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Abstract

The availability of large-scale authentic face databases
has been crucial to the significant advances made in face
recognition research over the past decade. However, legal
and ethical concerns led to the recent retraction of many of
these databases by their creators, raising questions about
the continuity of future face recognition research without
one of its key resources. Synthetic datasets have emerged as
a promising alternative to privacy-sensitive authentic data
for face recognition development. However, recent synthetic
datasets that are used to train face recognition models suf-
fer either from limitations in intra-class diversity or cross-
class (identity) discrimination, leading to less optimal ac-
curacies, far away from the accuracies achieved by mod-
els trained on authentic data. This paper targets this issue
by proposing IDiff-Face, a novel approach based on con-
ditional latent diffusion models for synthetic identity gen-
eration with realistic identity variations for face recogni-
tion training. Through extensive evaluations, our proposed
synthetic-based face recognition approach pushed the lim-
its of state-of-the-art performances, achieving, for example,
98.00% accuracy on the Labeled Faces in the Wild (LFW)
benchmark, far ahead from the recent synthetic-based face
recognition solutions with 95.40% and bridging the gap to
authentic-based face recognition with 99.82% accuracy*.

1. Introduction
Face Recognition (FR) is one of the most widely used

biometric technologies due to the high accuracies achieved
by the recent FRs [31, 56, 4] with a wide range of appli-
cations such as logical access control to portable devices
[42, 9]. This ubiquitous adoption has been fuelled by the
application of deep learning to FR and the rapid research
advances in this direction, mainly on novel margin-penalty
based softmax losses [14, 4] and deep network architectures

*https://github.com/fdbtrs/idiff-face

[24, 9]. However, this rapid progress has only been possi-
ble due to the public availability of large-scale FR training
databases [11, 23]. Such databases contain millions of im-
ages, and they are typically collected from the internet with-
out proper user consent, which raises concerns about the le-
gal and ethical use of these databases for FR development.

Since, for example, the European Union (EU) adopted
the General Data Protection Regulation (GDPR) [18] in
2018, more justified criticism of the associated privacy
risks has been raised against the usage of public biomet-
ric datasets that were collected without proper consent. The
GDPR explicitly grants individuals the ”right to be forgot-
ten” and enforces stricter requirements on the collection,
distribution, and usage of face databases, making it ex-
tremely hard, or even infeasible, to maintain such regula-
tions. Thus, many of them [11, 3, 23] that are widely used
to train FRs were retracted by their creators to avoid legal
complications, which raises the question about continuity of
FR research since the availability of one of its key resources
became questionable.

As an effort to address these legal and ethical concerns,
synthetic data has recently emerged as a promising alterna-
tive to authentic databases for FR training [43, 6, 7, 10, 2, 5].
This is also the trend for FR subsystems, such as morph-
ing and spoof attack detection [13, 19] and face images
quality assessment [1]. This research direction is driven by
the progress on Deep Generative Models (DGMs), a model
designed to learn the probability distribution of a certain
dataset, enabling the generation of completely new syn-
thetic samples. This process can be conditioned on specific
attributes such as age, facial expression, and a defined set
of visual appearances, e.g. the lighting condition and head
pose [15, 52, 54, 21]. Most of the DGM approaches for
generating synthetic faces are based on Generative Adver-
sarial Networks (GANs) [22, 15, 49, 33, 6]. A number of
recent works [37, 7, 43] utilized GANs [15, 29] to gener-
ate synthetic data for FR training. The reported results by
SOTA synthetic-based FR showed significant degradation
in the verification accuracies in comparison to FR trained
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Figure 1: Overview of the proposed IDiff-Face. This dia-
gram is divided into two parts, the upper part visualizes the
training procedure, and the lower part shows the conditional
sampling process, partially inspired by [45]. Top: During
training, the learned denoising U-Net is conditioned on a
context that is based on the feature representation obtained
through a pre-trained FR model. The entire DM training
process is in the latent space of a pre-trained AE. The diffu-
sion process that basically provides the targets for learning
the iterative reverse process is depicted above. Bottom: For
samples generation, the trained DM can generate samples
based on three types of identity contexts: authentic, two-
stage, or synthetic uniform representations. By fixing the
identity context and varying the added noise, different sam-
ples for the same identity can be generated.

on authentic data. This performance gap is mainly due to
low identity discrimination [6] or small intra-class variation
[7, 43] in their training datasets. A realistic trade-off be-
tween these two properties, as we will demonstrate in this
paper, is needed to achieve high verification accuracies.

Recently, Diffusion Models (DMs) [25, 40, 45, 16]
gained attention for both research and industry due to their
potential to rival GANs on image synthesis [16], even
though they are easier to train, have no stability issues, and
stem from a solid theoretical foundation. Besides that, they
can be conditioned on additional information, and demon-
strated impressive results in a wide range of tasks, espe-
cially in text-to-image generation such as OpenAI’s DALL-
E 2 [44], Stable Diffusion [45], and Google’s Imagen [47].

We propose in this work an identity-conditioned Diffu-
sion Model approach, namely IDiff-Face. Our IDiff-Face is
designed and trained to generate synthetic images of syn-

thetic identities that are identity-separable, with a desir-
able relatively large intra-class diversity. Our approach fol-
lows the common concept [45] of dividing the training into
two stages by first training an AE (or using a pre-trained
AE) and then leveraging the resulting representational low-
dimensional latent space of the AE for DM training [45].
The identity condition is introduced to our IDiff-Face by
projecting the training images into a low-dimensional fea-
ture representation and then injecting it into the DM’s in-
termediate representations through a Cross-Attention (CA)
mechanism [45]. To ensure that our synthetic data contains,
to a large degree, realistic variations and to avoid overfit-
ting our IDiff-Face to the information encoded in the iden-
tity context, we proposed a simple, yet effective Contex-
tual Partial Dropout (CPD) approach that partially drops out
components with a certain probability of the identity con-
text during the training phase, thus the term ”fizzy” in our
title. We first demonstrate the identity discrimination and
intra-class variation of our synthetically generated data. We
also compared our dataset in terms of identity-separability
and intra-class variation, with the recent SOTA synthetic
datasets. As we empirically present in this paper, the syn-
thetic datasets that are used in SOTA synthetic-based FR
training maintain, to some degree, identity discrimination,
however, only with a low intra-class variation or vice versa.
Unlike these approaches, our proposed IDiff-Face offers a
more realistic trade-off between identity discrimination and
intra-class variation that is controlled by CPD. Achieving
this realistic trade-off between these two properties is nec-
essary to achieve verification accuracy that is close to ver-
ification accuracies achieved by FRs trained on authentic
data as authentic data naturally contains such properties.
By utilizing our synthetic data (500K images) for FR train-
ing and under the same training setups and dataset size,
our synthetic-based FR achieved an average accuracy of
88.20%, significantly outperforming all SOTA synthetic-
based FRs (best average accuracy was 83.45%) and clos-
ing the gap to SOTA FR trained on authentic data, where
the average accuracy on CASIA-WebFace [59] (500K im-
ages) and MS1MV2 [23, 14] (5.8M images) were 94.92%
and 97.18%, respectively. Our model also outperformed
human-level performance in face verification, where the re-
ported accuracy on Labeled Faces in the Wild (LFW) [26]
was 97.5% [35] and our model achieved 98.00%.

2. Related Work
The vast majority of DGMs that are proposed in the lit-

erature are often designed for generating synthetic images
of random identities [22, 28, 30, 10] or editing certain fa-
cial attributes of existing reference images [55, 51, 49, 54],
and thus, such models are not by design capable of gener-
ating synthetic identities with multiple different images per
identity. While other DGMs proposed to generate images of
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synthetic identities, most of them either rely on pre-existing
semantic attribute annotations [55, 50, 51, 49, 15, 34, 21, 52,
54], meticulously constructed training batches [17, 15, 52],
or the supervision by sophisticated 3D Morphable Face
Models (3DMM) [50, 51, 15, 34, 21, 54]. In some cases,
even all of these requirements are necessary in order to ex-
plicitly model specific parametric factors, such as age or
illumination, and thus, gain control over the generative pro-
cess [15]. These approaches presented impressive results in
generating high-quality and realistic images [15, 52] with
an unprecedented level of control. However, the visual ap-
pearances in their generated images are limited to a pre-
defined set of attributes [15, 52], and thus, their synthetic
images might not contain natural real-world variations or
large diversities in terms of utility [20]. Utilizing such syn-
thetic data for FR training might lead to suboptimal verifi-
cation accuracies. For that reason, SynFace [43] proposed
a synthetic-based FR approach based on DiscoFaceGAN
[15] with synthetic identity mix-up to enhance the intra-
class diversity. USynthFace [7] proposed the use of unla-
belled synthetic data for unsupervised FR training, achiev-
ing competitive accuracies. During FR training, USynth-
Face [7] proposed to utilize intensive data augmentation,
which significantly improved the overall verification accu-
racy. On the other hand, SFace [6] and IDnet [33] proposed
to train a StyleGAN-ADA [29] under a class-conditional
setting. SFace [6] images contain a higher intra-class vari-
ation, which, comes at the cost of low identity discrimi-
nation, when compared to the other approaches [7]. Ex-
FaceGAN [8] presented a framework to disentangle iden-
tity information in learned latent spaces of GANs to gen-
erate multiple samples of any synthetic identity. DigiFace-
1M [2] utilized a digital rendering pipeline to generate syn-
thetic images based on a learned model of facial geometry
and a collection of textures, hairstyles, and 3D accessories.
DigiFace-1M [2] also applied aggressive data augmenta-
tions for their FR training. However, it comes at a con-
siderable computational cost during the rendering process.
All previously mentioned approaches presented promising
accuracies. Nonetheless, these accuracies are still signifi-
cantly lower than the ones achieved by FR trained on au-
thentic data, where for example, the average accuracy (on
five benchmarks, see Table 3) of SOTA synthetic-based FR
was 83.45%, far away from 94.82% achieved by authentic-
based FR.

Motivated by the remarkable text-to-image results of re-
cent approaches that leverage DMs [45, 44, 47] and in an
effort to bridge the gap between synthetic- and authentic-
based FR performance, this paper is the first to propose
an identity-conditioned approach based on DM to gener-
ate synthetic identity-specific images with a more realistic
intra-class diversity for FR training, outperforming all re-
cent SOTA synthetic-based FRs with an obvious margin.

3. Methodology
This section describes our proposed IDiff-Faceapproach

to generate identity-specific yet realistic synthetic face im-
ages. IDiff-Face is based on a DM that is conditioned on
identity contexts. During the training stage, our proposed
IDiff-Face is conditionally trained on authentic embeddings
obtained from the authentic training dataset. After training,
our IDiff-Face can be used either to generate variations of
existing authentic images by using authentic embeddings or
to generate novel synthetic identities by using synthetic em-
beddings. In Figure 1, an overview of the proposed method
is provided, with a clear distinction between the training
and the sampling stages. In order to generate samples of
synthetic identities, a synthetic identity representation has
to be created, e.g. synthetic uniform or synthetic two-stage
contexts, as explored in this work.

3.1. Identity-Conditioned Latent Diffusion
Our IDiff-Face is based on a DDPM that is trained in

the latent space of a pre-trained AE [45] and conditioned on
identity-contexts i.e. feature representations extracted using
a FR model. A DDPM [25] is a DM that discretizes the dif-
fusion processes into a finite number T of steps and learns
to reverse this process by training a conditional DNN to es-
timate the noise that has been added to a sample xt at time
step t. The architecture of our IDiff-Face is a modified U-
Net [46] based on [25] that includes residual and attention
blocks. We incorporate the identity context of a sample x in
the DM to encourage the DM to learn to generate identity-
specific face images. This has been achieved by mapping
x ∈ RW×H×C into a feature representation f(x) = c ∈ Rd

using a pre-trained face recognition model f optimized to
learn discriminant identity information, which is then in-
jected to the DM using CA mechanism as proposed by [45].
An ablation study on two different conditional mechanisms,
including conditional CA [45] and Adaptive Group Normal-
ization (AdaGN) [16] for identity-specific images genera-
tion is provided in the supplementary material.

Let 0 < β1, β2, ..., βT < 1 be a fixed (linear) vari-
ance schedule and x0 be the encoded image x in the pre-
trained latent space. The learnable reverse diffusion pro-
cess is defined as a Markov chain with Gaussian transi-
tions pθ(xt−1|xt) starting at a prior distribution p(xT ) =
N(0, I). As proposed by the DDPM authors, this transi-
tion kernel is parameterized by the DNN with parameters
θ that learn to predict the noise at time step t based on the
current estimate xt and, in our case, the additional condi-
tion c. With the notational abbreviations αt = 1 − βt and
αt :=

∑t
i=1 αi [25], our conditional variant of the original

DDPM training objective is given as:

L(θ) := Et,xt,ϵ

î
∥ϵ− ϵθ(xt, t, c)∥22

ó
= Et,x0,ϵ

î∥∥ϵ− ϵθ(
√
αtx0 +

√
1− αtϵ, t, c)

∥∥2
2

ó
.
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This expectation can be minimized through SGD by ran-
domly drawing samples (x0, t, ϵ, c) with x0 ∈ D, t ∼
U(1, T ), ϵ ∼ N(0, I), and c = f(x) and then minimizing
the MSE between the true and the predicted noise.

Analogously, the original DDPM [25] sampling is
slightly modified to incorporate identity contexts c into
the iterative sampling process, which mirrors a score-based
sampling chain with Langevin dynamics using additionally
added noise vectors ζt ∼ N(0, I) at each time step t.

xt−1 = µθ(xt, t, c) + σtζt

=
1

√
αt

Å
xt −

1− αt√
1− αt

ϵθ(xt, t, c)

ã
+ σtζt.

At the end of the iterative process, the final estimate of x0

from the last iteration has to be mapped back from the latent
space to the pixel space by using the pre-trained decoder.

3.2. Synthetic Image Generation
As the proposed IDiff-Face is conditionally trained on

identity contexts, i.e feature representations of input face
images, such feature representations are also required to
generate synthetic samples. Feature representations c can
be obtained from any authentic image x and, in this case,
the IDiff-Face will generate variations of x using randomly
sampled xT ∼ N(0, I) and different seeds for the non-
deterministic sampling process. To generate images of
synthetic identities, we explored two different approaches.
First, one can randomly sample the identity context from
a uniform distribution over the hypersphere, because face
representations are typically L2-normalized [4, 56]. In or-
der to generate samples from this distribution, a naive way
of doing it would be to simply generate a random direc-
tion from a uniform distribution U(−1, 1) for each of the
components before normalizing the resulting vector to get a
point on the surface of the sphere. Unfortunately, this does
not result in a uniform distribution over the surface. Instead,
the components of the initial direction have to be sampled
from a spherical Gaussian distribution, e.g. N(0, I), to ob-
tain a uniform distribution after the normalization process
[38]. After sampling, one can utilize it as a fixed input to
our IDiff-Face to generate different samples from the same
identity by varying the noise seeds. The second approach
is to utilize an additional unconditional DM to generate a
synthetic image x′. After that, a feature representation c′

can be extracted using f as c′ = f(x′). Analogously to the
first approach, different samples of the same identity can be
obtained by fixing c′ throughout different samples.

The latter approach will be referred to as Two-Stage
IDiff-Face, where a random synthetic image from a random
identity is generated first using an unconditional DM model
and then it is used as input to our conditional IDiff-Face to
generate different samples of the same identity.

3.3. Enhancing Intra-Class Variation via CPD
To prevent the model from overfitting to identity con-

texts, which limits the intra-class variation in the gener-
ated samples, we introduced Dropout [53] to the IDiff-Face
training. If the network is overfitted to the identity-context
condition, the generated images using the same identity
context will be almost identical i.e. small intra-class varia-
tions, regardless of the initial starting noise or random seed.
This has been achieved by dropping out components of a
context embedding, each with a certain probability. This
method is referred to as Contextual Partial Dropout (CPD)
as the context is only partially dropped out during training.

4. Experimental Setup
4.1. IDiff-Face Training Dataset

The proposed DDPM was trained using the FFHQ
dataset [30], which consists of 70,000 high-quality images
of human faces, showcasing a diverse range of attributes
such as age, lightning, and facial expressions.The face im-
ages used for training have a resolution of 128×128 pixels.

4.2. IDiff-Face Training Setups
The experiments in this paper were conducted on a clus-

ter of 8 NVIDIA A100-SXM4-40GB GPUs. The proposed
ϵ-prediction model (U-Net) [45] takes a three-channel input
and 96 channels for the initial image projection layer, which
are then used as input for the first residual block [24]. The
network has four resolution levels, and the multipliers for
the number of channels used on those levels are 1, 2, 2, and
2 respectively. Attention mechanisms use a fixed number
of 32 channels per head, with the number of heads calcu-
lated based on the number of incoming channels. Attention
blocks are applied in all residual blocks except the first res-
olution level [45]. Each resolution level has 2 consecutive
residual blocks. For the experiments, three different lev-
els of CPD probability have been explored: 0%, 25%, or
50%. We trained and evaluated three instances of our IDiff-
Face with these three dropout probabilities, which will be
denoted as CPD0, CPD25, and CPD50.

The training process follows a batch-wise training loop
over the training dataset D with half-precision (float16) and
a learning rate schedule based on the number of global
steps. An annealing cosine learning rate schedule with
warm restarts [36] is used, which reduces the learning rate
in repeating phases where the first phase is 10,000 steps
long and each subsequent phase is twice as long as the
previous one. Therefore, the number of global steps per
training is set to 150,000 steps, which corresponds to 4 full
phases. Also, the Adam optimizer [32] is used with an ini-
tial learning rate of γ = 1e − 4. Following [25, 45], we
apply an EMA to the weights of the model with a nega-
tive exponential factor of 0.75, leading to an effective decay
factor of 0.999 at 10,000 steps. Therefore, a second EMA
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Figure 2: Samples from synthetic FR training datasets and our IDiff-Face . The upper box (in blue) shows samples from the
three DGMs that are used in the SOTA synthetic-based FRs. The next group (in green) presents samples from our IDiff-Face
models with different CPD probabilities and different types of synthetic embeddings. The last group (in yellow) demonstrates
the generation of variations for existing LFW identities, whose reference images are framed in yellow colour. There are four
consecutive images per identity, and two identities in total are presented for each method. Zoom in for the best view.

copy of the currently trained model is maintained for infer-
ence purposes. The batch size is fixed at 512 and is equally
split across 8 GPUs. The training dataset is augmented with
horizontal flipping with a 50% probability. Regarding the
diffusion process, T = 1,000 time steps and a linear diffu-
sion variance schedule are used throughout all experiments.

Autoencoder: The latent space of the pre-trained AE
is used to lower the computational demands and facilitate

the learning process by learning a perceptually similar but
less complex space for the DGM before the LDM is trained.
For the AE, a pre-trained VQGAN model (vq-f4 first stage
model) from the official LDM [45] repository is used. A
VQGAN can be understood as a regularized AE, which en-
forces a discrete latent space by learning a codebook of
latent vector and replacing the encoder’s outputs with its
nearest-neighbor codes during inference. During training,
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VQGANs are guided by an additional patch-based adver-
sarial objective Ladv to better match the realism of the train-
ing data with the reconstructions. The pre-trained VQGAN
provides an effective trade-off between sample compression
and generative abilities as demonstrated in recent work [45].

Identity Context: The identity context is obtained by
projecting the training image into its feature representation
using a SOTA pre-trained FR, namely ElasticFace [4]. We
used the official pre-trained model released by [4]. The
network architecture of ElasticFace [4] is ResNet-100 [24]
trained on the MS1MV2 [23, 14] dataset using ElasticFace-
Arc loss and the output feature dimensionality is 512.

5. Results
Assessment of Intra-Class Diversity and Identity Sep-

arability: Figure 2 presents samples of recent works that
used synthetic datasets for FR model training. Synthetic
face recognition models, SynFace [43] and USynthFace
[7], utilized synthetic images generated by DiscoFaceGAN
[15]. DiscoFaceGAN is based on disentangled represen-
tation learning to generate images from synthetic identities
with predefined attributes e.g. pose, illumination, or expres-
sion. As generated images are explicitly controlled by a pre-
defined set of attributes, such images might lack the intra-
class diversity that exists in real-world face images, which
is needed to successfully train FR models. SFace [6], on the
other hand, is a class-conditional GAN model that does not
explicitly model these attributes. It is conditionally trained
to generate synthetic images with a specific label. SFace
provided images with a larger degree of intra-class varia-
tions, however, at the cost of less identity separability. In
contrast to that, the DigiFace-1M [2] images are produced
by a 3DMM rendering process. The identities in DigiFace-
1M are artificially defined as a combination of facial ge-
ometry, texture, and most notably hairstyle. Unfortunately,
this approach is less suitable for research purposes, as it is
extremely computationally expensive for generating a large
dataset with an advanced computational rendering pipeline.

These observations are quantitatively supported by the
genuine and imposter comparison score distribution plots in
Figure 3 and corresponding verification performance results
in Table 3. The verification performance metrics include
FMR100, and FMR1000, which are the lowest false non-
match rate (FNMR) for a false match rate (FMR)≤ 1.0%
and ≤ 0.1%, respectively, along with the Equal Error Rate
(EER) [27]. We additionally report the mean and standard
deviation of the genuine and imposter scores. Further, we
report the Fisher Discriminant Ratio (FDR) [41] to provide
an in-depth analysis of the separability of genuine and im-
posters scores. We used a pre-trained ElasticFace-Arc [4]
by the corresponding author (model publicly available) to
extract the feature embeddings of CASIA-WebFace [59],
LFW [26], DiscoFaceGAN [15] (used in SynFace [43] and

USynthFace [7]), DigiFace-1M [2], and our IDiff-Face for
the investigations described in this subsection. CASIA-
WebFace [59] and LFW [26] are authentic datasets, and
they are commonly used to train or evaluate FR models
[14, 4], respectively. We made the following observations:

1): In comparison to the strong identity discrimina-
tion in the authentic LFW and CASIA-WebFace datasets,
our IDiff-Face (CPD of 0%) with two-stage and uni-
form identity-context sampling approach generates syn-
thetic samples that clearly maintain identity discrimination,
where, for example, the achieved EER on LFW was 0.002
and by our models with CPD of 0% were 0.007 (Uniform)
and 0.003 (Two-Stage). It should be noted that CASIA-
WebFace is an FR training dataset, and contains some noisy
labels, as reported in [57], which contributes to the higher
EER.

2): Training our proposed models with CPD demon-
strates that with an increase of the CPD probability, the
intra-class diversity becomes larger as well, leading to more
variation, in the head pose, the illumination, the expression,
the accessories, and sometimes even in the age of the de-
picted individual, as shown in Figure 2. This can be seen
in the shift in the genuine distributions to left (i.e. genuine
distribution shifts to the left as more challenging and real-
istic variations are generated) when the CPD is increased,
as shown in Figure 3 and the mean genuine score in Table
3. The higher the CPD probability, the larger intra-class
and realistic real-world variations can be achieved. It also
comes at the cost of slightly losing identity discrimination.
This observation can be seen in the EER value increase and
the decrease in FDR values induced by incorporating CPD
into the model training ( Table 1). Hence, the probability of
the CPD can be interpreted as a trade-off between identity
discrimination and intra-class diversity. Achieving a good
balance for this trade-off is required to generate useful data
for successful FR model training and to achieve high accu-
racies, as we will empirically test in the next section.

3): Among the recent SOTA synthetic FR training
datasets, the synthetic dataset that is generated by Disco-
FaceGAN [15] (used in SynFace and USynthFace) main-
tains identity discrimination with EER of 0.01069. How-
ever, it comes at the high cost of low intra-class diversity as
the generated images are controlled by a predefined set of
attributes, making it less optimal to train FR models. On the
contrary, SFace possesses a large intra-class diversity, how-
ever, with a lower degree of identity discrimination in com-
parison to other synthetic datasets. DigiFace-1M maintains
to some degree identity discrimination. However, it is ob-
tained using a computationally expensive digital rendering
process, leading to very high costs in the generation pro-
cess. Our proposed IDiff-Face with CPD achieved the best
(most representative of reality and thus suitable for training)
trade-off between identity discrimination and intra-class di-
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Figure 3: Syn-vs-syn genuine and imposter comparison score distributions for different DGMs. The first column presents
the distributions obtained from samples of DGMs used in SOTA synthetic-based FRs. The second column presents the
results from our three models based on synthetic uniform embeddings, while the last column shows our distributions based
on synthetic two-stage embeddings. For each, all genuine comparison scores have been computed (≈ 1,200,000 pairs) based
on 5 K identities with 16 images each, and the same number of imposter scores has been randomly sampled.

versity and leads to SOTA synthetic-based FR, as we will
present in the next section.

Synthetic-based FR: We evaluate first the different vari-
ants of the proposed solution regarding their applicability to
generate synthetic data for FR. For that, we start by gener-
ating three sets of synthetic data using a uniform identity-
context sampling, each with different CPD probabilities of
0, 25% and 50%. We also generated other three sets of
synthetic data using a two-stage identity-context sampling,
with the same three CPD probabilities. All training datasets
contain 80,000 samples (5,000 identities with 16 samples
each). We utilized ResNet-18 [24] with the CosFace [56]
loss to train six FR models on each of our synthetic datasets.
For this small-scale FR model training, a fixed 40 itera-
tion over the entire training data, a step-based learning rate
schedule with an initial rate of 0.1 and reduces it by a factor
of 0.1 after the 22nd, the 30th, and the 35th epoch, and an
SGD optimizer with 0.9 momentum and 5e− 4 weight de-
cay were used, following [7]. Evaluations are reported on
the five benchmarks, LFW [26], AgeDb-30 [39], CA-LFW
[61], CFP-FP [48], and CP-LFW [60], following their offi-
cial evaluation protocols (see Table 2).

It can be observed from Table 2 that FR models trained

on our IDiff-Face datasets achieved high verification ac-
curacies, even only using a small synthetic dataset (80K
samples) for training. For the models trained with datasets
generated by IDiff-Face with uniform identity-context sam-
pling, the best verification accuracies were achieved using
the FR model trained on the dataset generated by IDiff-Face
with CPD25 (79.54% average accuracies). For the mod-
els trained with datasets generated by IDiff-Face with two-
stage identity-context sampling, both FR models trained
on the datasets generated by IDiff-Face with CPD25 and
CPD50 achieved very competitive results. The best over-
all verification accuracy was achieved by IDiff-Face us-
ing two-stage identity-context sampling with CPD50 (av-
erage accuracies of 79.73%) which is very close to two-
stage identity-context sampling with CPD25 (average ac-
curacies of 79.72%) and uniform identity-context sampling
and CPD25 (Average accuracies of 79.54%). Although the
CPD approach slightly affects, to some degree, the iden-
tity discrimination in the synthetically generated samples
(as we discussed in the previous section), it leads to signif-
icant improvements in the FR verification accuracies as it
increases the intra-class variations in the generated samples.
As we mentioned in the previous section, achieving a realis-
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Operation Metrics Score Distributions

genuine imposter

Method EER ↓ FMR100 ↓ FMR1000 ↓ mean std mean std FDR ↑

CASIA-WebFace [59] 0.076 0.092 0.107120 0.536 0.215 0.003 0.070 5.5409
LFW [26] 0.002 0.002 0.002 0.708 0.099 0.003 0.070 33.301

DiscoFaceGAN [15]
(SynFace & USynthFace) 0.011 0.011 0.051 0.619 0.128 0.044 0.092 13.378
DigiFace-1M [2, 58] 0.042 0.087 0.199 0.512 0.140 0.099 0.084 6.372
SFace [6] 0.236 0.768 0.380 0.159 0.125 0.016 0.079 0.941

IDiff-Face
Synthetic Uniform (Ours)

CPD0 0.007 0.005 0.019 0.528 0.117 0.014 0.069 14.243
CPD25 0.130 0.385 0.607 0.226 0.117 0.014 0.070 2.427
CPD50 0.225 0.660 0.857 0.149 0.108 0.013 0.070 1.120

w/ Synthetic Two-Stage (Ours)

CPD0 0.003 0.001 0.009 0.621 0.102 0.024 0.075 22.172
CPD25 0.018 0.030 0.190 0.448 0.114 0.023 0.075 9.733
CPD50 0.069 0.238 0.659 0.309 0.122 0.021 0.075 4.064

Table 1: Evaluation of identity-separability in synthetic
FR datasets proposed in the literature. The first two rows
present the results on authentic LFW and CASIA-WebFace
datasets. These results are provided as a reference. In the
next rows, we provide the evaluation results on SOTA syn-
thetic FR datasets and our IDiff-Face. Except for the first
row, which shows the results obtained by computing the
comparison scores on pre-defined pairs of authentic LFW,
all the synthetic evaluations are based on a synthetically
generated dataset with 5,000 identities and 16 sampled im-
ages per identity. The lowest errors and the highest genuine-
imposter separability scores (FDR) on synthetic datasets are
marked in bold. The second best per column is underlined.

Training Dataset Verification Benchmarks ↑
Cross-Age Cross-Pose

Identity-context model LFW AgeDB-30 CA-LFW CFP-FP CP-LFW Avg.

Uniform CPD0 86.50 60.30 72.13 62.26 62.40 68.72
CPD25 95.07 74.87 84.60 70.09 73.08 79.54
CPD50 92.92 71.43 80.48 66.79 69.03 76.13

Two-Stage CPD0 86.08 61.50 71.68 61.64 62.20 68.62
CPD25 95.10 76.18 84.17 70.67 72.47 79.72
CPD50 95.42 76.55 83.22 70.90 72.57 79.73

Table 2: Verification Accuracies (in %) on five FR bench-
marks for FRMs (ResNet-18) trained on 80,000 samples
(5,000 identities with 16 images per identity) generated
with different levels of CPD probability. The best accura-
cies are marked in bold and the second best is underlined.

tic trade-off between identity discrimination and intra-class
diversity is required for the FR training dataset to achieve
high verification accuracies on evaluation benchmarks.

Comparison to the SOTA Synthetic-based FR: We
compare the verification performance of FR models trained
with our synthetic data with the recent works that proposed
the use of synthetic data for FR training. To provide a
fair comparison, we followed the SOTA synthetic FR ap-
proaches [43, 6, 7] to generate 500,000 images from 10,000
synthetic identities with 50 samples each, and utilized these
images to train ResNet-50 [24]. We also followed the ex-
act training setups described in [7] to train 15 FR models
using different dataset sizes, three levels of CPD, and two

identity-context sampling approaches to investigate the ef-
fect of training dataset width and depth and identity-context
sampling mechanisms on FR verification accuracy. The
achieved results by SOTA synthetic-based FR and our pro-
posed IDiff-Face are presented in Table 3. One can observe
the following from the reported results in Table 3:

(1): With a clear margin, FR models trained with our
IDiff-Face outperformed all previous synthetic-based FRs.
The best achieved average accuracy by our models was
88.20% and the average accuracy of SOTA synthetic-based
FR was 83.45% (achieved by DigiFace-1M [2]).

(2): Increasing our training dataset size did increase the
FR verification accuracies in all experimental settings. This
indicates that increasing our synthetic training dataset size
could further improve the FR verification accuracy.

(3): Increasing our dataset width (the number of iden-
tities) led to higher accuracies in comparison to the case
when the dataset depth (the number of images per identity)
is increased. For example, IDiff-Face with uniform sam-
pling (CPD25) led to an average accuracy of 82.86% when
using 160K samples (5K identities with 32 images per iden-
tity). This accuracy improved to 83.87% when we trained
on 160K (10K images with 16 images per identity). This
observation can be concluded from all of our experiments.

(4): Introducing data augmentation [7] to model training
improved the verification accuracies, where we additionally
trained the best model in each setting with RandAugment
[12] using settings provided in [7]. This experiment is high-
lighted with + RandAugment(4, 16). It should be noted that
previous SOTA synthetic-based FR models (DigiFace-1M
[2], ExFaceGAN [8], IDnet [33] and USynthFace [7]) also
applied extensive data augmentation in their model training.

(5): With only 160K training samples (10K identities
with 16 images each), our approach outperformed all pre-
vious synthetic-based FR that used GAN-generated train-
ing face images (SynFace, SFace, ExFaceGAN, IDnet and
USynthFace) and the one that used digital face render-
ing (DigiFace-1M), where the average accuracy by our
best model trained on 160K images was 83.87% and the
average accuracies by SynFace (500K training samples),
SFace (634K training samples), USynthFace (400K training
samples) and DigiFace-1M (500K training samples) were
74.75%, 77.71%, 79.30% and 83.45%, respectively.

(6): Although it is out of our paper’s comparison scope,
we compared our synthetic-based FRs with the SOTA
FRs trained on authentic datasets (CASIA-WebFace and
MS1MV2). Using only our synthetic data, our proposed
models achieved very competitive results to models trained
on the large authentic training dataset. This clearly indi-
cates that synthetically generated data is growing to become
a valid alternative to authentic data to train FR. We achieved
for example 98.00% accuracy on LFW [26], which is com-
petitive to SOTA FR accuracies that are trained on authentic
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Method Dataset Verification Benchmarks ↑
Cross-Age Cross-Pose

name Aug. Id N per Id images LFW AgeDB-30 CA-LFW CFP-FP CP-LFW Avg.

ElasticFace [4] (CASIA-WebFace [59]) ✘ 10.5 K - 494 K 99.52 94.77 93.93 95.52 90.38 94.82
ElasticFace [4] (MS1MV2 [23]) ✘ 85 K - 5,800 K 99.82 98.27 96.03 98.61 93.17 97.18

SynFace [43] ✘ 10 K 50 500 K 91.93 61.63 74.73 75.03 70.43 74.75
SFace [6] ✘ 10.5 K 10 105 K 87.13 63.30 73.47 68.84 66.82 71.91

✘ 10.5 K 20 211 K 90.50 69.17 76.35 73.33 71.17 76.10
✘ 10.5 K 40 423 K 91.43 69.87 76.92 73.10 73.42 76.95
✘ 10.5 K 60 634 K 91.87 71.68 77.93 73.86 73.20 77.71

USynthFace [7] + RandAugment [7] ✔ 100 K 1 100 K 92.12 71.08 76.15 78.19 71.95 77.90
USynthFace [7] + RandAugment [7] ✔ 200 K 1 200 K 91.93 71.23 76.73 78.03 72.27 78.04
USynthFace [7] + RandAugment [7] ✔ 400 K 1 400 K 92.23 71.62 77.05 78.56 72.03 79.30
DigiFace-1M [2] ✘ 10 K 50 500 K 88.07 60.92 69.23 70.99 66.73 71.19

+ Augmentation[2] ✔ 10 K 50 500 K 95.40 76.97 78.62 87.40 78.87 83.45
ExFaceGAN(SG3) [8] + RandAugment [7] ✔ 10 K 50 500 K 90.47 72.85 78.60 72.70 69.27 76.78
ExFaceGAN(Con) [8] + RandAugment [7] ✔ 10 K 50 500 K 93.50 78.92 82.98 73.84 71.60 80.17
IDnet [33] ✘ 10.5 K 50 528 K 84.83 63.58 71.50 70.43 67.35 71.54

+ RandAugment [7] ✔ 10.5 K 50 528 K 92.58 73.53 79.90 75.40 74.25 79.13

IDiff-Face CPD25 (Uniform) - Ours ✘ 5 K 16 80 K 94.37 76.70 85.02 70.31 72.18 79.72
✘ 5 K 32 160 K 96.23 80.50 88.30 73.87 75.42 82.86
✘ 10 K 16 160 K 96.72 81.52 88.83 75.43 76.85 83.87
✘ 10 K 50 500 K 97.68 84.63 90.58 82.39 79.70 87.00

+ RandAugment [7] ✔ 10 K 50 500 K 98.00 86.43 90.65 85.47 80.45 88.20
IDiff-Face CPD25 (Two-Stage) - Ours ✘ 5 K 16 80 K 95.27 75.72 84.63 70.07 72.65 79.67

✘ 5 K 32 160 K 95.92 77.85 85.40 72.97 74.18 81.26
✘ 10 K 16 160 K 96.60 79.87 87.03 74.47 75.47 82.69
✘ 10 K 50 500 K 97.52 81.65 87.77 80.03 77.60 84.91

+ RandAugment [7] ✔ 10 K 50 500 K 97.32 83.45 87.98 81.80 77.92 85.69
IDiff-Face CPD50 (Two-Stage) - Ours ✘ 5 K 16 80 K 95.58 74.00 83.57 70.43 72.53 79.22

✘ 5 K 32 160 K 96.40 78.23 85.87 73.00 75.38 81.78
✘ 10 K 16 160 K 97.00 80.85 86.38 74.24 76.73 83.04
✘ 10 K 50 500 K 97.87 83.53 89.05 80.00 78.95 85.88

+ RandAugment [7] ✔ 10 K 50 500 K 97.97 84.40 88.52 83.87 79.88 86.93

Table 3: Verification Accuracies (in %) on five FR benchmarks for SOTA synthetic-based FRs. the first two rows present the
results of FRs trained on authentic data. These results are provided as references. All results of previous work are copied
from their corresponding works. The synthetic-based FR utilized ResNet-50 as network architecture. The best verification
accuracies of synthetic-based FR are marked in bold and the second best are underlined.

datasets, 99.52% using CASIA-WebFace and 99.82% us-
ing MS1MV2. This achieved accuracy (98.00%) on LFW
is even higher than human-level performance in face verifi-
cation on LFW (97.5% [35]).

6. Conclusion
An ideal training dataset for FR would strongly en-

sure identity discrimination and exhibit a realistic and large
intra-class variation. Authentic face datasets proposed in
the literature hold, to a large degree, these properties, lead-
ing to breakthroughs in verification accuracy. However, fu-
ture developments using these authentic datasets might be
infeasible due to increased legal and ethical concerns about
the use and distribution of sensitive authentic data for FR
development. In this work, we proposed IDiff-Face, an
identity-conditioned generative model based on a DM to

generate synthetic identity-specific face images. We also
proposed CPD as a simple, yet effective mechanism to pre-
vent the model from overfitting to the identity context and to
control the trade-off between identity-separability and intra-
class variation. Utilizing our synthetically generated data
for FR training led to new SOTA verification accuracies on
five mainstream FR benchmarks, outperforming all recent
SOTA synthetic-based FR approaches.
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