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Abstract

The embedding spaces of image models have been shown
to encode a range of social biases such as racism and sex-
ism. Here, we investigate specific factors that contribute to
the emergence of these biases in Vision Transformers (ViT).
Therefore, we measure the impact of training data, model
architecture, and training objectives on social biases in the
learned representations of ViTs. Our findings indicate that
counterfactual augmentation training using diffusion-based
image editing can mitigate biases, but does not eliminate
them. Moreover, we find that larger models are less biased
than smaller models, and that models trained using discrim-
inative objectives are less biased than those trained using
generative objectives. In addition, we observe inconsisten-
cies in the learned social biases. To our surprise, ViTs can
exhibit opposite biases when trained on the same data set
using different self-supervised objectives. Our findings give
insights into the factors that contribute to the emergence of
social biases and suggests that we could achieve substantial
fairness improvements based on model design choices.

1. Introduction
In recent studies, state-of-the-art self-supervised image

models such as SimCLR [9] and iGPT [8] have been shown
to encode a range of social biases, such as racism and sex-
ism [34]. This can lead to representational harm [4] and
ethical concerns in different socio-technical application sce-
narios [41]. The distributional nature of these models is
suspected to be an important factor contributing to the emer-
gence of social biases, as it has been demonstrated that these
models tend to encode common co-occurrences of objects
associated with social biases (e. g. women are more often set
in “home or hotel” scenes, whereas men are more often de-
picted in “industrial and construction” scenes [36]). More-
over, it has been demonstrated that self-supervised train-
ing objectives can impact the distribution of social biases in
models that share the same ResNet50 [14] architecture [33].

* Corresponding author. The associated code is available at
github.com/jannik-brinkmann/social-biases-in-vision-transformers.
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Figure 1: Gender bias in image embedding from ViTMAE:
t-SNE (n=2) reveals that “female” is more closely associ-
ated with “family” rather than “career”, whereas “male” has
a comparable association with both attributes.

However, existing work has done little investigation into
other factors that contribute to the emergence of social bi-
ases in image models.

Contributions Here, we seek to better understand the fac-
tors that contribute to the emergence of social biases in
image models. Therefore, we investigate social biases in
embedding spaces, which, despite not being observable for
end-users, could propagate into downstream tasks during
fine-tuning. This can help to make informed choices about
the model to select for a downstream task, and to develop
effective strategies to mitigate social biases. In detail, the
contributions of our work are:

• Training ViTs with counterfactual data augmentation us-
ing diffusion-based image editing can reduce social bi-
ases, but is not sufficient to eliminate them.

• ViTs trained using discriminative objectives are less bi-
ased than those trained using generative objectives.

• Scaling ViTs can help to mitigate social biases.

• ViTs can exhibit opposite biases despite being trained on
the same data set, which indicates that biases are not just
a result of simple object co-occurrences.

This ICCV paper is the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it is identical to the accepted version;

the final published version of the proceedings is available on IEEE Xplore.
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Figure 2: Selected counterfactual images on ImageNet. In each case, we show the original image (left), and the generated
counterfactual image (right).

2. Related Work
Self-Supervised Learning of ViTs Self-supervised ap-
proaches have emerged as the standard for training large
machine learning models since they don’t require labeled
data and learn representations that generalize well across
different downstream tasks [6]. Transformer models [35],
which were designed as sequence-to-sequence models for
natural language translation, have been adapted to com-
puter vision [12]. Self-supervised learning techniques ap-
plied to ViTs can be classified into discriminative (or joint-
embedding) methods and generative (or reconstruction-
based) methods [32]. Discriminative methods encourage
similarity among representations from diverse augmenta-
tions of a given input image, while generative methods
utilize a reconstruction loss that does not rely on aug-
mentations. Instead it uses a decoder to reconstruct the
original image given a masked image. Both methods
have demonstrated strong empirical results on downstream
tasks [7, 8, 10, 13].

Social Biases in Image Embeddings The embeddings of
self-supervised image models have been shown to encode a

range of human-like social biases [34]. However, the anal-
ysis was confined to SimCLR [9] and iGPT [8] as embed-
ding models. Therefore, Sirotkin et al. [33] built on this
work to examine the distribution of social biases in image
models that were trained using a range of self-supervised
objectives, such as geometric, cluster-based, and contrastive
methods. The authors discovered that models trained with
contrastive methods exhibit the largest number of social bi-
ases, and that the distribution of biases differs depending
on the studied embedding layer. However, their analysis
focused only on training objectives and the number of so-
cial biases without considering the direction of the bias,
constraining the interpretability of their findings. In addi-
tion, their investigation was conducted on models using a
ResNet50 [14] architecture, excluding ViTs which are con-
sidered the standard for transfer learning [17].

Bias Mitigation Methods The approaches to mitigate bi-
ases can be distinguished into methods that manipulate the
training data and methods that adjust the training proce-
dure [23]. To mitigate biases during training, existing work
suggests, amongst others, adversarial learning [37], train-
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ing separate models for each attribute [38], or incorporat-
ing regularization terms [2, 15]. In contrast, the methods
to mitigate biases in the training data aim to generate un-
biased data sets that are balanced [16] or do not include
information about the bias dimension [24]. One approach
to mitigate biases in the training data is Counterfactual
Data Augmentation (CDA) [45]. This method entails gen-
erating training instances that contradict the observed bi-
ases. There are different variations of CDA: 1-sided CDA,
which use just the counterfactuals during an additional pre-
training phase, and 2-sided CDA, which uses both coun-
terfactuals and the original training data. While 1-sided
CDA has a more substantial impact on biases, it can lead
to over-correction [39]. In existing work, CDA has been
used to mitigate different types of biases in language mod-
els [20], operating on a set of term pairs, such as “man”
and “woman”. However, generating counterfactual train-
ing instances from images is non-trivial. To address this,
conditional generative adversarial networks have been used
to generate unbiased training data with balanced protected
attributes [26, 31]. Therefore, the authors generate multi-
ple synthetic images for each training image, maintaining
the target attribute score but reversing the expression score
on the protected attribute. These approaches have demon-
strated to be effective at mitigating bias on selected dimen-
sions, but do not eliminate them. In addition, existing meth-
ods focus on downstream tasks and no research has been
conducted on debiasing pre-trained image models used as
backbones for transfer learning.

3. Background
iEAT The Image Embedding Association Test (iEAT)
quantifies social biases in image embeddings based on se-
mantic similarities [34]. It compares the differential associ-
ation of image embeddings of selected target concepts (such
as “male” and “female”) and attributes (such as “science”
and “liberal arts”), and tests the null-hypothesis of equal
similarities of the target concepts and attributes. Hence, a
rejection suggests that one target concept is more associated
with one attribute than the other (such as “male” is more as-
sociated with “science” or “female” is more associated with
“liberal arts”). To test the null-hypothesis, it formulates a
test statistic that compares target concepts X and Y with at-
tributes A and B, defined as:

s(X,Y,A,B) =
∑
x∈X

s(x,A,B)−
∑
y∈Y

s(y,A,B)

where s(w,A,B) is the differential association of a target
concept with the attributes, measured using the cosine sim-
ilarities of their embeddings:

s(w,A,B) = µ(cos(w, a)a∈A)− µ(cos(w, b)b∈B)

where µ is the mean. The statistical significance is de-
termined using a permutation test, contrasting the score
s(X,Y,A,B) with the scores s(Xi, Yi, A,B), where Xi

and Yi are all equal-sized partitions of the set X ∪ Y :

pt = Pr[s(Xi, Yi, A,B) > s(X,Y,A,B)] (1)

The effect size d quantifies the bias magnitude, computed as
the normalized separation of the association distributions:

d =
µ(s(x,A,B)x∈X)− µ(s(y,A,B)y∈Y )

σ(s(t, A,B)t ∈X∪Y )
(2)

where µ is the mean and σ is the standard deviation. Here,
the distance from zero indicates the bias magnitude, such
that an effect size equaling zero implies the absence of bias.
Moreover, the effect size indicates the direction of the bias,
such that a negative effect size suggests that the differential
association of Y with A and B is more pronounced, whereas
a positive effect size implies the opposite scenario.

The iEAT framework introduces a collection of 15 as-
sociation tests designed to measure human-like social bi-
ases (see Table 1). These tests offer a valuable baseline
to assess the presence and intensity of certain social biases
within image embeddings. However, it it important to rec-
ognize that these are not an exhaustive list of all possible
biases. These biases were selected due to their recurrence in
related literature and societal implications. However, there
might be other biases not captured in this selection, such as
political biases. Nonetheless, these tests remain an instru-
mental foundation to assess the existence and magnitude of
social biases in image embeddings.

Embedding Layer The selection of an embedding layer
is crucial to extract features that contain high-quality,
general-purpose information about the objects in an image.
It has been demonstrated that in ViTs trained with super-
vised methods, the model depth tends to correlate with the
quality of the embeddings, with the highest-quality embed-
dings being in the second-to-last layer [42]. In contrast,
ViTs trained with SSL methods have been found to gen-
erate the most useful embeddings at a layer in the middle
of the model [3, 8]. Therefore, the selection of an embed-
ding layer depends on the training approach and the specific
model. Here, for each model, we choose the layer that has
been reported to be optimal in linear evaluations.

4. Experiments and Results
Here, we describe and discuss our experiments to investi-

gate factors that contribute to the emergence of social biases
in the embedding spaces of ViTs. Therefore, we assess bias
mitigation methods along multiple dimensions:

• Training data: We investigate counterfactual augmenta-
tion training using diffusion-based image editing and find
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that it can reduce social biases in ViTs, but is not suffi-
cient to eliminate them (Section 4.1).

• Training objectives: We assess the impact of training ob-
jectives, and find that ViTs trained using discriminative
objectives are less biased than those trained using gener-
ative objectives (Section 4.2).

• Model architecture: We evaluate the impact of different
architectural choices and find that social biases decrease
as model size and input resolution increase, but observe
no systematic effect for patch size (Section 4.3).

4.1. Impact of Training Data

The emergence of social biases in self-supervised im-
age models is often suggested to be a result of object co-
occurrences in images (e.g. women are more often set in
“home or hotel” scenes, whereas men are more often de-
picted in “industrial and construction” scenes [36]). How-
ever, little research has been conducted on the effect of
modifications of the training data on social biases in pre-
trained image models. Therefore, we investigate the debi-
asing effect of counterfactual data on gender bias as an ex-
ample. Our findings suggest that it can reduce social biases
both during pre-training and fine-tuning, although it does
not eliminate them and can come at a cost of a slight re-
duction in downstream performance. Moreover, we observe
differences in the responsiveness to the counterfactual data,
suggesting that its effectiveness is model-specific.

Models In our experiments, we use BEiT [3], ViT-
MoCo [10] and ViT-MAE [13], which use a standard Trans-
former as the backbone network (12 layers, 12 attention
heads, 768 hidden size). The implementation and model
weights were made available using HuggingFace’s Trans-
formers [35] and Timm [40].

Counterfactual Data Augmentation To investigate the
impact of training data, we examine to what extent coun-
terfactual data augmentation can mitigate social biases in
ViTs. In our experiments, we combine the approach to
counterfactual data augmentation used in natural language
processing with diffusion-based image editing. There-
fore, we leverage a large-scale text-to-image diffusion
model [28] as a foundation, to capitalize on the benefits of
pre-training on a sizable and generic corpus. For each im-
age, we generate a textual description using BLIP [21] and
CLIP [25]. Then, we use a set of term pairs (e.g. “man”,
“woman”) to substitute target words in the generated cap-
tion. For our purposes, we adopt the set of gender term
pairs of Zhao et al. [44]. To generate counterfactual im-
ages, we use diffusion-based semantic image editing with
mask guidance [11]. To this end, we use CLIPSeg [22]
to mask the target words (e.g. “man”) in the image and use
Stable Diffusion [29] to inpaint the masked image section,
conditioned on the modified captions (see Figure 2).

Here, we adopt the ImageNet ILSVRC 2012
dataset (ImageNet-1K) [30] as our benchmark to as-
sess the effectiveness of the generated data, as it is one
of the most studied benchmarks for which there is an
extensive literature on architecture and training procedures.
ImageNet-1K contains 1.28 million images, from which
we generate an additional 159,393 counterfactual images.

Counterfactual Training To evaluate the debiasing ef-
fect of counterfactual data, we follow Webster et al. [39]
and continue the training of the models from a pre-trained
checkpoint using the counterfactual images (1-sided CDA).
To this end, we adopt the standard contrastive learning ob-
jective for ViT-MoCo [10] and masked image modeling
training objective for BEiT and ViT-MAE with a masking
ratio of 40 % [3] and 75 % [13], respectively. Then, we
train each model using Adam [18] with a batch size of 128

TEST TARGET A TARGET B ATTRIBUTE X ATTRIBUTE Y

T1 Young Old Pleasant Unpleasant
T2 Other Arab-Muslim Pleasant Unpleasant
T3 European American Asian American American Foreign
T4 Disabled Not-Disabled Pleasant Unpleasant
T5 Male Female Career Family
T6 Male Female Science Liberal Arts
T7 Flower Insect Pleasant Unpleasant
T8 European American Native American Pleasant Unpleasant
T9 European American African American Pleasant Unpleasant
T10 Christianity Judaism Pleasant Unpleasant
T11 Gay Straight Pleasant Unpleasant
T12 Light Skin Dark Skin Pleasant Unpleasant
T13 White Black Tool Weapon
T14 White Black Tool Weapon (Modern)
T15 Thin Fat Pleasant Unpleasant

Table 1: Image Embedding Association Tests
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and learning rate 1.5e-4 for a single epoch to avoid over-
correction [39]. The results are depicted in Table 2.

BASELINE CDA
MODEL BIAS CIFAR10 BIAS CIFAR10

BEIT 0.65 87.5 0.45 84.8
VIT-MOCO 1.41 95.1 1.39 95.1
VIT-MAE 0.59 89.6 0.64 89.6

Table 2: iEAT effect size (see Equation 2) and linear evalu-
ation performance on CIFAR10 of different models before
(Baseline) and after (CDA) debiasing using a single pre-
training epoch on counterfactual data. We find that coun-
terfactual data augmentation can reduce social biases,
but its effect is model-specific and can come with a re-
duction in representation quality.

In addition to the gender bias, we report the linear evalu-
ation performance on CIFAR10 [19] as a measure of repre-
sentation quality. We observe that it does reduce gender bias
on BEiT and ViT-MoCo but comes with a slight reduction
in representation quality for BEiT. However, a similar effect
has been observed in alternative debiasing methods before
and is not specific to out setting [27, 43]. In contrast, we ob-
serve the opposite effect on ViT-MAE, where it comes with
a small increase in gender bias. This implies that there are
differences in the responsiveness to the counterfactual data,
suggesting that the effectiveness of this technique might be
model-specific. We hypothesis that this is a result of the
training objectives, which could influence how the models
learn from the counterfactual data. In addition, we conjec-
ture that the counterfactual data could interact differently
with pre-trained checkpoints, which could carry certain bi-
ases leading to varying debiasing effects.

BASELINE CDA
MODEL BIAS CIFAR10 BIAS CIFAR10

VIT-MOCO 1.25 90.4 1.04 90.9
VIT-MAE 0.50 82.9 0.55 71.2

Table 3: iEAT effect size (see Equation 2) and linear eval-
uation performance on CIFAR10 of different models pre-
trained from scratch on ImageNet-1k (Baseline), and both
ImageNet-1k and the counterfactual data (CDA). We again
observe a decrease in gender bias on MoCo-v3 and in-
crease on ViTMAE. This implies that the observed ef-
fects are not a result of the pre-trained checkpoint.

To evaluate whether the observed effects on ViT-MoCo
and ViT-MAE are a result of their pre-trained checkpoints,
we train them from scratch on ImageNet-1k and our coun-
terfactual data (2-sided CDA). The results are illustrated in

Table 3. We again observe a decrease in gender bias on
ViT-MoCo, and a similar increase in gender bias on ViT-
MAE. This implies that observed effects are not a result of
the pre-trained checkpoint, and that other factors influence
the debiasing effect, such as model architecture differences.
These findings highlight the nuanced effect of training data
on social biases, demanding tailored approaches for differ-
ent architectures and training approaches. Thus, we antici-
pate the need for more principled approaches that eliminate
undesirable model behavior, potentially bypassing the use
of counterfactual data and instead using post-hoc interven-
tions to eliminate biases directly.

4.2. Impact of Training Objectives

ResNet50 [14] models, when trained using different self-
supervised objectives exhibit a different number of social
biases [33]. Therefore, we investigate the effect of train-
ing objectives on biases in ViTs across a range of different
self-supervised methodologies: discriminative and genera-
tive models. Our findings indicate that ViTs trained with
discriminative learning objective are less biased than those
trained using generative objectives. Moreover, we observe
that models trained on the same dataset using different ob-
jectives can exhibit opposite biases, which highlights the
importance of training objectives as an important factor in
the emergence of social biases in embedding spaces.

Discriminative and Generative Objectives We investi-
gate the distribution of social biases in ViTs trained on
ImageNet-21k using different self-supervised objectives.
To this end, we follow Sirotkin et al. [33] and count the
number of significant social biases across different values
of pt (see Equation 1) in the range of [10−4, 10−1], where
lower values of pt correspond to higher statistical signifi-
cance of the social biases. The results of this analysis are
illustrated in Figure 3. Our findings indicate that, on av-
erage, ViTs trained using discriminative objectives exhibit
fewer biases than those trained using generative objectives.
This effect remains consistent across all threshold values,
which highlights the robustness of our findings. We con-
jecture that this stems from the inherent characteristics of
models trained using generative objectives, which encour-
age the model to reconstruct images that match the statis-
tical patterns in the training data, capture underlying struc-
ture and dependencies within the data. Thus, if the training
data is biased towards specific demographics, objects, or
scenes, the model could unintentionally learn and perpetu-
ate those biases in its representations. In contrast, discrim-
inative learning objectives encourage representations that
maximize view invariance between samples from the same
image [32]. This encourages the model to learn and priori-
tize fundamental visual features that are less influenced by
social biases or external factors.
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MODELS T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T11 T12 T13 T14 T15

DISCRIMINATIVE MODELS

VIT-DINO-B −0.99−1.20 −0.86 −0.88−0.38 −0.01 −0.12−0.84 −0.49 −0.22 −0.08 −0.13 −0.88 −0.77−1.24
VIT-MOCO-B −0.15−1.02 −0.75 −0.29−1.41 −0.13−1.68 −0.66−1.10 −0.46 −0.24 −0.11 −0.77 −0.14 −0.64
VIT-MSN-B [1] −0.93−1.24 −0.33 −0.93 −0.14 −0.31 −0.10 −0.60 −0.78 −0.54 −0.28−1.09 −0.18 −0.08−1.64

GENERATIVE MODELS

BEIT-B −0.18−0.82 −0.02 −0.53−0.65 −0.09−1.02 −0.28−1.28 −0.09 −0.26−1.14−1.58 −0.56−1.72
IGPT-S −0.66−0.84−1.02 −0.75 −0.22 −0.16−0.55−1.32 −0.54 −0.28 −0.29−1.31−1.11 −0.89−1.69
VIT-MAE-B −0.11−0.55 −0.29 −0.35−0.59 −0.08−1.15−1.15 −0.81 −0.34 −0.29−0.96−1.30−1.31−1.75

Table 4: iEAT effect sizes (see Equation 2) for a range of association tests (see Table 1) using different embedding models.
The models were trained on ImageNet-21k using self-supervised methods, with the exception of ViT-MoCo which was
trained on ImageNet-1k. The effect sizes indicate the magnitude and direction of the bias, and are written in bold if the effect
is significant at pt = 0.05. ViTs trained using different self-supervised objectives can exhibit opposite social biases,
despite being trained on the same dataset.

Opposite Biases despite same Training Data The anal-
ysis of the number of significant biases fails to capture their
direction. To address this, we contrast the effect sizes in
Table 4. To our surprise, we find that ViTs can exhibit
opposite social biases, despite being trained on the same
dataset, e.g. ViTMAE exhibits a tendency to perceive Native
Americans as less pleasant than European Americans, while
ViT-MoCo [10] exhibits the inverse association. However,
we also find that all models reinforce a handful of consis-
tent social biases irrespective of the training objective, e.g.
all models associate women more with family roles than
careers, and perceive Arab-Muslims as less pleasant than
other humans. This points to the idea that these social biases
are indeed ingrained from the training data. These findings
suggest that biases in image models are not just a result of
training data, but that the training objective is a significant
factor contributing to their emergence, affecting both the
magnitude and direction of biases. Hence, we suggest that
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Figure 3: The number of biases detected in embedding
spaces of ViTs for different values of pt (see Equation 1).
ViTs trained using discriminative objectives are less bi-
ased than those trained using generative objectives.

future work on bias mitigation focuses on the set of social
biases that is consistent across models.

4.3. Impact of Model Architecture

Model Size The size of a model often impacts its perfor-
mance, indicating that larger models tend to generate em-
beddings that contain higher-quality, more general-purpose
information about an image. Therefore, we investigate the
influence of model scale on social biases, using iGPT [8]
and ViT-MAE [13], as both have been trained using self-
supervised methods and are available in three different
model sizes. The results indicate that as we scale the model
scales, the direction of social biases within the embedding
spaces remains somewhat consistent (see Table 5). This
implies that models of similar architecture, trained on the
same dataset using the same training objective, tend to in-
herit analogous social biases.
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Figure 4: The mean absolute iEAT effect size decreases
as model size increases. The boxplot illustrates the effect
size distribution, with the median (solid line), the quartile
range (boxes), and the rest of the distribution (whiskers).

However, we observe that the average magnitude of the
social biases decreases as the model size increases (see Fig-
ure 4), which implies that scaling the model might be a prac-

4919



MODELS T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T11 T12 T13 T14 T15

IGPT-S −0.66 −0.84 −1.02 −0.75 −0.22 −0.16 −0.55 −1.32 −0.54 −0.28 −0.29 −1.31 −1.11 −0.89 −1.69
IGPT-M −0.38 −0.97 −0.62 −0.46 −0.43 −0.19 −0.07 −1.02 −0.47 −0.60 −0.08 −1.26 −0.59 −1.02 −1.50
IGPT-L −0.40 −1.00 −0.41 −0.79 −0.44 −0.23 −0.27 −0.61 −0.77 −0.55 −0.07 −1.11 −0.13 −0.49 −0.75

VIT-MAE-B −0.11 −0.55 −0.29 −0.35 −0.59 −0.08 −1.15 −1.15 −0.81 −0.34 −0.29 −0.96 −1.30 −1.31 −1.75
VIT-MAE-L −0.03 −0.56 −0.21 −0.51 −0.55 −0.01 −1.17 −1.43 −0.75 −0.35 −0.33 −1.03 −1.38 −1.41 −1.64
VIT-MAE-H −0.09 −0.63 −0.39 −0.10 −0.55 −0.09 −1.18 −1.34 −0.23 −0.29 −0.30 −0.95 −1.47 −1.44 −0.40

Table 5: iEAT effect sizes (see Equation 2) for a range of association tests (see Table 1) using different embedding models
trained on ImageNet-21k using self-supervised methods. The effect sizes indicate the magnitude and direction of the bias,
and are written in bold if the effect is significant at pt = 0.05. The direction of the social biases in the embedding spaces
of a model are consistent across model sizes. However, the average magnitude of the social biases decreases as model
size increases.

tical strategy to mitigate social biases. We speculate that
this could be attributed to the model’s capacity to capture
more semantic information about the objects in the image,
without the need to rely on spurious correlations. However,
it is crucial to recognize that scaling a model alone might
not be sufficient to eliminate social biases.

Input Resolution and Patch Size In addition, input res-
olution and patch sizes have been discussed as important
model parameters [3, 13]. Hence, we investigate the effect
of these parameters on social biases (see Table 6). To as-
sess the impact of different input resolutions, we consider
BEiT pre-trained on ImageNet-21k at a 224x224 input res-
olution and subsequently fine-tuned on ImageNet-1k at dif-
ferent input resolutions. Our results indicate that social bi-
ases diminish as input resolution increases. This finding im-
plies that adopting higher input resolution might contribute
to a reduction in social biases. To assess the impact of dif-
ferent patch sizes, we consider ViT-DINO [7], which was
trained at different patch sizes. In our analysis, we ob-
serve some variability in the magnitude of social biases, but

no systematic increase or decrease. However, it’s impor-
tant to acknowledge that the sample size for this analysis
is small, due to the limited number of published models.
Therefore, further validation should be conducted to con-
firm these findings.

Per-Layer Analysis In our experiments, we use the em-
beddings from the layer that has been reported to be opti-
mal in linear evaluation. However, we expect that the in-
tensity of the biases might differ between layers, due to the
increasing semantic interpretability of internal representa-
tions [5, 33]. To explore this, we determine the number
of social biases across different layers, using a significance
threshold of pt = 0.5. The results are illustrated in Figure 5.
We observe that for models trained using generative objec-
tives, despite some variation in the magnitude, the number
of significant biases is somewhat consistent across all lay-
ers. However, for models trained using discriminative ob-
jectives we find that the number of significant biases in the
earlier layers mirrors those of models trained using gener-
ative objectives and then decreases as we progress through

MODELS T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T11 T12 T13 T14 T15

INPUT RESOLUTION

BEIT224-L −1.59 −1.41 −0.20 −0.07 −0.40 −0.21 −1.59 −0.19 −1.46 −0.18 −0.88 −1.12 −1.06 −0.81 −1.18
BEIT384-L −0.45 −1.46 −0.60 −0.15 −0.36 −0.17 −1.61 −0.46 −1.47 −0.27 −1.11 −0.47 −0.61 −1.12 −1.02
BEIT512-L −0.01 −1.55 −0.35 −0.30 −0.19 −0.22 −1.65 −0.41 −1.63 −0.21 −1.09 −0.49 −0.46 −1.03 −0.79

PATCH SIZE

DINO-B/8 −0.04 −1.22 −0.32 −1.19 −0.37 −0.16 −0.06 −0.97 −1.16 −0.36 −0.13 −0.04 −1.21 −0.41 −1.49
DINO-B/16 −0.99 −1.20 −0.86 −0.88 −0.38 −0.01 −0.12 −0.84 −0.49 −0.22 −0.08 −0.13 −0.88 −0.77 −1.24

Table 6: iEAT effect sizes (see Equation 2) for a range of association tests (see Table 1) of BEiT pre-trained on ImageNet-21k
and then fine-tuned on ImageNet-1k at different input resolutions, and ViT-DINO trained using different patch sizes. The
effect sizes indicate the magnitude and direction of the bias, and are written in bold if the effect is significant at pt = 0.05.
The direction of the social biases are somewhat consistent across different input resolutions and patch sizes, and the
average magnitude of the biases decreases as input resolution increases. However, we do not observe a systematic
effect for patch size.
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the model. This suggests that the biases inherent in the low-
level features are consistent across all models, but there is a
noticeable divergence as the models develop more seman-
tically meaningful features. We hypothesize that the ob-
served divergence in biases across different layers could be
attributed to the specific training objectives of the models,
as detailed in Section 4.2.

The existence of biases in earlier layers does seem coun-
terintuitive, as no semantic concepts have formed yet. How-
ever, we found a substantial portion of these biases, such
as skin tone and weight, are connected to lower-level fea-
tures, such as pixel brightness. This suggests that these
biases could be identified without necessarily associating
them with the intended semantic concepts. Therefore, we
hypothesize that the root of the biases in the earlier layers
could be grounded in the inherent characteristics of the im-
age data, and not necessarily the high-level semantic inter-
pretations we are probing. These findings align with prior
observations on ResNets [33].
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Figure 5: The number of social biases detected across dif-
ferent embedding layers of ViTs using a significant thresh-
old of pt = 0.05 (see Equation 1). ViTs trained using
discriminative and generative objectives share a simi-
lar number of biases in earlier layers, but diverge as
the models form more semantically meaningful features,
such that discriminative models encode less social biases
in later layers.

5. Conclusion

The emergence of social biases in models trained using
self-supervised objectives is often attributed to biases in the
training data. However, we find that models can exhibit op-
posite biases despite being trained on the same data. This
challenges the prevailing belief that social biases arise just
from simple co-occurrences of objects in the training im-
ages. Moreover, we find that training objectives, model ar-
chitecture, and model scale each have significant effects on
social biases in learned representations. These effects can

be the reduced, but not eliminated, using counterfactual data
augmentation. Therefore, we recommend that model devel-
opers and users take these details into account in designing
and selecting the model most relevant to their needs, as each
decision has quantifiable trade-offs. Moreover, our analysis
exposes a set of social biases that is consistent across differ-
ent models, wherefore we suggest that future work assesses
their bias mitigation approaches on these dimensions.
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[22] Timo Lüddecke and Alexander Ecker. Image segmenta-
tion using text and image prompts. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR), pages 7086–7096, 2022.

[23] Ninareh Mehrabi, Fred Morstatter, Nripsuta Saxena, Kristina
Lerman, and Aram Galstyan. A survey on bias and fairness
in machine learning. ACM Comput. Surv., 54(6), 2021.

[24] Nicole Meister, Dora Zhao, Angelina Wang, Vikram V. Ra-
maswamy, Ruth Fong, and Olga Russakovsky. Gender arti-
facts in visual datasets, 2022.

[25] Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya
Ramesh, Gabriel Goh, Sandhini Agarwal, Girish Sastry,
Amanda Askell, Pamela Mishkin, Jack Clark, Gretchen
Krueger, and Ilya Sutskever. Learning transferable visual
models from natural language supervision. In Marina Meila
and Tong Zhang, editors, Proceedings of the 38th Interna-
tional Conference on Machine Learning, volume 139 of Pro-
ceedings of Machine Learning Research, pages 8748–8763.
PMLR, 2021.

[26] Vikram V. Ramaswamy, Sunnie S. Y. Kim, and Olga Rus-
sakovsky. Fair attribute classification through latent space
de-biasing. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition (CVPR), pages
9301–9310, 2021.

[27] Navid Rekabsaz, Simone Kopeinik, and Markus Schedl. So-
cietal biases in retrieved contents: Measurement framework
and adversarial mitigation of bert rankers. In Proceedings of
the 44th International ACM SIGIR Conference on Research
and Development in Information Retrieval, SIGIR ’21, page
306–316. Association for Computing Machinery, 2021.

[28] Robin Rombach, Andreas Blattmann, Dominik Lorenz,
Patrick Esser, and Björn Ommer. High-resolution image
synthesis with latent diffusion models. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR), pages 10684–10695, 2022.

[29] Robin Rombach, Andreas Blattmann, Dominik Lorenz,
Patrick Esser, and Björn Ommer. High-resolution image
synthesis with latent diffusion models. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR), pages 10684–10695, 2022.

[30] Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, San-
jeev Satheesh, Sean Ma, Zhiheng Huang, Andrej Karpathy,
Aditya Khosla, Michael Bernstein, Alexander C. Berg, and
Li Fei-Fei. ImageNet Large Scale Visual Recognition Chal-
lenge. International Journal of Computer Vision (IJCV),
115(3):211–252, 2015.

[31] Viktoriia Sharmanska, Lisa Anne Hendricks, Trevor Darrell,
and Novi Quadrianto. Contrastive examples for addressing
the tyranny of the majority. CoRR, abs/2004.06524, 2020.

[32] Shashank Shekhar, Florian Bordes, Pascal Vincent, and Ari
Morcos. Objectives matter: Understanding the impact of

4922



self-supervised objectives on vision transformer representa-
tions, 2023.

[33] K. Sirotkin, P. Carballeira, and M. Escudero-Vinolo. A study
on the distribution of social biases in self-supervised learn-
ing visual models. In 2022 IEEE/CVF Conference on Com-
puter Vision and Pattern Recognition (CVPR), pages 10432–
10441. IEEE Computer Society, 2022.

[34] Ryan Steed and Aylin Caliskan. Image representations
learned with unsupervised pre-training contain human-like
biases. In Proceedings of the 2021 ACM Conference on Fair-
ness, Accountability, and Transparency, FAccT ’21, page
701–713. Association for Computing Machinery, 2021.

[35] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszko-
reit, Llion Jones, Aidan N Gomez, Ł ukasz Kaiser, and Il-
lia Polosukhin. Attention is all you need. In I. Guyon,
U. Von Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vish-
wanathan, and R. Garnett, editors, Advances in Neural Infor-
mation Processing Systems, volume 30. Curran Associates,
Inc., 2017.

[36] Angelina Wang, Alexander Liu, Ryan Zhang, Anat Kleiman,
Leslie Kim, Dora Zhao, Iroha Shirai, Arvind Narayanan, and
Olga Russakovsky. REVISE: A tool for measuring and miti-
gating bias in visual datasets. International Journal of Com-
puter Vision (IJCV), 2022.

[37] Tianlu Wang, Jieyu Zhao, Mark Yatskar, Kai-Wei Chang,
and Vicente Ordonez. Adversarial removal of gender from
deep image representations. CoRR, abs/1811.08489, 2018.

[38] Zeyu Wang, Klint Qinami, Yannis Karakozis, Kyle Genova,
Prem Nair, Kenji Hata, and Olga Russakovsky. Towards fair-
ness in visual recognition: Effective strategies for bias miti-
gation. CoRR, abs/1911.11834, 2019.

[39] Kellie Webster, Xuezhi Wang, Ian Tenney, Alex Beutel,
Emily Pitler, Ellie Pavlick, Jilin Chen, Ed H. Chi, and Slav
Petrov. Measuring and reducing gendered correlations in
pre-trained models. Technical report, 2020.

[40] Ross Wightman. Pytorch image models, 2019.
[41] Tian Xu, Jennifer White, Sinan Kalkan, and Hatice Gunes.

Investigating bias and fairness in facial expression recog-
nition. In Adrien Bartoli and Andrea Fusiello, editors,
Computer Vision – ECCV 2020 Workshops, pages 506–523.
Springer International Publishing, 2020.

[42] Matthew D. Zeiler and Rob Fergus. Visualizing and under-
standing convolutional networks. In David Fleet, Tomas Pa-
jdla, Bernt Schiele, and Tinne Tuytelaars, editors, Computer
Vision – ECCV 2014, pages 818–833. Springer International
Publishing, 2014.

[43] George Zerveas, Navid Rekabsaz, Daniel Cohen, and
Carsten Eickhoff. Mitigating bias in search results through
contextual document reranking and neutrality regularization.
In Proceedings of the 45th International ACM SIGIR Con-
ference on Research and Development in Information Re-
trieval, SIGIR ’22, page 2532–2538. Association for Com-
puting Machinery, 2022.

[44] Brian Hu Zhang, Blake Lemoine, and Margaret Mitchell.
Mitigating unwanted biases with adversarial learning, 2018.

[45] Jieyu Zhao, Tianlu Wang, Mark Yatskar, Vicente Ordonez,
and Kai-Wei Chang. Gender bias in coreference resolu-
tion: Evaluation and debiasing methods. In Proceedings

of the 2018 Conference of the North American Chapter of
the Association for Computational Linguistics: Human Lan-
guage Technologies, Volume 2 (Short Papers), pages 15–20,
New Orleans, Louisiana, 2018. Association for Computa-
tional Linguistics.

4923


