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Abstract

This paper studies the problem of recovering cameras
from a set of fundamental matrices. A set of fundamental
matrices is said to be compatible if a set of cameras exists
for which they are the fundamental matrices. We focus on
the complete graph, where fundamental matrices for each
pair of cameras are given. Previous work has established
necessary and sufficient conditions for compatibility as rank
and eigenvalue conditions on the n-view fundamental ma-
trix obtained by concatenating the individual fundamental
matrices. In this work, we show that the eigenvalue condi-
tion is redundant in the generic and collinear cases. We pro-
vide explicit homogeneous polynomials that describe neces-
sary and sufficient conditions for compatibility in terms of
the fundamental matrices and their epipoles. In this direc-
tion, we find that quadruple-wise compatibility is enough to
ensure global compatibility for any number of cameras. We
demonstrate that for four cameras, compatibility is generi-
cally described by triple-wise conditions and one additional
equation involving all fundamental matrices.

Introduction
The problem of finding camera matrices that corre-

spond to a given set of fundamental matrices is crucial in
3D reconstructions from 2D images. Typically, multiview
structure-from-motion pipelines start by estimating funda-
mental matrices from point correspondences, with early
methods for such estimations dating back to the 1990s and
new methods still being developed today [21, 25, 26, 29].
However, these methods usually only estimate a subset of
all possible fundamental matrices between cameras. To de-
scribe this incomplete set of fundamental matrices, viewing
graphs are often used [17].

In this paper, we focus on understanding the conditions
under which a reconstruction of n cameras can be obtained
given complete knowledge of

(
n
2

)
fundamental matrices,

but we also give a result for general graphs at the end.
Here, a camera refers to a full-rank 3 × 4 matrix, and the

fundamental matrix of two cameras P1 and P2 with distinct
kernels is a 3 × 3 rank-2 matrix that encodes all point cor-
respondences between them. For any given rank-2 3 × 3
matrix F 12, there exists a pair of cameras P1 and P2 for
which F 12 is the fundamental matrix, this pair is unique up
to global projective transformation. However, for a set of(
n
2

)
rank-2 3 × 3 matrices F ij , where n > 2, it is not al-

ways guaranteed that there exist cameras P1, . . . , Pn such
that F ij is the fundamental matrix of Pi and Pj for each
i, j. Following the notation of [12] we say that the set F ij

is compatible if such cameras do exist. Note that some re-
cent literature uses the term consistent instead [15].

Finding necessary and sufficient conditions for compati-
bility of fundamental matrices has practical applications as
well as theoretical ones. [15] proposes an algorithm for pro-
jective structure-from-motion that employs their necessary
and sufficient condition for compatibility. The algorithm
is designed to handle collections of measured fundamental
matrices, both complete and partial, and aims to find cam-
era matrices that minimize a global algebraic error for the
given set of matrices. As for theoretical purposes, [5, 6, 11]
uses necessary and sufficient conditions for compatibility to
give a classification of critical configurations.

In the case of n = 3, a classical result [12, Section 15.4]
provides triple-wise constraints on F 12, F 13, F 23 in terms
of the fundamental matrices and their epipoles, where the i-
th epipole in the j-th image is defined as eij := kerF ij . For
non-collinear cameras, [15, Theorem 1] provides necessary
and sufficient conditions for compatibility for any n. These
conditions rely on the eigenvalues and rank of the n-view
fundamental matrix, which is obtained by stacking all fun-
damental matrices into a 3n × 3n matrix. In the follow-up
work, [9, Theorem 2] arrives at a similar condition in the
collinear case. Both methods rely on fixing a correct scal-
ing of each matrix and are therefore not projectively well-
defined, nor are the conditions expressed in terms of the
fundamental matrices and their epipoles, as in the n = 3
case.

The contributions of this paper include giving explicit
homogeneous polynomials that provide necessary and suf-
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ficient conditions for the compatibility of fundamental ma-
trices in the case of complete graphs. This is done in Sec-
tion 3. Specifically, for the case of n = 4, we establish
that a set of six fundamental matrices admits a reconstruc-
tion of camera matrices with linearly independent centers
only if the triple-wise constraints and an additional poly-
nomial equation involving all six fundamental matrices and
their epipoles are satisfied. We also demonstrate, using the
computer algebra system Macaulay2 [10], that the eigen-
value conditions from [9, 15] are superfluous in the generic
case and in the case where all epipoles in each image coin-
cide. In Section 2 we introduce the fundamental action, a
key tool in simplifying the problem of finding compatibil-
ity conditions. Section 4 presents a necessary and sufficient
condition for compatibility for any viewing graph via a cy-
cle condition, similar to cycle-based formulations of paral-
lel rigidity that appear in the calibrated case.

We approach compatibility of fundamental matrices
from an algebraic point of view, i.e., we aim to describe con-
straints through algebraic equations and polynomial equa-
tions using techniques and software from applied algebraic
geometry. This approach to questions in computer vision
has a long standing tradition [1, 7, 13, 16, 27].

Related work

History. The problem of determining whether a set of
fundamental matrices is compatible has a curious history.
[12] provided a necessary and sufficient triple-wise con-
dition for the compatibility of three fundamental matrices
F 12, F 13 and F 23 arising from three cameras with non-
collinear centers. In 2007, the paper [11, Theorem 2.2]
claimed that this condition was sufficient for compatibility
even in the case of cameras with collinear centers, a claim
that we show to be false in Example 3.3. During the next
decade, few advances were made in understanding compat-
ibility. Over time, a belief seemed to develop that triple-
wise compatibility was enough to ensure global compati-
bility. In fact, articles such as [24, Section 2.1] claimed
this to be true, based on a faulty proof provided in [22]. In
2018, [28, Section 3.3] pointed out that the proof in [22]
fails in some cases, but still agreed that the result holds for
complete graphs. Example 3.5 shows that this is not the
case by providing a counterexample.

Essential matrices. In the context of uncalibrated
cameras, which are defined as full-rank 3× 4 matrices, this
work, as well as [15], provide necessary and sufficient con-
ditions for compatibility of fundamental matrices. How-
ever, camera matrices are often assumed to be calibrated,
represented in the form of [R|t] for a rotation matrix R and
a translation vector t. The corresponding fundamental ma-
trices are called essential matrices. In [14], the authors build
upon their previous work and provide a necessary and suf-

ficient condition for compatibility of essential matrices, in
terms of the n-view essential matrix obtained by stacking
all essential matrices into a larger matrix. This condition is
then used to recover a consistent set of essential matrices,
given a partial set of measured essential matrices. In [18],
Martyushev provides a necessary and sufficient condition
for compatibility of three essential matrices.

Solvability. There has been extensive research on the
topic of solvability of viewing graphs in computer vision, as
evidenced by various studies such as [3,4,17,19,22,27,28].
A viewing graph is considered solvable if, given a generic
set of cameras, their fundamental matrices have a unique so-
lution in terms of cameras up to global projective transfor-
mation. Recently, [3] proposed a new formulation of solv-
ability and developed an effective algorithm for testing it,
which was able to resolve some open questions from previ-
ous studies, such as [28].

The primary distinction between solvability and compat-
ibility lies in the fact that, in the latter, the existence of cam-
eras that correspond to a set of fundamental matrices is not
assumed to exist. Moreover, compatibility has mostly been
studied for graphs where each possible fundamental ma-
trix is given, whereas papers on solvability study viewing
graphs without such restrictions.

Furthermore, solvability has been investigated in the case
of calibrated cameras, where it is known that the solvable
graphs are precisely those that are parallel rigid [20, 23].

1. Preliminaries
In this section we recall established notation and results.

We refer the reader to [8] for the basics on algebraic geome-
try and [12] for the application of algebra in 3D reconstruc-
tion problems.

We work over the real numbers, although all results in
this paper either directly hold in the complex case or can be
reformulated to do so. Where slight adjustments have to be
made over the complex numbers, we make a remark.

Let Rn denote the set of real vectors with n coordinates,
we call this affine space. Let Pn−1 denote its projectiviza-
tion. We write Rn×m to denote the set of real n×m matri-
ces, and we write Pn×m to denote the set of real projective
n×m matrices.

We define a rational map,

ψ : P3×4 × P3×4 99K P3×3 (1)

as follows. Given a pair of 3 × 4 matrices P1 and P2 (de-
fined up to scale), let x and y be two 3 × 1 vectors. The
determinant

det

[
P1 x 0
P2 0 y

]
, (2)
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is a bilinear polynomial with in x and y, meaning there is a
matrix F 12 (defined up to scale) such that (2) can be written
as xTF 12y. We define ψ(P1, P2) to be this 3 × 3 matrix.
This map is undefined, i.e. ψ(P1, P2) = 0, precisely when
kerP1 ∩ kerP2 ̸= {0}.

We refer to rank-2 3× 3 matrices as fundamental matri-
ces (either in R3×3 or P3×3) and we refer to rank-3 3 × 4
matrices as cameras (either in R3×4 or P3×4). The center of
a camera P is its kernel kerP . Before we list a set of well-
known results, partly found in [12, Section 9], we recall that
GLn denotes the set of invertible n × n matrices and that
PGLn is its projectivization.

Proposition 1.1.

1. ψ(P1, P2) is of rank at most 2, and it attains this rank
if P1, P2 are cameras with distinct centers;

2. for any fundamental matrix F 12, there exist two cam-
eras P1, P2 such that F 12 is their fundamental ma-
trix. All other cameras C1, C2 with fundamental ma-
trix F 12 satisfy C1 = P1H,C2 = P2H for some
H ∈ PGL4;

3. ψ(P2, P1) = ψ(P1, P2)
T ;

4. if F 12 is the fundamental matrix of P1, P2, then
kerF 12 = P2 ker(P1);

5. for cameras P1, P2, we have F 12 = ψ(P1, P2) if and
only if PT

1 F
12P2 is a skew-symmetric matrix.

We say that a set of fundamental matrices {F ij} is
compatible if there are cameras P1, . . . , Pn such that F ij =
ψ(Pi, Pj). The cameras P1, . . . , Pn are called a solution
to F ij . We mostly focus on complete viewing graphs, i.e.
when

{
F ij

}
contains all

(
n
2

)
fundamental matrices for n in-

dices. However, in Section 4, we provide a result that holds
not only in this setting, but for any viewing graph.

We define the i-th epipole eij in the j-th image to be an
affine representative of kerF ij . By Proposition 1.1 4., eij is
the image of the i-th camera center taken by the j-th camera.

Lemma 1.2 ([12, Section 15.4]). Let
{
F 12, F 13, F 23

}
be

compatible. There is a unique solution if and only if the two
epipoles in each image are distinct.

Although fundamental matrices and epipoles are only
defined up to scale, i.e. as elements in projective space,
we always assume for convenience that we are given affine
representatives of them and that the representatives of fun-
damental matrices satisfy (F ij)T = F ji, unless otherwise
is specified.

Given a fixed set of fundamental matrices F ij , we point
out that there is a rather simple method of finding pos-
sible solutions in terms of cameras by first using F 12 to

recover P1, P2 and then using Lemma 1.2 with matrices{
F 12, F 1i, F 2i

}
to recover the remaining Pi (a detailed al-

gorithm can be found in [11, Section 6.1]). Finding explicit
equations in terms of the fundamental matrices and epipoles
for compatability is however more difficult, and is the sub-
ject of this paper.

2. The Fundamental Action
In this section, we formally introduce the fundamental

action, a key tool in simplifying the problem of finding com-
patibility conditions. GLn

3 (or equivalently PGLn
3 ) acts on

a set of fundamental matrices
{
F ij

}
by{

F ij
}
7→

{
HT

i F
ijHj

}
. (3)

We call this the fundamental action of GLn
3 . The main ap-

peal of this action is that we can use it to simplify a set of
fundamental matrices, without affecting compatibility.

Proposition 2.1. Let
{
F ij

}
be a set of fundamental

matrices. Let Pi be a solution to
{
F ij

}
. For any

(H1, . . . ,Hn, H) ∈ PGLn
3 × PGL4, we have,

ψ(H−1
i PiH,H

−1
j PjH) = HT

i ψ(Pi, Pj)Hj . (4)

In particular,
{
F ij

}
is compatible if and only if

{
Gij

}
is

compatible, where Gij := HT
i F

ijHj .

Proof. It is a standard fact that the action of H ∈ PGL4

in Equation (4) does not change the fundamental matrix, so
we may set H = I . Consider the following equality up to
scaling,

det

[
H−1

i Pi xi 0
H−1

j Pj 0 xj

]
= det

[
Pi Hixi 0
Pj 0 Hjxj

]
. (5)

Writing these expressions in terms of fundamental matrices,
we get exactly Equation (4).

The fundamental action gives rise to an equivalence rela-
tion. For compatible fundamental matrices, the equivalence
classes turn out to be the equivalence classes of n points in
P3 under PGL4.

Proposition 2.2. Let
{
F ij

}
and

{
Gij

}
be two sets of com-

patible fundamental matrices. They are equivalent under
fundamental action if and only if they have solutions whose
camera centers are equivalent under PGL4.

Remark 2.3. All proofs that are not in the main body ap-
pear in the Supplementary Material.

In our study, quantities of the form esijt := (esi )
TF ijetj ,

called epipolar numbers, are important (see Theorems 3.2
and 3.6). The epipolar numbers are invariant under the fun-
damental action:
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Lemma 2.4. Let
{
F ij

}
be a set of fundamental matrices

with epipoles
{
eij
}

. Let Hi ∈ GLn
3 and consider the fun-

damental matrices Gij := HT
i F

ijHj , whose epipoles are
hij = H−1

j eij . Then

(esi )
TF ijetj = (hsi )

TGijhtj . (6)

Proof. The equality follows directly by the definitions of
Gij and hij .

We have the following geometrical interpretation of the
epipolar numbers.

Lemma 2.5. Let
{
F ij

}
be set of compatible fundamental

matrices that include F si, F ij and F jt. We have esijt = 0
if and only if the centers cs, ci, cj and ct of any solution are
coplanar.

It follows from the lemma that putting any of the two
indices s, i, j, t equal, the epipolar number is zero. In par-
ticular, esijs is always zero for compatible fundamental ma-
trices, because three centers are always in a plane.

3. Compatibility for Complete Graphs
We begin by giving our main results for complete graphs,

that is, the case where all the fundamental matrices are
known. The main contribution of this paper is providing
explicit, algebraic conditions for compatibility expressed in
terms of the fundamental matrices and their epipoles for any
number of views. Let Kn denote the complete graph on n
nodes.

In Section 3.1, we deal with K3 graphs and recall
the triple-wise conditions. We also state a result for the
collinear case. In Section 3.2 we find necessary and suf-
ficient constraints for compatibility in the case of K4. In
Section 3.3 we prove that quadruple-wise compatbility im-
plies global compatibility. Finally, in Section 3.4 we state
that the eigenvalue condition from the theorem of Kasten et.
al. is redundant in the generic and collinear cases.

Due to limitations on the length of the paper, most proofs
are moved to the Supplementary Material. In this section
we provide a sketch of proof for the main theorem (Theo-
rem 3.6) to display the techniques we use.

Remark 3.1. In this section, we work only with real num-
bers, because it allows us to give polynomials equations us-
ing the standard inner product and norm on R3. However,
all of our statements in Section 3.1 and Section 3.2 can be
extended to the complex numbers as explained in the Sup-
plementary Material.

3.1. K3

The case of three fundamental matrices is fairly straight-
forward. We have two possible configurations for the three
camera centers; they either all lie on a line, or they do not.

Theorem 3.2 ([12, Section 15.4]). Let F 12, F 13, F 23 be
fundamental matrices. There exist non-collinear cameras
P1, P2, P3 such that F ij = ψ(Pi, Pj) if and only if

e21 ̸= e31, e12 ̸= e32, e13 ̸= e23, (7)

and

(e31)
TF 12e32 = (e21)

TF 13e23 = (e12)
TF 23e13 = 0. (8)

The conditions of Equation (8) are called the triple-wise
conditions.

If P1, P2, P3 are cameras with collinear centers, then it
follows that Pi(kerPj) = Pi(kerPk) for all distinct i, j, k.
This implies that for the corresponding fundamental matri-
ces F 12, F 13, F 23, we have eij = ekj for all distinct i, j, k.
However, contrary to what is claimed in [11], the conditions
in Equation (8) are not enough in this case:

Example 3.3. Consider the fundamental matrices:

F 12 =

0 0 0
0 1 0
0 0 1

 , F 13 =

0 0 0
0 0 1
0 1 0

 ,
F 23 =

0 0 0
0 1 1
0 −1 1

 ,
(9)

with epipoles:

e21 = [1, 0, 0], e12 = [1, 0, 0], e13 = [1, 0, 0],

e31 = [1, 0, 0], e32 = [1, 0, 0], e23 = [1, 0, 0].
(10)

These six matrices satisfy the conditions in Equation (8).
However, no solution of cameras P1, P2, P3 exist for which
F 12, F 13, F 23 are the fundamental matrices. This can be
checked for instance via the algorithm described at the end
of Section 1. ⋄

To the best of our knowledge, the following result does
not appear in the literature.

Proposition 3.4. Let F 12, F 13, F 23 be fundamental ma-
trices. There exist collinear cameras P1, P2, P3 such that
F ij = ψ(Pi, Pj) if and only if

e21 = e31, e12 = e32, e13 = e23, (11)

and

(F 12)T [e21]×F
13 = F 23. (12)

3.2. K4

We start this section with a counterexample to the previ-
ous belief that triple-wise compatibility is enough to ensure
full compatibility.
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Example 3.5. Consider the fundamental matrices:

F 12 =

0 0 0
0 0 1
0 1 0

 , F 13 =

0 0 1
0 0 0
0 1 0

 ,
F 14 =

0 0 1
0 1 0
0 0 0

 , F 23 =

0 0 1
0 0 0
1 0 0

 ,
F 24 =

0 0 1
1 0 0
0 0 0

 , F 34 =

0 1 0
2 0 0
0 0 0

 ,
(13)

with epipoles:

e21 = [1, 0, 0], e31 = [0, 1, 0], e41 = [0, 0, 1],

e12 = [1, 0, 0], e32 = [0, 1, 0], e42 = [0, 0, 1],

e13 = [1, 0, 0], e23 = [0, 1, 0], e43 = [0, 0, 1],

e14 = [1, 0, 0], e24 = [0, 1, 0], e34 = [0, 0, 1].

(14)

It can easily be verified that these six matrices satisfy the
conditions in Theorem 3.2. Nonetheless, no solution exists.
Any attempt to find four cameras will end up matching at
most five of the six fundamental matrices. We will soon see
that this is because the sextuple does not satisfy the condi-
tions in Theorem 3.6. ⋄

Before we get to the main results, we list the possible
configurations of camera centers in the case of four cam-
eras (six fundamental matrices). By Proposition 2.2, these
correspond to the equivalence classes of compatible funda-
mental matrices. Each of these will be recognizable from
the epipoles eji :

Case 1: Cameras are in generic position, meaning no plane
contains all four centers. Epipoles are in generic
position, meaning in each image, the three epipoles
do not lie on a line.

Case 2: All camera centers lie in the same plane, but no
three lie on a line. In each image, the three epipoles
are distinct and lie on a line.

Case 3: Precisely three camera centers lie on a line. In
the three corresponding images, the epipoles corre-
sponding to the other two cameras are equal, with
the third one different from these two. In the final
image, the three epipoles are distinct and lie on a
line.

Case 4: All four camera centers lie on a line. In each im-
age, the three epipoles coincide.

These are the only possible configurations of four cam-
eras, so any compatible sextuple

{
F ij

}
must have its

epipoles in one of the configurations above. If we have,
for instance, collinear epipoles in one image, but not all,
the fundamental matrices can not be compatible. In all
four cases above, the configuration of the epipoles together
with the triple-wise conditions alone is not enough to ensure
compatibility; we need additional constraints. We cover
all cases in sequence. We recall the epipolar numbers:
esijt = (esi )

TF ijetj .

Theorem 3.6 (Case 1). Let
{
F ij

}
be a sextuple of funda-

mental matrices such that the three epipoles in each image
do not lie on a line. Then

{
F ij

}
is compatible if and only if

the triple-wise conditions hold and

e4123e2134e3142e4231e1243e2341
=e3124e4132e2143e1234e3241e1342.

(15)

Remark 3.7. The condition that the epipoles in each image
do not lie on a line is equivalent to all epipolar number eijkl
being non-zero for distinct i, j, k, l.

Sketch of Proof. The triple-wise conditions are necessary
for compatibility, so we assume that they are satisfied and
prove that in this case compatibility is equivalent to Equa-
tion (15) being satisfied. We begin by simplifying the prob-
lem. By Proposition 2.1, changing coordinates in the im-
ages via the fundamental action does not affect the compat-
ibility. In each image, the three epipoles are linearly inde-
pendent, so we can take them to be:

h21 = [1, 0, 0], h31 = [0, 1, 0], h41 = [0, 0, 1],

h12 = [1, 0, 0], h32 = [0, 1, 0], h42 = [0, 0, 1],

h13 = [1, 0, 0], h23 = [0, 1, 0], h43 = [0, 0, 1],

h14 = [1, 0, 0], h24 = [0, 1, 0], h34 = [0, 0, 1].

(16)

We denote byGij the fundamental matrices we get after this
fundamental action. Since we assumed that F ij satisfies
the triple-wise conditions, so do Gij . In other words, we
have (hki )

TGijhkj = 0 for all i, j, k. It follows that the six
matrixes Gij must be on the form:

G12 =

0 0 0
0 0 x12
0 y12 0

 , G13 =

0 0 x13
0 0 0
0 y13 0

 ,
G14 =

0 0 x14
0 y14 0
0 0 0

 , G23 =

 0 0 x23
0 0 0
y23 0 0

 ,
G24 =

 0 0 x24
y24 0 0
0 0 0

 , G34 =

 0 x34 0
y34 0 0
0 0 0

 .
(17)

This sextuple is compatible if and only if there exists a re-
construction consisting of 4 cameras Pi. We are free to
choose coordinates in P3 without affecting compatibility, so
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we take the four camera centers (assuming cameras exist) to
be the four unit vectors. If Pi is a solution to Gij , then re-
call that hji = Pi(ker(Pj)) for each epipole. Therefore, if{
Gij

}
has a reconstruction {Pi}, it must be on the form:

P1 =

[
0 α1

1 0 0

0 0 α2
1 0

0 0 0 α3
1

]
, P2 =

[
α1

2 0 0 0

0 0 α2
2 0

0 0 0 α3
2

]
,

P3 =

[
α1

3 0 0 0

0 α2
3 0 0

0 0 0 α3
3

]
, P4 =

[
α1

4 0 0 0

0 α2
4 0 0

0 0 α3
4 0

]
,

(18)

where αj
i are scalars. Computing the fundamental matrices

of these four cameras, and setting them equal to theGij , we
get the following six equations:

x12α
2
1α

3
2 = y12α

3
1α

2
2, x13α

1
1α

3
3 = y13α

3
1α

2
3,

x14α
1
1α

3
4 = y14α

2
1α

2
4, x23α

1
2α

3
3 = y23α

3
2α

1
3,

x24α
1
2α

3
4 = y24α

2
2α

1
4, x34α

1
3α

2
4 = y34α

2
3α

1
4.

(19)

Since the fundamental matrices are rank-2 and the cameras
rank-3, all the αj

i , as well as the xij and yij are non-zero.
Eliminating the variables αj

i , we are left with a single poly-
nomial,

x12y13x14x23y24x34 − y12x13y14y23x24y34 = 0. (20)

We can express the xij and yij in terms of Gij and hji . For
instance, x12 = (h31)

TG12h41, and by Lemma 2.4, x12 =
(e31)

TF 12e41. Making these substitutions for all the xij and
yij , we get Equation (15), thus completing the proof.

The proofs of the results in the other 3 cases follow a
similar pattern. These proofs, as well as the full proof of
Theorem 3.6, can be found in the Supplementary Material.

In Cases 2, 3 and 4, the three epipoles in each image lie
on a line. This is equivalent to all epipolar numbers eijkl
being zero for distinct i, j, k, l.

Theorem 3.8 (Case 2). Let
{
F ij

}
be a sextuple of funda-

mental matrices whose epipoles in each image are distinct
and lie on a line. Then

{
F ij

}
is compatible if and only if

the triple-wise conditions hold,

⟨F jkeik, F
jleil⟩⟨F kjeij , F

kleil⟩⟨F ljeij , F
lkeik⟩+

+∥F ljeij∥2∥F jkeik∥2∥F kleil∥2 = 0,
(21)

for all distinct i, j, k, l satisfying j < k < l, and for xi =
F ijelj with j < k < l, we have

−e
3
2F

24x4

x2F 24e14

x1F 12x2
x1F 12e32

+
e23F

34x4
x3F 34e14

x1F 13x3

x1F 13e23
+

−x3F
34x4

x3F 34e14
+
e23F

34x4
e21F

14x4
e21F

13x3
x1F 13e23

x1F 14x4

x3F 34e14
+

+
x2F 24x4

x2F 24e14
+
e13F

34x4
x3F 34e14

x2F
23x3

x2F 23e13
= 0.

(22)

Remark 3.9. As equations (22) and (25) are already over-
saturated with sub/superscript, we are omitting the trans-
pose symbol from these equations. It is to be understood
that the 3-vectors xi and eji are column-vectors when di-
rectly right of a fundamental matrix, and row-vectors when
to the left.

Theorem 3.10 (Case 3). Let
{
F ij

}
be a sextuple of funda-

mental matrices such that

e21 = e31 ̸= e41, e
1
2 = e32 ̸= e42, e

1
3 = e23 ̸= e43, (23)

and e14, e
2
4, e

3
4 are distinct and lie on a line. Then

{
F ij

}
is

compatible if and only if the triple-wise conditions hold,

⟨F 12e42, F
13e43⟩⟨F 21e41, F

23e43⟩⟨F 31e41, F
32e42⟩+

+∥F 12e42∥2∥F 23e43∥2∥F 31e41∥2 = 0,
(24)

and for xi = F ijelj with l > k > j, we have

e42F
23x3

x2F 23e43

x1F 12x2
x1F 12e42

+
x1F

13x3
x1F 13e43

− x2F 23x3
x2F 23e43

= 0. (25)

Remark 3.11. All polynomials equations in Theorems 3.6,
3.8 and 3.10 are homogeneous in every fundamental matrix
and epipole.

We discuss Case 4 in the next subsection.

3.3. Kn

For the case of more than 4 cameras, it turns out that
quadruple-wise compatibility is sufficient to ensure global
compatibility.

Theorem 3.12. Let
{
F ij

}
be a complete set of

(
n
2

)
, n ≥ 4,

fundamental matrices such that for all i, j, k, l, the sextuple
F ij , F ik, F jk, F il, F jl, F kl is compatible. Then

{
F ij

}
is

compatible.
Moreover, if all epipoles in each image coincide, then

triple-wise compatibility implies that
{
F ij

}
is compatible.

The reconstruction in this case will be a set of cameras
whose centers all lie on a line.

Remark 3.13. In the Supplementary Material, we state a
more general version of this theorem that doesn’t require
every single sextuple to be compatible.

We then get necessary and sufficient polynomial con-
straints for Case 4 by the second half of Theorem 3.12
and Proposition 3.4.

While uniqueness is not the focus of this paper, we give
the following useful theorem on the complete graph:

Proposition 3.14. A compatible set of
(
n
2

)
fundamental ma-

trices has a unique solution up to action by PGL(4) unless
all the epipoles in each image are equal.
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3.4. n-view matrices

The compatibility of
(
n
2

)
fundamental matrices F ij was

also studied in [9, 15] and we recall their results below.
Given a set of

(
n
2

)
fundamental matrices F ij , the n-view

fundamental matrix is the 3n× 3n symmetric matrix

F :=


0 F 12 · · · F 1n

F 21 0 · · · F 2n

...
...

. . .
...

Fn1 Fn2 · · · 0

 . (26)

Theorem 3.15 (Theorem 1 of [15], Theorem 2 of [9]). Let{
F ij

}
be a complete set of

(
n
2

)
real fundamental matrices,

where n ≥ 3. Then
{
F ij

}
is compatible with a solution of

real cameras whose centers are not all collinear if and only
if there exist non-zero scalars λij = λji such that:

1. the m-view fundamental matrix F = (λijF
ij)ij is

rank-6 and has exactly three positive and three neg-
ative eigenvalues;

2. the 3× 3m and 3m× 3 block rows and block columns
of F are all of rank 3.

Further,
{
F ij

}
is compatible with a solution of real

cameras whose centers are all collinear if and only if there
exist non-zero scalars λij = λji such that:

1. the m-view fundamental matrix F = (λijF
ij)ij is

rank-4 and has exactly two positive and two negative
eigenvalues;

2. the 3× 3m and 3m× 3 block rows and block columns
of F are all of rank 2.

Our work regarding the K3 and K4 cases can be used to
improve on this result by showing that the eigenvalue con-
dition can often be dropped.

Theorem 3.16. In the collinear case of Theorem 3.15, the
eigenvalue condition can be dropped. In the non-collinear
case, the eigenvalue condition can be dropped if in each
image, no three epipoles lie on a line.

4. The Cycle Theorem
Although the focus of this paper has been on complete

graphs, in this section we state the cycle theorem, which
holds for all graphs. We use this theorem to give an alter-
native derivation of necessary conditions for compatibility
from Section 3. We consider sets of fundamental matrices
{F ij}, where the index pairs (ij) are a subset of all

(
n
2

)
possible ones. Let G = (V,E) denote the corresponding
graph, where V is the set of indices and E the set of pairs
of indices for which there is a fundamental matrix in our

set. The definitions of compatibility and solution extends
naturally to this setting.

The theorem below gives a necessary and sufficient con-
dition for when a set of fundamental matrices are compat-
ible using the cycle condition for any graph G. Recall that
a directed cycle C of a graph is a closed path, i.e. a path
that starts and ends at the same vertex. Let E(C) denote its
directed edges.

Theorem 4.1. Let
{
F ij

}
be a set of fundamental matrices

with corresponding graph G.
{
F ij

}
is compatible if and

only if there are matrices Hi ∈ GL3 and scalars λij =
λji ̸= 0 such that Gij := λijH

T
i F

ijHj satisfy∑
(ij)∈E(C)

Gij = 0, for each directed cycle C of G. (27)

In particular, any set of 3 × 3 rank-2 matrices Gij satisfy-
ing the cycle condition Equation (27) are the fundamental
matrices of some set of cameras.

This theorem is very similar to the result [2, Proposition
5], which appears in the context of parallel rigidity and is
relevant for the solvability of essential matrices.

Observe that the cycles of length two in Equation (27)
imply that Gij are skew-symmetric.

Proof. We prove direction ⇒ here and prove direction ⇐
in the Supplementary Material, from which the last part of
the statement follows.

Let
{
F ij

}
be a compatible set of fundamental matrices,

with a solution of cameras Pi. By right action of H ∈ GL4,
we may assume that the centers of these cameras has a
non-zero last coordinate. Then the the first three vectors
must be linearly independent and the cameras can be writ-
ten [Hi|v(i)], where Hi ∈ GL3 and v(i) ∈ R3. By left
multiplication with H−1

i , we may further assume that all
cameras are of the form Ci = [I|t(i)], where t(i) ∈ R3.
Write

[t(i)]× =

 0 −t(i)3 t
(i)
2

t
(i)
3 0 −t(i)1

−t(i)2 t
(i)
1 0

 . (28)

One can then check that the fundamental matrix of Ci and
Cj is

[t(j)]× − [t(i)]× = [t(j) − t(i)]× ∈ R3×3, (29)

and we call these skew-symmetric matrices Gij . Note that
Gij are scalings of HT

i F
ijHj . If we sum Gij for (ij) in

a cycle C, we must get 0 by Equation (29). This proves
direction ⇒.
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For the rest of this section, we apply the cycle theorem to
find conditions that must hold for compatible fundamental
matrices. For instance, let G12, G13 and G23 be fundamen-
tal matrices satisfying the cycle condition. By the 2-cycles,
we can writeGij = [gij ]× for some gij ∈ R3. Letting {hij}
be the epipoles of

{
Gij

}
defined as

hij := (gij1 , g
ij
2 , g

ij
3 )T , (30)

one can check that

(h12)
TG23h13 = det[g12 g23 g31]. (31)

Therefore, g12 + g23 + g31 = 0 implies (h12)
TG23h13 = 0.

Now if F 12, F 13 and F 23 are compatible fundamental ma-
trices, then by the cycle theorem there is a scaling and
fundamental action such that Gij = λijH

T
i F

ijHj sat-
isfy the cycle condition. This means that F ij must satisfy
e12F

23e13 = 0, hence giving us Equation (8).
We next sketch an argument for why the n-view funda-

mental matrix F (see Section 3) for compatible
{
F ij

}
is

at most rank 6 given appropiate scalings. For the sake of
simplicity assume n = 4, but note that the below principle
directly extends to any n. Let

{
Gij

}
be six fundamental

matrices satisfying the cycle condition. Consider the 4-view
matrix G = (Gij)ij . Subtracting the first row of G from the
other rows, we have

G =

[
0 G12 G13 G14

G21 0 G23 G24

G31 G32 0 G34

G41 G42 G43 0

]
(32)

∼

[
0 G12 G13 G14

−G12 −G12 −G12 −G12

−G13 −G13 −G13 −G13

−G14 −G14 −G14 −G14

]
, (33)

where ∼ denotes equivalence under Gaussian eliminiation.
The rank of the first three rows of Equation (33) is at most
3, and the rank of the last nine rows is the rank of the first
three columns of Equation (33), which is at most 3. In to-
tal, the matrix is of rank at most 6. Now if

{
F ij

}
is a set

of compatible fundamental matrices, there is a scaling and
fundamental action such that Gij = λijH

T
i F

ijHj satisfy
the cycle condition. Define the n-view fundamental matrix
F = (λijF

ij)ij . Since the rank of a matrix is invariant un-
der conjugation, the above shows that rank F ≤ 6.

Finally, we use the cycle theorem to give alternative
proof that Equation (15) is necessary to ensure compatibil-
ity. Let

{
Gij

}
be 6 skew-symmetric matrices. Again, write

Gij = [gij ]× and let λij = λji ̸= 0 be scalars such that
λijG

ij satisfy the cycle condition. Then

λklg
kl = −λjkgjk − λijg

ij − λlig
li, (34)

for all indices i, j, k, l ∈ {1, 2, 3, 4} and it follows that

det[λijg
ij λjkg

jk λklg
kl]

= det[λijg
ij λjkg

jk − λlig
li]

=− det[λlig
li λijg

ij λjkg
jk].

(35)

Factoring out the constants, and with hij defined as in Equa-
tion (30), we get

λijλjkλki(h
i
j)

TGjkhlk = −λliλijλjk(hli)TGijhkj . (36)

Assuming that all epipolar numbers (hij)
TGjkhlk are non-

zero, and recalling that λij are non-zero, we find

(hij)
TGjkhlk

(hli)
TGijhkj

= − λli
λki

. (37)

Further, using λij = λji,

λ31
λ21

λ12
λ32

λ23
λ43

λ34
λ24

λ24
λ14

λ41
λ31

= 1. (38)

Combining Equations (37) and (38), we get Equation (15)
for

{
λijG

ij
}

. Now if we start with a set of six compatible
fundamental matrices

{
F ij

}
, then by Theorem 4.1, there

is a fundamental action such that Gij = HT
i F

ijHj are
skew-symmetric and there are scalars λij making the cycle
condition hold for

{
λijG

ij
}

. Then Equation (15) holds for{
Gij

}
and by the invariance of the epipolar numbers under

fundamental action, we get Equation (15) for
{
F ij

}
.

5. Conclusion
This paper provided explicit polynomial contraints as

necessary and sufficient conditions for
(
n
2

)
fundamental ma-

trices to be compatible. These polynomials were expressed
in terms of the fundamental matrices and their epipoles, and
are projectively well-defined, i.e. homogeneous. As a con-
sequence of our work, the previously established necessary
and sufficient condition [15] can be simplified by dropping
the eigenvalue condition. Our main tool was to define and
use the fundamental action of sets of fundamental matrices.
In the final section, we gave a necessary and sufficient con-
dition for compatibility that applied not only to complete
graphs, but to any viewing graph. We used it to give an
alternative derivation of necessary conditions for compati-
bility.
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