, especially when one looks at foundation models
with billions of parameters [|3]. Unfortunately, all evidence
suggests that larger foundation models perform better at
fine-tuning [2 1, 45]. This leaves downstream applications
the unpleasant trade-off of expensive computational hard-
ware for fine-tuning large models, or inaccurate results from
smaller models. Motivated by this challenge, we ask can we
train accurate models on tight data and compute budgets
without fine-tuning large foundation models?

To set the scene, we assume the existence of a diverse set
(both in architecture and task) of pre-trained source models
(or foundation models). We do not have the resources to fine-
tune these models, but we assume we can perform inference
on these models and extract features, e.g. through APIs on
cloud services [8, 34]. For the target task, we assume that
labeled data is very limited, but unlabeled data is available.
We then propose a simple and effective strategy for building
an accurate model for the target task: DISTILLNEAREST.
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Concretely, we first compute a measure of “task similarity”
between our target task and each source model and rank
the source models accordingly. Then we pseudo-label the
unlabeled data using the most similar source model. These
pseudo-labels may not even be in the same label space as
the target task, but we conjecture that due to the similarity
between the source and target tasks, the pseudo-labels will
still group the target data points in a task-relevant manner.
Finally, we train the target model using the pseudo-labels
and the available ground truth labeled data. This allows us to
bypass the large computations required to fine-tune source
models and directly work on the target model. At the same
time, we get to effectively use the knowledge of the large
source model even if it is trained on a different task.
DISTILLNEAREST assumes that a single best source
model exists. But for some target tasks, we might need
to combine multiple source models to achieve a sufficiently
diverse representation to distill. We, therefore, propose an
extension of our approach that distills multiple (diverse)
source models trained on different domains, weighted by
their relevance for the target task. This extension obtains
even further improvements on our target performance (see
Figure 1). We dub this method DISTILLWEIGHTED.

We summarize our contributions as follows:

* We train more than 200 models across a diverse set of
source and target tasks using single-source distillation,
and extensively show that the choice of source model is
imperative for the predictive performance of the target
model. To the best of our knowledge, no previous work
has addressed how to efficiently select a teacher model for
(cross-domain) distillation.

* We find that task similarity metrics correlate well with
predictive performance and can be used to efficiently select
and weight source models for single- and multi-source
distillation without access to any source data.

* We show that our approaches yield the best accuracy
on multiple target tasks under compute and data con-
straints. We compare our DISTILLNEAREST and DIS-
TILLWEIGHTED methods to two baselines (transfer learn-
ing and FixMatch), as well as the naive case of DIs-
TILLWEIGHTED with equal weighting (called DISTILLE-
QUAL), among others. Averaged over 8§ diverse datasets,
our DISTILLWEIGHTED outperforms the baselines with
at least 4.5% and in particular 17.5% on CUB200.

2. Related Work

Knowledge Distillation One key aspect of our problem
is to figure out how to compress single or multiple large
foundation models into an efficient target model. A common
approach is knowledge distillation [5, 18] where an efficient
student model is trained to mimic the output of a larger

teacher model. However, most single-teacher [3, 10, 11, 27,

] or multi-teacher knowledge distillation [16, 26, 37, 44]
research focuses on the closed set setup, where the teacher(s)
and the student both attempts to tackle the same task. To the
best of our knowledge, compressing models specializing in
various tasks different from the target task has rarely been
explored in the literature. Our paper explores this setup and
illustrates that carefully distilling source models trained on
different tasks can bring forth efficient yet accurate models.

Semi-Supervised Learning and Transfer Given our target
tasks are specified in a semi-supervised setting, it is custom-
ary to review methods for semi-supervised learning (SSL).
The key to SSL approaches is how to effectively propagate
label information from a small labeled dataset to a large
unlabeled dataset. Along this vein, methods such as pseudo-
labeling/self-training [24, 42] or consistency regularization
[7, 35, 38] have shown remarkable results in reducing deep
networks dependencies on large labeled datasets via unla-
beled data. However, most SSL approaches focus on training
models from scratch without considering the availability of
pre-trained models. Given the increasing availability of
large pre-trained models [30, 41], recent work has started
exploring the intersection between transfer learning and SSL
[1, 20, 33]. However, most of these works focus on how to
transfer from a single pre-trained model to the target task.
Our paper, however, explores an even more practical setup:
how to transfer from multiple pre-trained models to a down-
stream task where in-domain unlabeled data are available.
In principle, we could combine our approach with a lot of
previous work on SSL to (potentially) gain even larger im-
provements, but to keep our method simple we leave such
exploration to future work and focus on how to better utilize
an available set of pre-trained models.

Multi-Source Domain Adaptation Our setup also bears a
resemblance with multi-source domain adaptation (MSDA)
[31] in which the goal is to create a target model by leverag-
ing multiple source models. However, MSDA methods often
assume the source and target models share the same label
space to perform domain alignment. We do not make such
an assumption and in fact, focus on the case where the label
space of source and target tasks have minimal to no overlap.
Besides, a lot of the MSDA approaches [31, 43, 46, 47] rely
on the availability of source data or the fact that the source
and target tasks share the same model architecture to build
domain invariant features. Given the discrepancy in assump-
tions between MSDA and our setup, we do not consider any
methods from this line of work as baselines.

Transfer Learning From Multiple Sources Transfer learn-
ing from multiple different pre-trained models has been ex-
plored in different setups. Bolya et al. [9] focuses on how
to select a single good pre-trained model to use as a model
initialization whereas we explore how to distill an efficient
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Figure 2: We propose to weigh a set of S source models, My = hg o ¢, by using task similarity metrics to estimate the
alignment of each source model with the particular target task using a small probe set of labeled data, D?. Since the task
similarity metrics are independent of feature dimension, we can utilize source models of any architecture and from any source

task. We show that by choosing the weighting, o, . .

., &g, this way we are able to improve performance over transfer from

ImageNet and training with FixMatch amongst others (see e.g. Table 1 and Figure 3).

model from the pre-trained models (i.e. our target archi-
tecture could be different from those of the source models).
Agostinelli et al. [4] focuses on how to select a subset of
pre-trained models to construct an (fine-tuned) ensemble,
whereas we focus on creating a single model. Li et al. [25]
focuses on creating a generalist representation by equally
distilling multiple pre-trained models using proxy/source
data (which often requires high-capacity models) whereas
our goal is to construct an efficient specialist model using
the target data. All these works have indicated the impor-
tance of exploring how to best leverage a large collection
of pre-trained models but due to differences in setup and
assumptions, we do not (and could not) compare to them.

Task Similarity / Transferability Metrics A key insight of
our approach is to leverage the similarity between the target
and source tasks to compare and weigh different pre-trained
source models during distillation. Characterizing tasks (or
similarities between tasks) is an open research question with
various successes. A common approach is to embed tasks
into a common vector space and characterize similarities
in said space. Representative research along this line of
work include Achille et al. [2], Peng et al. [32], Wallace et al.
[40]. Another related line of work investigates transferability
metrics [0, 9, 14, 15, 28, 39]. After all, one of the biggest
use cases of task similarities is to predict how well a model
transfers to new tasks. Since it is not our intention to define
new task similarity/transferability metrics for distillation, we
use already established metrics that capture the similarity

between source representations and one-hot labels to weigh
the source models. Under this purview, metrics that char-
acterize similarities between features such as CKA [12, 22]
and transferability metrics based on features [9, 14] suffice.

3. Problem Setting

The aim of this paper is to train an accurate model for a
given target task, subject to limited labeled data and com-
putational constraints (e.g. limited compute resources). For-
mally, we assume that our target task is specified via a small
labeled training set ’DZT. Furthermore, we assume (a) the
availability of a set of unlabeled data, D7, associated with
the target task, and (b) the ability to perform inference on
aset S = {M,}J , of S different source models, M,
trained on various source tasks different from the target task.
We emphasize that we have no access to any source data
which could be practical due to storage, privacy, and com-
putational constraints. Neither do we need full access to the
source models provided we can perform inference on the
models anywise (e.g. through an API).

We assume that the architecture of the target model, M,
must be chosen to meet any applicable computational con-
straints. This can imply that no suitable target architecture
is available in the set of source models S, making classical
transfer learning impossible. For simplicity, we restrict our
models (regardless of source or target) to classification mod-
els that can be parameterized as M = h o ¢; the feature
extractor ¢ embeds input x into a feature representation, and
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Figure 3: Test accuracy for distillation with each dot representing single-source distillation from different source models.
The colors represent the task similarity for the source models (from small to large; "Sll). We include the performance
from fine-tuning ImageNet (—), DISTILLNEAREST; i.e. distillation of the highest ranked source model (») as well as
DISTILLEQUAL (), and DISTILLWEIGHTED(p) where weights are proportional to task similarity with power p = 1 (<), and
p = 12 (<), respectively. The numbers in parentheses at the bottom are Spearman correlations between the task similarity and

test accuracy for single-source distillation.

the classifier head, h, maps the feature ¢(x) into predicted
conditional class probabilities, P(y | x).

4. Cross-Task Distillation for Constructing Effi-
cient Models from Foundation Models

To construct an efficient model, we propose to distill large
foundation models. Along this vein, we propose two variants:
(a) DISTILLNEAREST that distills the single nearest source
model (Section 4.1) and (b) DISTILLWEIGHTED that distills
a weighted collection of source models (Section 4.2).

4.1. DISTILLNEAREST

To construct a single efficient target model, DISTILLN-
EAREST undergoes two steps sequentially: (a) selecting an
appropriate source model and (b) distilling the knowledge
from the selected source model into the target model. For
ease of exposition, we start by explaining the distillation
process and then discuss how to select an appropriate source
model.

Distilling a selected source model. Given a selected
source model M, the target model M, = h, o, is trained
by minimizing a weighted sum of two loss functions,

Lsingle def \Llabeled (1-2X) £gistill7 )

where A € [0,1]. The first loss function is the standard
supervised objective over the labeled data,

1
Clabeled def E
‘ D! |

T (xi,y:)€DL

ler (hT((bT(xi))a yi) ) (2

where {cg (-, ) is the cross-entropy loss. The second loss
function is a distillation loss over the unlabeled data,

1
Dy

T

Egistilldzef Z bop (Wi (- (x:)), Ms(x;))) . (3)

X; G’Dg

Note, the source and target tasks do not share the same
label space so we introduce an additional classifier head,
h3, which maps the features from the target task feature
extractor, ¢, to the label space of the source task. This
additional classifier head, hZ, is discarded after training and
only the target classifier head, k., is used for inference.

In principle, we could add additional semi-supervised
losses, such as the FixMatch loss [35] to propagate label in-
formation from the labeled set to the unlabeled set for better
performance, but this would add additional hyperparame-
ters and entangle the effect of our methods. We leave such
explorations to future work.

Selecting the nearest source model for distillation. Se-
lecting a source model for distillation is an under-explored
problem. Given the recent success of using task similarity
metrics [9] for selecting foundation models for fine-tuning,
we conjecture that high similarities between a source model
and the target task could indicate better performance of the
distilled model (we verify this in Section 5.2). However,
quantifying similarities between tasks/models is an open
research question with various successes [2, 28]. For sim-
plicity, we pick our similarity based on one simple intuition:
target examples with identical labels should have similar
source representations and vice versa. Along this vein, the
recently introduced metric, PARC [9] fits the bill.

For convenience, we briefly review PARC. Given a small
labeled probe set D? = {(x;,y;)}?; C DL and a source
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representation of interest ¢, PARC first constructs two dis-
tance matrices Dy_, Dy based on the Pearson correlations
between every pair of examples in the probe set;

Dy, =1~ pearson({(x:) 1),
Dy = 1— pearson({y:},)-

PARC is computed as the Spearman correlation between the
lower triangles of the distance matrices;

PARC(¢s,Y) = spear ({Dg,[i, jl}i<j, { Dy [i, j]}i<y) -

Intuitively, PARC quantifies the similarity of representa-
tions by comparing the (dis)similarity structures of exam-
ples within different feature spaces: if two representations
are similar, then (dis)similar examples in one feature space
should stay (dis)similar in the other feature space. In Figure
3 and 4 we show that ranking source models by PARC corre-
lates well with test accuracy and that selecting an appropriate
source model can yield significant improvements.

4.2. DISTILLWEIGHTED

Above, DISTILLNEAREST assumes a single optimal
source model exists for the target task, but what if no single
source model aligns well with our target task? To allevi-
ate this issue, we propose to distill multiple source models,
weighted according to their similarities with the target tasks.
In the following, we explain our weighted distillation ob-
jective and how the weights are constructed. Figure 2 is a
schematic depiction of the approach DISTILLWEIGHTED.

Weighted objective for distilling multiple sources.
Given a set of source models S = {M,}?_,, we modify
the distillation loss of (1) with a weighted sum of multiple
distillation losses (one for each source model):

s
Lonalti = \Llabeled (1-\) Zasﬁgistill7 @)
s=1
where A, ay,...,ag € [0,1] (£lbeled and L3 are as de-

fined in (2) and (3), respectively). Here ay is the relative
weight assigned to each source model such that Zle Qs =
1. Once again, we could add additional semi-supervised
losses, such as the FixMatch loss, but to ensure simplicity,

we leave such explorations for future research.

Task similarity weighting of source models Simply as-
signing equal weight to all source models is sub-optimal (e.g.
weighing source models trained on ImageNet and Chest X-
ray equally might not be optimal for recognizing birds). As
such, we propose to compute the source weight o, from a
task similarity metric between the s-th source model and the

target task. In particular, let e, be such a similarity metric,
then we compute the source weights {c; };cqs] as

»
o = —=+—, where e; = max(0, e;) 5)

' Zf:l ex ’ ’
forj =1,...,5. Here p is a hyperparameter to re-scale the

distribution of the weights. Larger p assigns more weight
to the most similar source models, while p = 0 corresponds
to equal weights for all models (denoted DISTILLEQUAL),
and p — oo assigns all weight to the most similar source
model (i.e. DISTILLNEAREST). When relevant, we use the
notation DISTILLWEIGHTED(p) to indicate the choice of p.

Scalability For DISTILLWEIGHTED to be feasible, com-
pared to DISTILLNEAREST, we need to ensure that the train-
ing procedure scales well with the size of S. Since the com-
putation of the weights {c, }_; is based on the small probe
set and is almost identical to the selection procedure for
DISTILLNEAREST this is a negligible step. When training
the target model, we merely require one forward pass on the
unlabeled target dataset with each source model (to obtain
pseudo-labels) as well as training of a one-layer classifier
head per source model, both of which are cheap compared to
the full training procedure of the target model. Nonetheless,
one could employ a pre-selection of the top-k source models
with the largest task similarity, thereby reducing the number
of classifier heads and forward passes required. However,
doing so introduces another hyperparameter, k, (i.e. how
many models to use) complicating the analysis. Moreover,
since large p induces such pre-selection in a soft manner,
we leave it to future research to determine how to select the
appropriate k.

5. Experiments and Results
5.1. Experimental Setup

Benchmark. Despite our methods being designed with
the interest of using large vision models (that are potentially
only available for inference), such a setting is intractable for
our research. Thus, to allow for controlled experimentation
we restrict our source models to a more tractable scale. In
particular, we modify an existing transfer learning bench-
mark: Scalable Diverse Model Selection by [9], and use the
publicly available models to construct a set of source models
for each target task. Thus, we consider a set consisting of 28
models: 4 architectures (AlexNet, Googl.eNet, ResNet-18,
and ResNet-50 [17, 23]) trained on 7 different source tasks
(CIFAR-10, Caltech101, CUB200, NABird, Oxford Pets,
Stanford Dogs, and VOC2007). For the target tasks, we
consider 8 different tasks covering various image domains
(Natural images: CIFAR-10, CUB200, NABird, Oxford Pets,
Stanford Dogs; X-ray: ChestX; Skin Lesion Images: ISIC;
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Target Data
Labeled Unlabeled

CIFAR-10 CUB200 ChestX EuroSAT  ISIC

Oxford  Stanford
NABird Pets Dogs Mean

IN+Transfer v - 9.4 428 473 97.4 81.6 373 75.9 62.6 67.2

IN+FixMatch v v 93.5 419 38.5 98.1 82.6 42.8 83.4 65.8 68.3
MobileNetV3 DISTILLRANDOMSELECTION v v 89.6 46.5 46.6 97.4 81.8 39.0 79.4 61.9 67.8
(0.24 GFLOPs) (Ours) DISTILLNEAREST v v 92.0 59.6 46.8 97.4 81.0 474 81.9 71.3 722

DISTILLEQUAL v v 90.8 53.5 45.7 97.5 81.5 414 82.1 62.1 69.3

DISTILLRANDOMWEIGHTS v v 87.9 44.9 46.9 97.8 81.6 39.6 80.2 59.2 67.3

(Ours) DISTILLWEIGHTED v v 92.0 60.0 47.7 97.6 82.2 483 84.4 69.9 72.8
AlexNet IN+Transfer v 85.0 18.4 46.2 91.9 67.8 13.0 50.9 29.1 50.3
(0.71 GFLOPs) Fine-tune Selected Source v 88.0 30.4 429 89.8 74.5 17.9 66.8 413 56.5
GoogLeNet IN+Transfer v 91.8 428 414 96.8 80.5 36.5 84.8 65.9 67.6
(1.51 GFLOPs) Fine-tune Selected Source v 91.6 61.2 48.6 96.9 78.3 33.0 87.8 71.8 71.2
ResNet-18 IN+Transfer v 922 37.8 452 96.6 80.2 34.0 80.2 58.2 65.6
(1.83 GFLOPs) Fine-tune Selected Source v 91.3 58.2 46.4 97.0 75.8 35.4 80.7 69.3 69.3
ResNet-50 IN+Transfer v 92.9 42.0 43.4 96.8 79.9 39.9 83.3 65.9 68.0
(4.14 GFLOPs) Fine-tune Selected Source v 93.0 70.8 439 97.2 81.3 474 84.8 79.3 74.7

Table 1: Cross-task distillation compared to baselines. MobileNetV3 models (target architecture) trained with our methods
are highly competitive with baseline methods on MobileNetV3 as well as baseline methods for more demanding model
architectures (source architectures: Alexnet, Googl.eNet, ResNet-18, ResNet-50). We highlight the top 3 methods, which
comply with compute requirements (i.e. MobileNetV3) for each target task by bold, underline, and italic, respectively. We

also indicate the target data used by different methods.

Satellite Images: EuroSAT). We treat 20% of the samples
as labeled, and the remaining as unlabeled. We carefully
remove any source models associated with a particular target
task, if such exists, in order to avoid information leakage be-
tween source and target tasks. For the target architecture, we
use MobileNetV3 [19] due to its low computational require-
ments compared to any of the source models. Furthermore,
unless otherwise mentioned A = 0.8 and p = 12. We refer
the reader to the supplementary material for further details.
Baselines. We consider a set of different baselines: based
on ImageNet initializations we consider IN+TRANSFER
(fine-tunes ImageNet representations using only the labeled
data), and IN+FIXMATCH [35] (fine-tunes the ImageNet rep-
resentation using labeled and unlabeled data), and based on
source model initializations we fine-tune the highest-ranked
source model of each source architecture. To show the im-
portance of using the right source model(s) to distill, we also
compare DISTILLNEAREST to DISTILLRANDOMSELEC-
TION which is the average of distilling from a randomly se-
lected source, and for comparison to DISTILLWEIGHTED we
also construct distilled models using the multi-source objec-
tive (4) with a random weight (DISTILLRANDOMWEIGHTS)
and equal weights (DISTILLEQUAL). For ease of exposition,
we present results for DISTILLNEAREST (Section 5.2) and
DISTILLWEIGHTED (Section 5.3) in separate sections.

5.2. Results for DISTILLNEAREST

We compare DISTILLNEAREST with the baselines in
Table 1 and Figure 3. Our observations are as follows.

Distillation with the right source model is better than

fine-tuning from ImageNet. We observe that within the
same target architecture (MobileNetv3), simply fine-tuning
ImageNet representations (IN+TRANSFER) is less opti-
mal than distilling from the most similar single model
(DISTILLNEAREST). In fact, for fine-grained datasets such
as CUB200, NABird, Oxford Pets, and Stanford Dogs, we
observe that distilling from an appropriate source model
(DISTILLNEAREST) could yield much better performance
than fine-tuning from a generalist ImageNet representation.
More surprisingly, even with the aid of unlabeled data, mod-
els fine-tuned from ImageNet representations using a label
propagation style approach (IN+FIXMATCH) still underper-
form distillation-based methods by at least 3.9% on average.
These observations indicate the importance of selecting the
right source model for transfer/distillation.

Distilling to efficient architecture could be better than
fine-tuning larger models. In Table 1, we include the per-
formance when fine-tuning larger architectures trained on
ImageNet (IN+TRANSFER) and the source model (of the
same architecture) most similar to each target task selected
using PARC (FINE-TUNE SELECTED SOURCE). A few ob-
servations are immediate: (a) our choice of task similarity
metric is effective for transfer; across all 4 architectures, we
observe at least 4% improvement over simple fine-tuning
from ImageNet, which validates the results by Bolya et al.
[9], and (b) with the aid of unlabeled data and distillation, the
computationally efficient architecture MobileNetV3 can out-
perform larger architectures fine-tuned on labeled data from
the target task (i.e. AlexNet, GoogLeNet, ResNet-18). Al-
though underperforming fine-tuning a ResNet-50 initialized
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CIFAR-10
CUB200
ChestX
EuroSAT
ISIC

NABird
Oxford Pets
Stanford Dogs
Mean

CIFAR-10
CUB200
ChestX
EuroSAT
NABird
Oxford Pets
Stanford Dogs
Mean

CKA 072 062 023 039 -004 031 0.69 011 038
PARC 079 079 0.02 0.17 0.06 048 0.72 054 045
RSA 082 031 -0.11 030 010 -0.03 065 038 030

Pseudo

CKA 99.1 956 974 99.6 988 894 1000 976 972
PARC 99.5 1000 955 99.6 985 99.7 988 99.7 989
RSA 100.0 77.7 965 997 985 872 98.6 97.6 945

Pseudo

CKA 0.82 039 036 021 -004 047 0.69 055 043
PARC 084 0.84 0.18 042 -0.14 081 081 0.84 0.58
RSA 086 081 003 038 0.03 028 0.89 085 052

Feature

CKA 100.0 956 97.0 99.8 99.0 933 100.0 964 97.6
PARC  100.0 100.0 97.8 99.7 983 1000 97.1 985 98.9
RSA 100.0 100.0 96.7 998 989 949 989 988 | 985

Feature

Table 2: Spearman correlation between test accuracy after
all possible single-source distillations and task similarities
associated with the source models. Generally feature rep-
resentations correlate better with distillation performance
compared to pseudo-label representations.

with the most similar ResNet-50 source model by a mere
average of 2.5%-points (FINE-TUNE SELECTED SOURCE),
using a ResNet-50 would require 17.5x more computations
during inference to achieve such improvements.

5.2.1 Task Similarity Metrics for DISTILLNEAREST

One key component of DISTILLNEAREST is to select the
source model to perform cross-task distillation on using task
similarity metrics. Despite many many existing metrics for
quantifying task similarities, their effectiveness for distil-
lation remains unclear. Given the myriads of metrics, we
restrict our focus to metrics that can capture similarities be-
tween a source representation of a target example and its
one-hot label representation. Along this vein, two questions
arise: which metric to use for comparing representations,
and which representations from a source model should be
used to represent a target example?

For the first question, we look into multiple metrics in the
literature that compares various representations: CKA [12],
RSA [14], and PARC [9]. For the second question, we look
into the common representations from a source model: the
features ¢ and the probabilistic outputs h o ¢.

To establish the effectiveness of our choice of similarity
metric, we report the Spearman correlation between the task
similarities and the test accuracy of the distilled models in
Table 2. We see that features from the source models can
better capture the correlation between the source models and
the test accuracy of the distilled models, than the probabilis-
tic pseudo-labels. In addition, we also see a much higher
correlation among natural tasks (compared to specialized
tasks such as ChestX, EuroSAT, and ISIC) which suggests
that our choice of task similarity is effective at selecting simi-
lar tasks. Besides, we also observe a higher correlation when
using PARC compared to the other metrics, thus validating
our choice of using PARC as the default metric.

Table 3: Relative accuracy of top-3 single-source distilled
models selected by task similarity over the average of the 3
actual best models. We compute the average test accuracy of
the top-3 highest ranked target models and divide it by the
average of the 3 actually best-performing target models.

To further establish the effectiveness of our metrics to
rank various source models, we compute the relative test
accuracy between the top-3 models most similar to the target
task and the top-3 best models after distillation (see Table
3). Again, we observe that all three metrics are capable
of ranking affinity between source models, but ranking the
models with PARC outperforms the other two metrics.

5.3. Results for DISTILLWEIGHTED

From Table 1, we observe that DISTILLWEIGHTED com-
pares favorably to DISTILLNEAREST, thus the conclusions
for DISTILLNEAREST translates to DISTILLWEIGHTED.
Yet, one particular task, Oxford Pets, is worth more attention.
On Oxford Pets (classification of different breeds of cats
and dogs), we observe that distilling from multiple weighted
sources (DISTILLWEIGHTED) is much better than distilling
from the single most similar source (DISTILLNEAREST),
which is a ResNet-18 trained on Caltech101 (that can rec-
ognize concepts such as Dalmatian dog, spotted cats, etc.).
Although the most similar source model contains relevant
information for recognizing different breeds of dogs and cats,
it might not contain all relevant knowledge from the set of
source models that could be conducive to recognizing all
visual concepts in Oxford Pets. In fact, we observe that the
second most similar model is a GoogLeNet model trained
on Stanford Dogs to recognize more dog breeds than the
most similar source model (but incapable of recognizing
cats). In this case, DISTILLWEIGHTED allows aggregation
of knowledge from multiple sources and can effectively com-
bine knowledge from different source models for a more
accurate target model than distillation from a single source.
This suggests that under certain conditions such as high
heterogeneity in data, distilling from multiple source models
can outperform distilling a single best source model.
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5.3.1 Task Similarity Metrics for Weighing Sources

We have established that our task similarity metric can cap-
ture the correlation between the source model representations
and the test accuracy of the distilled models. However, it
is not a priori clear that weighing source models based on
the ranking of their affinity to the target task would yield
better performance for multi-source distillation. As such,
we investigate alternative choices of weighing schemes for a
subset of 5 target tasks (CUB200, EuroSAT, ISIC, Oxford
Pets, Stanford Dogs): INVERSE (weights are inversely pro-
portional to task similarity), DISTILLRANDOMWEIGHTS
(weights are sampled uniformly on a 4-simplex), DISTILL-
RANDOMSELECTION (randomly selecting a single source
model), and DISTILLEQUAL (equal weights for all models).

Through Figure 1, we find that distilling from a sin-
gle or set of source models ranked using the similar-
ity metric is much more effective than distilling from
source models that are weighted randomly or equally
(DISTILLRANDOMWEIGHTS or DISTILLEQUAL). In addi-
tion, the fact that INVERSE underperforms IN+ TRANSFER
on average suggests that it is crucial to follow the ranking
induced by the similarity metrics when distilling the sources
and that the metric ranks both the most similar source models
and the least similar source models appropriately.

5.3.2 Effect of p

Our task similarity metrics give a good ranking of which
source models to select for distillation but it is unclear
whether the similarity score could be used directly with-
out any post-processing. To investigate, we visualize the
relationship between the test accuracy of the models distilled
from a single source and our task similarity. From Figure 4,
it is clear that the distribution of task similarities depends on

the target task, which motivates our normalization scheme.

In addition, it is not apriori clear that the weights should
scale linearly with the similarity scores. Thus, we investigate
the effect of the rescaling factor, p, for constructing the
weights. In Figure 6, we see that although no rescaling (p =
1) outperforms equal weighting, it is less optimal than e.g.
p = 12 (our default). This suggests that task similarity and
good weights have a monotonic, but non-linear relationship.

5.4. Additional Ablations and Analyses

Due to space constraints, we include additional ablations
and analyses in the supplementary materials. We summarize
the main findings as follows.

ResNet-50 as target model. Averaged over 8 tasks, DIs-
TILLWEIGHTED outperforms both IN+TRANSFER and Dis-
TILLEQUAL by 5.6% and 3.8%, respectively. Also, com-
pared to ImageNet initialization, using DISTILLWEIGHTED
with the most similar ResNet-50 source model as target
model initialization improves accuracy by 1.0%.

Improvements on VTAB. DISTILLWEIGHTED outperforms
IN+TRANSFER averaged over the ® Natural and e Special-
ized tasks of VTAB, by 5.1% and 0.8%, respectively. DI1s-
TILLNEAREST outperform by 4.8% and 0.6%, respectively.

Fewer labels. DISTILLWEIGHTED and DISTILLNEAREST
outperform IN+TRANSFER (by 6.8% and 4.4%, respec-
tively) under a setup with even fewer labeled samples.

Additional analysis of task similarity metrics. We consider
additional correlation metrics and top-k relative accuracies
of the selected models — all supporting the usefulness of
task similarity to weigh and select source models.
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6. Conclusion

We investigate the use of diverse source models to obtain
efficient and accurate models for visual recognition with lim-
ited labeled data. In particular, we propose to distill multiple
diverse source models from different domains weighted by
their relevance to the target task without access to any source
data. We show that under computational constraints and
averaged over a diverse set of target tasks, our methods out-
perform both transfer learning from ImageNet initializations
and state-of-the-art semi-supervised techniques.
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