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Abstract

Human pose estimation (HPE) is integral to scene un-
derstanding in numerous safety-critical domains involving
human-machine interaction, such as autonomous driving or
semi-automated work environments. Avoiding costly mis-
takes is synonymous with anticipating failure in model pre-
dictions, which necessitates meta-judgments on the accu-
racy of the applied models. Here, we propose a straight-
forward human pose regression framework to examine
the behavior of two established methods for simultane-
ous aleatoric and epistemic uncertainty estimation: maxi-
mum a-posteriori (MAP) estimation with Monte-Carlo vari-
ational inference and deep evidential regression (DER).
First, we evaluate both approaches on the quality of their
predicted variances and whether these truly capture the ex-
pected model error. The initial assessment indicates that
both methods exhibit the overconfidence issue common in
deep probabilistic models. This observation motivates our
implementation of an additional recalibration step to ex-
tract reliable confidence intervals. We then take a closer
look at deep evidential regression, which, to our knowledge,
is applied comprehensively for the first time to the HPE
problem. Experimental results indicate that DER behaves
as expected in challenging and adverse conditions com-
monly occurring in HPE and that the predicted uncertain-
ties match their purported aleatoric and epistemic sources.
Notably, DER achieves smooth uncertainty estimates with-
out the need for a costly sampling step, making it an at-
tractive candidate for uncertainty estimation on resource-
limited platforms.

1. Introduction

As more and more deep learning-based machine vi-
sion systems are increasingly utilized in safety-critical real-
world applications, the need for principled safeguards be-
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Figure 1. We employ two methods of uncertainty quantification to
identify the aleatoric and epistemic components of the expected
error in human pose estimation, anticipating large aleatoric un-
certainty in occluded and blurred joints and increased epistemic
uncertainty in novel domains.

comes impossible to ignore. Human pose estimation (HPE)
is an application that allows autonomous systems to antici-
pate peoples’ intentions and movements and avoid conse-
quential mistakes. Every model is flawed, and decision-
making under uncertainty presupposes robust uncertainty
estimation. A vast catalogue of methods attempts to meet
this requirement and augment point-wise model predictions
with measures of uncertainty and confidence. However,
while drawing on rigorous foundations, strong theoretical
assumptions generally need to be relaxed to meet the reali-
ties of deployment. For example, ”irreducible” aleatoric un-
certainty, in many real-world applications, reduces to con-
ditional variance. Despite such concessions, established un-
certainty estimation and disentanglement methods may har-
bor exceptional potential, provided they behave as expected
in any given domain. Here, we investigate whether two es-
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tablished methods of uncertainty quantification remain true
to their definitions in the challenging HPE domain, specifi-
cally:

1. We present two methods for simultaneous aleatoric
and epistemic uncertainty quantification, maximum a-
posteriori estimation (MAP) and deep evidential re-
gression (DER).

2. We motivate a recalibration step for robust estimation
of confidence intervals in order to derive plausible and
interpretable measures of confidence.

3. To the best of our knowledge, this is the first full-
fledged application of evidential deep learning to the
HPE domain. For this reason, we additionally conduct
thorough studies on the interpretability of the results
including label noise injection and occlusion trials.

1.1. Why estimate two types of uncertainty?
Imagine an unfair coin toss: knowing whether the coin

is weighted and to what degree will significantly reduce un-
certainty about which side might come up more frequently;
however, even a weighted coin might come up on the other
side with some frequency (aleatoric). Reducing uncertainty
about our model of the coin’s characteristics (epistemic) im-
proves the quality of our predictions, but it will not make
them perfect. An ability to gauge at what point we have
learned everything there is to learn about a stochastic sys-
tem is indispensable for efficient learning and effective risk
assessment. Formally, we distinguish aleatoric uncertainty,
stemming from, e.g., sensor- or measurement noise or the
inherent randomness in the data generating process, and
epistemic uncertainty, also called model-uncertainty, the un-
certainty in the model specification or parameters [10, 41].
In vision, examples of aleatoric uncertainty include mo-
tion blur, low contrast, or compression artifacts. Another
possible source of aleatoric uncertainty in supervised learn-
ing may be noise in the labeling process. Common appli-
cations of aleatoric noise models are in outlier- or out-of-
distribution detection [44], as well as sample rejection [43],
and the assessment of expected value and risk [8]. Epis-
temic uncertainty, on the other hand, can stem from a shift
into a previously unseen domain and generally diminishes
as more training data becomes available to the model, as-
suming the optimization procedure is well-defined. In this
way, accurate epistemic uncertainty estimates enable vari-
ous downstream applications, such as active sampling op-
timization methods [34] and active learning [6]. Even an
empirical reevaluation of model choice is possible.

2. Related Work
2.1. Uncertainty Quantification in Deep Learning

Epistemic uncertainty in neural networks can be assessed
by placing a Gaussian prior over the model parameters

W ⇠ N (0, I) giving rise to a Bayesian neural network
(BNN) [29, 7]. Modern large-scale neural networks tend
to struggle with high variance over high bias which is why
uncertainty in parameters dominates the research, more so
than uncertainty about the model specification. In practice,
it is impossible to evaluate the posterior over the parame-
ters p(W|X,Y) since the marginal p(Y|X) requires inte-
gration over all possible sets of model parameters. Vari-
ous approximate methods exist [11, 4, 19], such as Dropout
Variational Inference [10, 9] which models a sample of the
weight space by resampling a trained model with intermit-
tent dropout layers during inference. Here, the variance
over the aggregated point estimates serves as a realization of
epistemic uncertainty. Ensemble methods similarly consti-
tute subspaces of possible models, and treat model disagree-
ment as a measure of epistemic uncertainty [35, 46, 26].
Moreover, in recent years more approaches attempting to
estimate epistemic uncertainty directly have emerged [17].

Aleatoric uncertainty is by definition sample-dependent
and generally estimated as an auxiliary and predominantly
unsupervised task in neural network training. Where
epistemic uncertainty arises naturally in approaches like
dropout variational inference, aleatoric uncertainty needs to
factor into the loss function directly. One widely applied
approach is fitting the parameters of a Gaussian instead of
a simple point estimate, where the variance, conditioned on
the input sample, is considered to be a measure of aleatoric
uncertainty. In the general absence of uncertainty-annotated
data, prediction errors are weighted by this predicted vari-
ance in order to attenuate the loss in high uncertainty re-
gions of the input space [18, 15].

Many alternative approaches exist, such as the direct
construction of confidence and prediction intervals [36, 23]
or conformal prediction [39], a distribution-free method to
generate sets of neural network outputs that are guaranteed
to contain the true value with a given probability. Lastly,
evidential deep learning methods can infer both types of un-
certainty in a single forward pass by placing a prior distri-
bution over the likelihood function [38, 3, 1]. The variance
of the prior encapsulates a notion of epistemic uncertainty.
Sampling this prior leads to a single realization of the like-
lihood function that, in turn, can be sampled to generate
a single point estimate with an associated variance, i.e., a
measure of aleatoric uncertainty.

2.2. Uncertainty Quantification in HPE

A common benchmark paradigm in HPE, heatmap re-
gression, inserts a degree of uncertainty by using heatmaps
with Gaussian noise around the ground-truth joint-data as
training targets [42]. This method is generally more robust
than a direct regression of joint-coordinates. An obvious
shortcoming is that the noise is inserted manually during
the labeling process and subject to a design choice. Fur-
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ther, it tends to be homoscedastic across the data, which
makes output heatmaps unfit to model either of the dis-
cussed types of uncertainty directly. Additionally, predict-
ing entire heatmaps instead of single coordinates adds sig-
nificant time- and space-complexity to training and infer-
ence. Due to its application in safety critical real-world
problems, HPE has thus witnessed renewed interest in the
study of efficient and robust uncertainty estimation.

A variety of methods aim to augment the heatmap
paradigm with provisions for uncertainty estimation. [22]
define uncertainty as a disagreement between model-based
and model-free pose-estimation heads in order to improve
out-of-distribution performance of their model. [28] in-
stead propose two heads to output heatmaps and scale maps,
where scale maps are used to scale each sample’s ground-
truth heatmap during training, inducing a weight-adaptive
loss function. However, these approaches comprise not
only costly heatmap regression, but also a multitude of spe-
cialized sequences and nodes for inference. [24] propose
a straightforward regression-based method that estimates
complex distributions of deviations from the ground truth,
conditioned on input images, using normalizing flows. Intu-
itively, these distributions could be described as a measure
of aleatoric uncertainty but while performance results are
promising, the uncertainty perspective is not investigated
further. [12] make use of the popular MAP method intro-
duced by [18] to fit a multivariate Gaussian distribution over
joint locations. They demonstrate improved performance
over the traditional heatmap-based approach while focusing
entirely on the aleatoric uncertainty aspect. [13] likewise
consider only the aleatoric uncertainty in their adaptation of
the MAP method for HPE. They generate a single variance
estimate for each joint and go on to employ these estimates
in a graph neural network to refine pose predictions.

3. Method
Fig. 2 provides an overview of the proposed approach.

Keypoint localization for body pose estimation is extended
by uncertainty quantification. Two different methods are
benchmarked for 2d and 3d keypoint estimation for datasets
differing in scene, body poses, real/simulated/lab setting,
resolution, and ground truth accuracy.

3.1. Intuition
Established uncertainty quantification methods model

the expected error as a combination of aleatoric and epis-
temic uncertainty, i.e., as a sum of the inherent random-
ness in the data-generating process and the model’s lack
of capacity to capture the target value. While the epis-
temic element translates reasonably well to the unstructured
HPE domain, the aleatoric uncertainty may appear less ob-
vious. In low-dimensional regression problems, capturing
the aleatoric uncertainty reduces to the maximum likelihood

estimation formulation of the variance conditioned on some
value or interval of the input space. In HPE, the aleatoric
uncertainty could be defined as the predicted joint-ness of
an image region under the estimated aleatoric variance. An
increase in size of this region corresponds directly to higher
expected error in the joint location estimate.

3.2. Uncertainty Quantification
We compare two methods of predicting aleatoric and

epistemic uncertainties simultaneously. The first is well-
established and combines per-sample MAP with variational
inference through Monte-Carlo dropout (MCD) to predict
both types of uncertainty [18]. The second method, called
deep evidential regression (DER), wraps both types of un-
certainty into a single loss function, and therefore does not
require a costly sampling step [1]. We will illustrate both
methods in detail.

Maximum A-Posteriori Inference: A widely estab-
lished method of estimating heteroscedastic uncertainty is
via direct estimation of the parameters of a Gaussian distri-
bution, conditioned on the input data, such that f✓ : X 7!
{µ̂, �̂2}. The corresponding minimization objective for an
L2-loss is the negative log-likelihood of the Gaussian:

Lnll(✓) = � log p(y|µ̂, �̂2)

=
1

K

1

D

X

k

X

d

kykd � µ̂kdk2

2�̂2
kd

+
1

2
log �̂2

kd
(1)

where D is the number of output dimensions and K the
number of joints, in our case D = 2 or D = 3 for 2d-
and 3d-pose estimation respectively, while K depends on
the available ground-truth data for each sample. Deriving
the negative log-likelihood of the Gaussian presents a well-
balanced convex optimization problem. The squared error
is attenuated by the estimated variance parameter, however,
the added log-variance term prevents this parameter from
growing infinitely. Effectively, the model can mitigate large
errors by correspondingly large variance estimates. Hence,
the overall loss can be further reduced on small errors by
estimating small variances. As suggested by [18], a more
stable variant of this loss function assumes the estimation
of the log-variance. We further choose an L1-loss for our
approach, following prior work on human pose regression
and generally better performance [42, 15]. We adapt the
above loss function accordingly and fit a Laplace distribu-
tion as follows:

Lnll(✓) =
1

K

1

D

X

k

X

d

exp(�bkd)|ykd � µ̂kd|+ bkd (2)

where 2b2kd := log �̂2
kd. MCD can be considered variational

inference to estimate a simpler distribution over model pa-
rameters q

⇤(W) that minimizes the KL-divergence to the
intractable model posterior p(W|X,Y). The variance of
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Figure 2. We compare the MAP + MCD and the DER approach for estimating both the aleatoric and the epistemic uncertainty of each
joint location. The estimated uncertainties are calibrated based on the empirical distribution of the residuals for the validation dataset. The
approach is evaluated for four 2d body pose datasets and two 3d body pose datasets.

this approximation yields the epistemic uncertainty esti-
mate. We resample the final three network layers of the
respective 2d- and 3d-pose heads with intermittent MCD
50 times and derive the epistemic uncertainty as �̂

2
MC =

Var[µ̂kd] with �̂
2
MC 2 R+,D⇥K .

Deep Evidential Regression: DER implements simul-
taneous estimation of aleatoric and epistemic uncertainty by
fitting the parameters of the conjugate prior of a Gaussian
distribution with unknown mean µ and variance �

2, i.e.,
the Normal-Inverse Gamma (NIG) distribution, such that
f✓ : X 7! {µ̂, ⌫̂, ↵̂, �̂}. Drawing samples from this prior
yields individual instances of the likelihood function, which
can then be sampled to receive the network prediction.

ŷ ⇠ N (µ,�2), µ,�
2 ⇠ NIG(µ̂0, ⌫̂, ↵̂, �̂| {z }

m

) (3)

By marginalizing over the likelihood function parameters,
we obtain the predictive posterior, i.e., the posterior proba-
bility of the target value, given the parameters of the prior.
This is a Student’s t-distribution in the form of a three-
parameter location-scale distribution with 2↵ degrees of
freedom, location µ, and scale �(1+⌫)

⌫↵ (see Sec. A for de-
tails). Hence, the loss function is:

Lnll(✓) = � log p(y|m)

= � log

Z 1

�2=0

Z 1

µ=�1
p(y|µ,�2)p(µ,�2|m)dµ d�2

=
1

K

1

D

X

K

X

D

� log t2↵

 
ykd; µ̂kd,

�̂kd(1 + ⌫̂kd)

⌫̂kd↵̂kd

!

(4)

In addition to the negative log-likelihood, [1] suggest to add
a regularization term punishing large estimates of virtual ev-
idence when the error is large, resulting in the following

objective function:

L(✓) = Lnll(✓) + �|ykd � µ̂kd|(2↵̂kd + ⌫̂kd) (5)

The desired uncertainties can subsequently be derived from
the predicted NIG parameters as follows:

E[�2] =
�

(↵� 1)| {z }
aleatoric

, Var[µ] =
�

⌫(↵� 1)| {z }
epistemic

(6)

3.3. The Multivariate Case
To consider interactions between the x and y coordinate

for 2D pose estimation and between x, y, and z coordinates
for 3D pose estimation, we additionally investigate multi-
variate variants of the DER and MAP approach. The joints
remain independent. For clarity, we omit the k subscript
indicating the joint.

Maximum A-Posteriori Inference: We fit the negative
log-likelihood of the multivariate Gaussian as the objective
function for each joint k:

z = (yk � µ̂),

� log p(yk|µ̂, ⌃̂) =
1

2

h
z>⌃̂�1z + log det(⌃̂)

i (7)

This objective requires the prediction of the invertible co-
variance matrix ⌃ 2 R+n⇥n and may therefore lead to nu-
merical instabilities during optimization. We can instead es-
timate the inverse, i.e., the precision matrix directly, lead-
ing to the negative log-likelihood with respect to = ⌃�1:

Lnll(✓) =
1

2
E
h
z> ̂z � log det( ̂)

i
(8)

 is positive definite with elements ii > 0, which is guar-
anteed by applying the Cholesky Decomposition and esti-
mating the lower triangular matrix L̂ instead, where

 ̂ = L̂L̂>
, with L̂ii > 0. (9)
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Analogously to the univariate case, we estimate the epis-
temic component using MCD and the sample covariance of
50 samples.

Deep Evidential Regression: Similarly, for the mul-
tivariate DER, we derive the negative log-likelihood of
the multivariate Student’s t-distribution, parameterized in
terms of the parameters m = {µ0, ⌫0,, } of the con-
jugate prior of a multivariate Gaussian, the Normal-Inverse
Wishart distribution [33] (see Sec. B for derivation).

Lnll(✓) = � log t⌫̂0�n+1

✓
y; µ̂0,

̂+ 1

̂(⌫̂0 � n+ 1)
 ̂

◆

(10)

Where n is the number of covariates and  ̂ is the estimated
sum of squared errors, allowing us to infer aleatoric uncer-
tainty, according to the definition of the mean of the Inverse-
Wishart distribution, via E[⌃] =  /(⌫0 � n� 1) [30] and
epistemic uncertainty as Var[µ] = E[⌃]/⌫0 [32]. [32] ob-
serve, that the  parameter is expected to converge on 1, due
to the definition of the evidential loss function. We choose
not to adopt their suggested solution of linearly coupling
the two scalar parameters r̂ = ⌫̂ because it leads to uncal-
ibrated uncertainty estimates.

3.4. Accurate Uncertainties with Calibrated Re-
gression

For regression tasks, a forecaster H is calibrated if
PN

n=1 1{yn  F
�1
n (p)}

N
! p, 8p 2 [0, 1] (11)

as N ! 1. F
�1
n : [0, 1] 7! Y is the learned quantile

function conditioned on sample n [21]. That is, the fraction
of values yn inside the pth quantile of the quantile function
derived from {µ̂n, �̂

2
n} should be equal to p as the size of

the dataset approaches infinity. This is usually not the case
for deep probabilistic models, hence, the predicted confi-
dence intervals require recalibration, a rescaling, to match
the empirical cumulative density function (CDF). For recal-
ibration, we create a recalibration dataset D as follows:

D =
n⇣

Fn(yn), P̂ (Fn(yn))
⌘oN

n=1
,

where

P̂ (p) =
|{yn|Fn(yn)  p, n, ..., N}|

N

(12)

Here, Fn(yn) : R 7! [0, 1] is the predicted CDF, condi-
tioned on input sample xn, evaluated at the ground truth
value yn. P̂ (p) denotes the empirical CDF, the fraction of
the data for which yn lies below the pth quantile of Fn, our
predicted CDF. For a sharp forecaster, and as N ! 1,
P̂ (p) ! p, 8p 2 [0, 1]. We subsequently use the recali-

Figure 3. Recalibrated confidence scores effectively rescale the
predicted distribution to better match the data. Here, a ·̂ denotes
the resulting CDF and PDF derived from recalibrated confidence
intervals.

bration dataset to fit an auxiliary isotonic regression model
R : [0, 1] 7! [0, 1] and output calibrated quantiles [21, 20].
We can now generate robust confidence intervals for unseen
values by scaling the predicted standard deviations for any
desired quantile:

F̂
�1
n (p) = F

�1
1 (R(p)) ⇤ �̂n (13)

where F
�1
1 is the quantile function of the standard normal

distribution. Recalibration occurs on a per joint and per co-
ordinate basis and conversely induces an adapted CDF and
PDF as shown in Fig. 3.

4. Experiments
4.1. A Minimal Prediction Head

Each of our models consists of a ResNet-50 [14] back-
bone coupled with separate feature heads for 2d- and 3d-
pose estimation. The feature heads comprise one convolu-
tional layer, as well as two fully connected layers and a fi-
nal layer to generate the respective distribution parameters.
Unlike prior works, such as [24], the final, fully connected
layer comprises only 4 (MAP), 8 (DER), 2+3 ((mv) MAP),
4 + 3 ((mv) DER) neurons in the two-dimensional case.
All fully connected layers are applied batchwise across the
channels of the initial convolutional layer, which reflect the
maximum number of joints K = 26 across all datasets.
Combining this simplification with a smaller number of
1024 units in the penultimate layer, we significantly reduce
the number of weights in the final regression layer.

4.2. General Training
We train each model for 80 epochs, using MS-COCO

[25], H36M [16], MPII [2], and SIM during the 10 fi-
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DER MAP

pck02 " uni multi uni multi IHPR

MS-COCO [25] 89.2 92.9 88.9 88.5 87.2
H36M [16] 92.3 92.2 92.5 92.3 90.3

MPII [2] 86.2 88.5 85.5 85.3 81.6
SIM 99.2 99.8 99.5 99.1 95.0

*BDD100k [45] 65.2 66.5 65.7 64.7 55.2
mpjpe #

H36M [16] 73.7 68.9 74.4 73.9 109.8
SIM 14.5 28.2 15.7 14.3 23.0

Table 1. 2d- and 3d-performance metrics for uni- and multivariate
versions of the proposed methods. All scores are averaged over
coordinates and joints, supported by the dataset in question. The
BDD100k dataset is unseen during training.

nal epochs. For the MS-COCO AP evaluation, we train
the model on MS-COCO exclusively for a final step. We
employ typical protocols for each of the datasets, such as
the MS-COCO 2017 train/test/val split, training on subjects
(S1, S5, S6, S7, S8) and testing on (S9, S11) for H36M, and
training on 25k out of 40k human pose samples from MPII.
The SIM dataset was created internally, using a simulated
street scene, 11 camera views, and 3d-scanned subjects (see
Sec. C for details) [5]. SIM serves as an excellent testbed
for aleatoric uncertainty estimation, since its labels are con-
sistent across all samples. Lastly, we evaluate all models on
the BDD100k dataset [45], which remains unseen during
training, to gauge out-of-distribution performance and cali-
bration. The input size for all models is 256 ⇥ 192 and we
train with a batch size of 48. All datasets are subject to the
same augmentation pipeline of random flips with p = 0.5,
normally distributed random rotations 2 [�30�, 30�], and
random rescaling by a factor 2 [0.5, 1.5]. We use the
AdamW optimizer [27] with 1cycle [40] learning rate pol-
icy at a maximum learning rate of 1e�3. As suggested by
prior work [10], we employ weight decay to stabilize uncer-
tainty estimates with � = 1e�2 and find further that weight
decay as low as � = 1e�4 leads to calibrated uncertain-
ties in the case of DER. Additionally, we provide a baseline
comparison using the heatmap-based Integral Human Pose
Regression method (IHPR) [42]. As mentioned in the intro-
ductory sections, this model class handles various sources
of uncertainty reasonably well without generating plausi-
ble uncertainty estimates and, hence, we only enter it in the
general task performance comparison.

4.3. Task Performance

We use pck02 (percentage of predicted points within 0.2
times the torso diameter distance to the correct keypoint) to
assess 2d-pose quality and mpjpe (mean per-joint position
error, Euclidean distance between true and predicted joint)

Method Backbone AP AP50 AP75

RLE [24] ResNet-50 70.5 88.5 77.4
SWAHR [28] HRNet-w32 67.9 88.9 74.5

(mv) DER ResNet-50 67.8 88.5 72.2

Table 2. Comparison with prior works incorporating an uncertainty
estimation approach on the MS-COCO validation set.

Figure 4. Calibration plots before and after recalibration, based on
respective uncertainty estimates, averaged across all datasets and
joints. Note that post-recalibration plots are difficult to tell apart
because of their proximity.

to evaluate 3d-pose quality. In terms of general perfor-
mance, the models are virtually identical both in the 2d- and
3d-case, see Tab. 1. The baseline performs slightly worse
than average which is to be expected given that we employ
IHPR, whose heatmaps cannot capture and thus do not ac-
count for uncertainties in the input. Importantly, since the
DER models did not require resampling of multiple layers
with intermittent dropout, training and inference were up to
three times faster when compared with MAP on our system
(see details in Sec. D). Tab. 2 shows AP performance results
on the MS-COCO validation set. While our model does not
manage to outperform competing approaches that incorpo-
rate uncertainty estimation, it manages to reach comparable
performances, even with the above-stated minimal predic-
tion head. It also manages to do this while simultaneously
estimating two types of uncertainty, which other approaches
neglect to implement.

4.4. Calibration
In order to determine whether the predicted uncertain-

ties hold any relevant information about the expected error,
we assess the calibration of each model. Perfect calibration
assumes that exactly fraction p of the data fall into the pth
confidence interval for all intervals p, see the methods sec-
tion for the full definition. We can examine this criterion
by computing the expected calibration error (ECE) for each
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aleatoric E[�2] epistemic Var[µ]

ECE # DER (mv) DER MAP (mv) MAP DER (mv) DER MAP (mv) MAP

MS-COCO [25] .204 / .025 .065 / .007 .195 / .033 .014 / .004 .054 / .006 .041 / .008 .031 / .008 .034 / .008
H36M [16] .158 / .016 .090 / .021 .198 / .037 .087 / .027 .091 / .035 .034 / .012 .033 / .037 .036 / .006

MPII [2] .207 / .023 .005 / .003 .194 / .033 .008 / .004 .053 / .006 .038 / .004 .036 / .007 .040 / .009
SIM .166 / .031 .089 / .032 .206 / .039 .126 / .030 .117 / .024 .097 / .021 .135 / .033 .127 / .022

*BDD100k [45] .153 / .016 .047 / .011 .183 / .020 .034 / .008 .060 / .018 .065 / .023 .115 / .044 .113 / .044

Table 3. Aleatoric and epistemic expected calibration error, before (·/) and after (/·) recalibration using isotonic regression. As expected,
recalibration significantly improves calibration error across all models and datasets.

⇢ " Method al. ep.

DER 0.87 0.62
(mv) DER 0.76 0.66

MAP 0.67 0.55
(mv) MAP 0.76 0.92

RLE (Q(x̄) ⇠ Laplace) [24] 0.55 -

Table 4. Pearson correlation coefficient between estimated uncer-
tainty and true residual for the MS-COCO validation set.

model, dataset, joint, and type of uncertainty.
Tab. 3 shows the aleatoric ECE of all models in all

datasets. Before recalibration using isotonic regression,
both univariate models are approximately on par. The mul-
tivariate models outperform both, before and after recali-
bration, suggesting that a covariate perspective holds value
when considering ostensibly independent joint coordinates.
The observation becomes even clearer when considering the
calibration plots in Fig. 4, which shows that the multivari-
ate approaches are almost perfectly calibrated (i.e., close to
the dashed diagonal) out of the box. The same is true for the
epistemic dimension, where the multivariate models outper-
form the univariate ones as well (see Tab. 3).

4.5. Variance-Residual Correlation

Calibration alone is not a sufficient criterion to judge
the quality of a probabilistic forecaster. Since predicted
uncertainty can be understood to equal the expected error
conditioned on an input, we investigate the correlation be-
tween uncertainties and true residuals. We expect this re-
lationship to be monotonic, i.e., as the true error grows, so
should the predicted uncertainty. For the sake of compari-
son to prior works, we provide the Pearson correlation co-
efficient. However, the Spearman’s rank correlation coeffi-
cient would constitute a stronger criterion, thus we include
a per joint and model table in the supplementary materials
(see Sec. G), averaged over joint coordinates and datasets,
where -1 or 1 indicates perfect correlation. Tab. 4 shows the
computed correlation scores for the MS-COCO dataset. All
four models display moderate to strong degrees of correla-
tion between predicted aleatoric and epistemic uncertainties

and true residuals, outclassing prior work. We find that the
top performer in the aleatoric component is the univariate
DER approach, suggesting that the estimated coordinates
are largely uncorrelated. By contrast, multivariate MAP
leads in the epistemic component, weakening this assump-
tion. Note that we compute correlations for uncertainties
and the full residual and have no way of knowing how much
of the error can be explained by epistemically reducible fac-
tors. In other words, aleatoric factors could be captured by
estimation methods for epistemic uncertainty. For this rea-
son, we subject the less-explored DER approach to further
analysis and attempt to gauge the degree of disentanglement
in the following section.

5. Analysis of DER
To investigate the plausibility of DER’s uncertainty es-

timates further, we conduct a series of experiments geared
towards increasing either aleatoric or epistemic estimates
exclusively. These experiments reflect common sources of
uncertainty in HPE and, if captured correctly, are invalu-
able to downstream decision-making or pre-deployment de-
sign decisions. Unlike prior work, we choose not to employ
common adversarial methods to provoke uncertainty esti-
mates, but instead devise naturally occurring challenges in
HPE. Due to its stability during training, we limit these ex-
periments to the univariate DER model.

5.1. Label Noise Injection

Label noise, stemming from individual biases in manual
labeling, is by all intents and purposes irreducible beyond a
certain point and thus a prime candidate to assess the valid-
ity of aleatoric estimates. With access to a homogeneously
labeled simulated dataset, we can inject artificial labeling
noise to, ostensibly, induce higher aleatoric uncertainty es-
timates in a trained model.

We train DER from scratch, for 15 epochs, on six itera-
tions of our SIM dataset with added independent Gaussian
noise, with � 2 [0.0, 0.5] in the normalized joint coordinate
domain Y 2 [0, 1]. Each model reaches validation scores of
99% pck02, indicating that the added noise has negligible

15139



Figure 5. Extracted CDFs averaged across joints, based on
aleatoric and epistemic uncertainty estimates after training with
varying levels of added Gaussian label noise. Both types of uncer-
tainty increase with added label noise, however, the effect is much
more pronounced in the aleatoric component.

effect on overall performance.
We compare average CDFs per joint, drawn from pre-

dicted aleatoric and epistemic uncertainty estimates on the
validation set, see Fig. 5. The model is successful in captur-
ing a relative increase in aleatoric variance with increased
label noise with a negligible increase in epistemic uncer-
tainty. A small amount of aleatoric variance in the zero-
noise case can be explained by digital artifacts resulting
from upscaling in cases where the bounding box is smaller
than the required network input. DER appears to exhibit
a common problem in probabilistic deep learning, namely
the tendency towards overconfidence since the average pre-
dicted variances are generally lower than the added label
noise. Curiously, this does not seem to be the case in sim-
pler, one-dimensional regression problems (see Sec. E), fur-
ther motivating the application of a recalibration step in
more complex domains.

5.2. Occlusion
Occlusions can reasonably be considered sources for

both types of uncertainty in HPE. Assume an occlusion of
the wrist joint with all other joints visible. It would be
trivial for an experienced estimator to pinpoint the wrist
location accurately. However, if the entire arm were oc-
cluded up to the shoulder, the irreducible amount of uncer-
tainty would increase significantly. We place artifical oc-
cluders (white, gray, and Gaussian blur) on the wrist joints
across all datasets, with occluder sizes equaling a fraction
� 2 [0.1, 0.5] of the ground-truth bounding box diagonal,
see Fig. 6. Fig. 7 shows captured uncertainties of a single
occluded joint. As expected, increasing occluder size corre-
sponds to increasing aleatoric uncertainty estimates for the

Figure 6. Artificial occlusions increase localized aleatoric uncer-
tainty without increasing epistemic uncertainty estimates.

Figure 7. (a) An average increase in predicted uncertainties is pos-
itively correlated with the occluder size. (b) The number of collat-
erally occluded joints exhibits a somewhat weaker correlation.

occluded joint, see Fig. 7 a. We also observe a less sig-
nificant increase in estimated epistemic uncertainties. Fur-
ther analysis, however, indicates that epistemic uncertainty
displays the same relative increase as aleatoric uncertainty.
This may be a consequence of DER’s dependence on the
single ⌫ parameter to disentangle both types of uncertainty,
see Eq. (6), a shortcoming that has been noted in prior work
[31]. The same trend is observable in relation to the total
number of occluded joints, see Fig. 7 b, and is clearly exac-
erbated as the majority of joints become occluded.

6. Conclusion
Robust uncertainty estimates must be a prerequisite for

downstream decision-making, automated or otherwise, to
avoid costly mistakes. We have shown two applications

15140



of simultaneous aleatoric and epistemic uncertainty quan-
tification in an HPE framework, focusing on the recently
proposed DER approach, its plausibility of uncertainty esti-
mates, and its relevance to the HPE domain. With added re-
calibration, DER is a promising contender for uncertainty
quantification in HPE that does not rely on a costly resam-
pling step. The fact of its portability will be of interest to
real-world deployment on resource-constrained platforms
as well as broader environmental considerations. While
conceivable pitfalls, such as the disentanglement hinging
on a single parameter estimate, need to be investigated fur-
ther, the resultant uncertainties faithfully identify challeng-
ing situations in HPE. As such, the model generates theo-
retically (calibrated) and semantically (experiments) sound
uncertainties, opening new opportunities for active learning
and other downstream applications.
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