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Abstract

We introduce a learning-based depth map fusion frame-
work that accepts a set of depth and confidence maps gen-
erated by a Multi-View Stereo (MVS) algorithm as input
and improves them. This is accomplished by integrat-
ing volumetric visibility constraints that encode long-range
surface relationships across different views into an end-
to-end trainable architecture. We also introduce a depth
search window estimation sub-network trained jointly with
the larger fusion sub-network to reduce the depth hypoth-
esis search space along each ray. Our method learns
to model depth consensus and violations of visibility con-
straints directly from the data; effectively removing the ne-
cessity of fine-tuning fusion parameters. Extensive exper-
iments on MVS datasets show substantial improvements
in the accuracy of the output fused depth and confidence
maps. Our code is available at https://github.com/
nburgdorfer/V-FUSE

1. Introduction
Much like other areas of computer vision, Multi-View

Stereo (MVS) has benefited from the advent of deep learn-
ing. Progress has been driven by the creation of end-to-end
systems, unifying all aspects of the MVS pipeline, and by
replacing heuristics in the components of the pipeline with
optimized network modules. An aspect of MVS that re-
quires further investigation is depth map fusion, which is
still implemented as a sequence of heuristic operations.

Considering that the top performing MVS systems in
terms of geometric accuracy1 use depth map collections
as the representation, depth map fusion can be a crucial
step for obtaining the final 3D reconstruction of the scene.
As has been shown by conventional fusion research [23],
fusing depth maps, guided by geometric constraints, im-
proves the precision of correct depth estimates by blend-
ing them with supporting estimates for the same part of the
surface, detects and removes outliers, and reduces redun-

1NeRF [26] has inspired a vastly expanding class of algorithms that
produce superior results in view synthesis, but not in 3D reconstruction.
We consider NeRF a separate line of work from MVS.

Figure 1. Point cloud reconstructions from DTU [1] and Tanks &
Temples [19] datasets using depth maps from NP-CVP-MVSNet
[40] and UCSNet [3] as input to V-FUSE.

dancy in the final 3D model. Current deep MVS approaches
[3, 11, 21, 25, 42, 40, 41], however, bypass depth map fu-
sion and proceed directly to filtering fusion, which includes
various heuristic post-processing steps to obtain a global
point cloud by filtering the point cloud reconstructed from
the set of depth maps. This approach has been successful;
however, without depth map fusion, not all geometric infor-
mation from the scene is utilized. Our motivation in this
work is to build an end-to-end fusion network that can gen-
erate much more accurate depth and confidence maps.

Filtering fusion that operates on local 3D neighborhoods
is unable to leverage relationships among distant surface
primitives, such as a surface being occluded from a faraway
object. Similarly, convolution networks have a limited re-
ceptive fields and can only reason about local interactions.
We present V-FUSE, an approach that allows a 3D convolu-
tional network to benefit from such geometric information,
in a differentiable manner, controlled by learnable hyper-
parameters.

V-FUSE considers three types of constraints, inspired by
the work of Merrell et al. [23]: support among consistent
depth estimates across multiple views, occlusions and free-
space violations that provide evidence against depth esti-
mates contradicting surfaces estimated in different depth
maps. Free-space violations provide the added benefit of
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encoding conflicts with respect to surfaces that may be in-
visible in the frame of the reference camera. There are three
substantial differences between our approach and that of
Merrell et al.: (i) theirs operates in 2 1

2D while ours oper-
ates in a 3D volume, (ii) their algorithms make decisions per
pixel without considering context, and (iii) all parameters in
our approach are learned end-to-end. Specifying visibility
constraints in the fusion volume allows V-FUSE to reason
based on interactions among depth estimates along the rays,
as well as spatially among neighboring voxels. In the ab-
sence of these constraints, only the latter would have been
possible via 3D convolutions, which cannot reason about
long-range conflicts.

Reducing the storage and computational requirements of
deep MVS networks is a necessity for increasing the reso-
lution and quality of 3D reconstruction. 3D convolutional
networks operating on cost volumes are forced to downsam-
ple high resolution inputs. Since our framework is also vol-
umetric, we propose a technique for achieving high resolu-
tion near the surfaces while keeping memory requirements
manageable. Specifically, we learn to generate a per-pixel,
narrow depth search window by examining the input depth
and confidence estimates. Unlike previous networks that it-
eratively refine the depth search space, our framework lever-
ages the availability of input depth and confidence estimates
to determine a reduced search space in a single pass.

Our main contributions are:

• An end-to-end learning-based method for the fusion
of depth and confidence maps, leveraging long-range,
volumetric visibility constraints encoded into a visibil-
ity constraint volume (VCV).

• A pixel-wise search window estimation sub-network
to refine the depth search space.

We provide extensive evaluation of V-FUSE on MVS
benchmarks [1, 19, 43], using 2D and 3D error metrics.

2. Related Work
In this section, we review related work on learning-based

MVS, as well as conventional and learning-based depth map
fusion.(Unfortunately, no recent surveys on these topics are
available, to the best of our knowledge.)

The combination of deep learning and plane-sweeping
stereo has inspired a new generation of MVS algorithms.
The plane-sweeping volume (PSV) [10] allows the use of
cost aggregation and disparity estimation techniques de-
veloped for binocular stereo [18] in multi-view settings.
The first deep learning-based plane-sweeping algorithm
was DeepStereo [8] that addresses view synthesis in a
self-supervised manner. Supervised formulations targeting
depth map estimation are largely influenced by MVSNet
[42] and concurrent work [14, 15]. We also adopt the PSV
structure in this work for our fusion volume.

Several methods [3, 11, 21, 25, 35, 40, 41, 44] aim to
improve memory efficiency in deep MVS through multi-
resolution, iterative schemes that refine the depth search
space with each increase in resolution. This is achieved via
regular incremental reductions in search range [11, 41], or
with a range set using only confidence estimates [3]. We
have developed a non-iterative method for estimating per-
pixel depth search windows based on information extracted
from the distribution of input depth and confidence maps.

Recent work has addressed MVS by: combined classifi-
cation and regression for depth estimation [29, 34], sequen-
tial depth interval selection [32], an adaptation of RAFT
(Recurrent All-Pairs Field Transforms) [22], operating over
adaptive intervals along epipolar lines instead of discrete
depths [21], and the use of a non-parametric depth distri-
bution model to mitigate shortcomings of unimodal depth
models [40]. Transformers for MVS [6, 12, 33, 36] leverage
the intra- and inter-attention mechanisms to achieve more
accurate feature matching than previous architectures.
Conventional Depth Map Fusion Conventional fu-
sion methods reduce errors and inconsistencies in MVS
pipelines. Merrell et al. [23] propose two algorithms for
fusing depth maps by selecting depth estimates with large
degrees of support from the input depth maps that outweigh
violations of visibility constraints. We employ similar con-
straints, but in a volumetric formulation while the conven-
tional approach [23] reasons on 2 1

2D depth maps. Hu and
Mordohai [13] extend the aforementioned method [23] by
modeling geometric uncertainty, in addition to confidence,
and by considering multiple depth candidates per pixel.

A popular choice for fusing depth maps among deep
MVS pipelines is the work of Galliani et al. [9]. It is based
on the projection of depth estimates onto several support-
ing depth maps to accumulate consensus subject to criteria
on reprojection error and surface normal inconsistency. The
dense COLMAP pipeline [31] also includes a fusion mod-
ule that rejects outliers based on lack of photometric and
geometric support and clusters inliers. Both techniques re-
quire setting several thresholds and parameters, and are lim-
ited to filtering depth maps into a final 3D model without
improving the underlying depth maps.

Some deep MVS systems introduce custom fusion and
filtering steps which are not included in the end-to-end
trainable pipeline. These include P-MVSNet [20] that
considers pixel and depth reprojection errors, and D2HC-
RMVSNet [39] that includes geometric consistency scores.
Instead of relying on filtering and averaging depth esti-
mates, our work aims to refine and fuse depth maps before
they are filtered and projected into a point cloud.
Learning-Based Depth Map Fusion Most learning-based
fusion methods follow the seminal work of Curless and
Levoy [5] and adopt a volumetric representation of the trun-
cated signed distance function (TSDF). Learning-based ap-
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Figure 2. Overview of the V-FUSE architecture. The network is split into two major sub-networks: Search Window Estimation (SWE) and
Fusion. Both sub-networks take in a set of depth maps and confidence maps for a given set of camera views. The SWE sub-network is
responsible for estimating a refined depth search window on each ray of the reference camera. The Fusion sub-network uses these refined
depth hypotheses to build a visibility constraint volume (VCV), encoding long-range, volumetric visibility constraints into each voxel of
the VCV. After passing this volume through a convolutional network and a soft-argmax operator, we regress the final fused depth map.

proaches relying on implicit representations [2, 24, 27, 30]
model surfaces as continuous decision boundaries of a deep
classifier, and are thus ill-suited for open scenes like the
ones we reconstruct.

Recent methods [4, 37, 38] propose fusing streams of
input depth maps by learning TSDF volume updates [37],
by fusing in the latent space and learning a translator to
produce a final TSDF volume [38], or by learning pose in-
variant scene volumes jointly with a MVS sub-network [4].
Volumetric methods suffer from large storage requirements.
Our method is volumetric but allows for a very thin volume
in the direction of the optical axis.

Donné and Geiger [7] developed a non-volumetric data-
driven approach for fusing depth maps, estimated conven-
tionally or by a learning-based technique. DeFuSR filters
out wrong depth estimates, but also improves correct ones
via refinement and inpainting sub-networks. It operates on
re-projected depth estimates and image features at high res-
olution, depending entirely on 3D convolutions to reason
about consensus.

3. Method
In this section, we introduce the architecture of V-FUSE

(an overview can be found in Figure 2). Our network
takes as input a reference depth map D0 ∈ RHxW and the
corresponding confidence map C0 ∈ RHxW , and N − 1
source depth and confidence maps {Dv}N−1

v=1 ∈ RHxW

and {Cv}N−1
v=1 ∈ RHxW respectively. We begin by ren-

dering the input source maps into the reference view to ob-
tain {Dref

v }N−1
v=1 and {Cref

v }N−1
v=1 . With this set of rendered

maps, we build a visibility constraint volume (VCV), whose
structure follows that of the plane-sweeping volume. The
VCV encodes long-range, volumetric, constraints at each
voxel. We use a 3D convolutional network to regularize the
VCV and regress the final fused depth map. As output, our
network produces fused depth and confidence maps for the
reference view, Df and Cf . The construction of the VCV
and the 3D convolutional network are supervised using an
l1 loss between the estimated and ground truth depth maps.
For memory and run-time efficiency, we introduce a novel
search window estimation (SWE) sub-network in order to
restrict the depth search space used as input in the construc-
tion of the VCV. This sub-network is supervised through a
novel loss that we discuss in Section 4.2.

3.1. Visibility Constraint Volume

Similar to most deep MVS frameworks, a core compo-
nent of our network is the construction of a cost volume
along the reference camera frustum. However, instead of
encoding warped image features, our volume encodes vis-
ibility constraints for the purpose of measuring multi-view
depth estimate consensus and inconsistency. Specifically,
we compute three separate metrics measuring support, oc-
clusions, and free-space violations, and aggregate each met-
ric into separate channels in the VCV. Essentially, each
voxel is a collection of the response values for all three con-
straints from each input view. The constraints are aggre-
gated over all views, each view contributing equally (with-
out favoring the reference view) up to a confidence weight-
ing. We discuss each constraint in detail below. Figure 3
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(a) Support

(b) Occlusions

(c) Free-Space
Figure 3. Visualization of each constraint response curve. Support
and occlusions are encoded along the ray of the reference cam-
era, while free-space violations are encoded along the ray of each
source camera. The constraint curves are centered around each
depth estimate. The support response activates near the depth es-
timate (encoded as a Gaussian). The occlusion response activates
past the depth estimate and the free-space response activates be-
fore the depth estimate (both encoded as sigmoids).

shows a visualization of the three constraints.
The network takes as input a set of M initial depth hy-

potheses h ∈ RM . This is the set of depth values measured
along the ray of the reference camera. We define p to be a
given pixel index and q to be the corresponding voxel index
at the dth hypothesis. Using the set h, we build a hypothesis
volume S ∈ RHxWxM by tiling h at every pixel, meaning
that each ray uses the same set of depth hypotheses. Using
S, we can compute a 3-channel VCV, V ∈ RHxWxMx3.
Support We first compute the support response for each
voxel in the VCV. Intuitively, support is an encoding of the
multi-view depth consensus for the rendered depth maps.
For a given voxel, the higher the support response, the more
probable the true depth value exists at that voxel. For sup-
port, we employ a Gaussian distribution centered at each
depth estimate in the rendered depth map Dref

v for each
view, encoded along the ray of the reference view.

Vq,0 =
1

K

K−1∑
v=0

Cref
v,p exp

(
−(Sq −Dref

v,p )
2

2σ2
p

)
(1)

Here, Vq,0 is the support response for the depth hypothe-
sis at voxel Sq . The subscript 0 is used to indicate that the
support response is encoded in the first channel of Vq. The
confidenceCref

v,p rendered into the reference view for view v
and pixel p is used to weigh the support response. The stan-
dard deviation for the Gaussian distribution σp is a function
of the per-pixel window radius (discussed in Section 3.3),
which allows the level of support to vary depending on the
size of the search window. The formulation of σp (see sup-
plement) includes a learned hyper-parameter in order for the
support window to be learned from the data. Lower values

of σp correspond to a sharper response boundary.
Note that due to perspective distortion and due to some

3D points projected from the source depth maps falling out
of bounds, a pixel of the reference view may receive fewer
than N rendered depths and confidences. Therefore, we
define K ≤ N to be the number of views that provide a
response for the depth hypothesis at voxel Sq .
Occlusions To identify conflicting depth estimates, we in-
clude occlusion and free-space violation responses as sep-
arate channels in our VCV. Occlusions are events in which
the reference depth hypothesis at voxel Sq is farther away
from the reference camera than the rendered supporting
depth estimate Dref

v,p . To encode occlusions, we use a sig-
moid computed along the ray of the reference view. The
sigmoid is centered at each depth estimate in the rendered
depth map Dref

v for each view and activates behind the es-
timate. In this way, the response for occlusions contributes
a sigmoid response to Vq with magnitude depending on the
difference in depth. The response is high for depth hypothe-
ses that are beyond each estimate and low for hypotheses
that are in front of each estimates.

Vq,1 =
1

K

K−1∑
v=0

Cref
v,p

1

1 + exp
(
−λp(Sq −Dref

v,p )
) (2)

Here, Vq,1 is the occlusion response for the depth hypothe-
sis at voxel Sq encoded into the second channel of Vq . The
input confidence values are used to weigh the occlusion re-
sponses. The multiplier λp is a function of the per-pixel
window radius and is used to adjust the slope of the sig-
moid function. The definition for λp (see supplement) also
includes a learned hyper-parameter so that the slope of the
sigmoid is learned from the data.
Free-Space Violations In contrast to support and occlu-
sion, free-space violations are measured with respect to the
source views. They occur when a depth hypothesis Sv

q (ren-
dered into the source view v) is closer to the source cam-
era than the depth estimate from the original, non-rendered
source depth map Dv,p. In this context, we state that the
depth hypothesis Sv

q violates the free-space of depth esti-
mate Dv,p. Much like occlusions, we use a sigmoid to en-
code free-space violations. The sigmoid function is defined
along the ray of projection of the original depth map Dv

for each view and activates in front of the depth estimates,
contributing a sigmoid response to Vq with magnitude de-
pending on the difference in depth.

Vq,2 =
1

K

K−1∑
v=0

Cv,p
1

1 + exp
(
−λp(Dv,p − Sv

q )
) (3)

Here, Vq,2 is the free-space violation response for the depth
hypothesis at voxel Sq encoded into the third channel of Vq .
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The response values are weighted by the original confidence
values Cv,p for view v and pixel p. The multiplier λp is the
same parameter used in the encoding of occlusions.

3.2. Evidence Aggregation and Depth Estimation

In order to aggregate neighboring information, we regu-
larize the VCV using a 3D UNet similar to MVSNet [42].
This includes several layers of 3D convolutions with down-
sampling and skip-connections to incorporate global con-
text in the latent space, producing a probability volume P .
We then apply a soft-argmax operator along the depth di-
mension. The final fused depth map is generated using the
depth-wise expectation of probabilities for each depth hy-
pothesis,

Df
p =

∑
d

Sp,dPp,d (4)

Here, we write Sp,d and Pp,d using explicit index notation
instead of Sq and Pq to clearly indicate the reduction over
the depth dimension.

3.3. Dynamic Depth Search Windows

As input, our VCV construction process takes a set of
depth hypotheses per ray. Instead of a single constant set
of hypotheses for all rays, we aim to formulate a hypothesis
set per ray that is learned from the data. For the sake of
run-time and memory efficiency, it is important to limit the
number of depth hypotheses. Therefore, we look to reduce
the search space while maintaining a high probability that it
encompasses the true depth.

Our Search Window Estimation (SWE) sub-network
takes as input the N rendered depth and confidence maps.
We compute the mean and standard deviation of both the
depth and confidence maps per-pixel. Similar to the formu-
lations of the constraints, we average these metrics over the
set of valid inputs K ≤ N . In order to center the search
windows around an initial value Dcenter, we use the input
confidence values to select the most confident depth esti-
mate from the N input views. See the supplement for the
motivation behind this choice.

The input to our search window estimation sub-network
is the concatenation of the pixel-wise depth and confidence
statistics with Dcenter. We run this 5-channel feature map
through several 2D convolutional layers, followed by a sig-
moid activation function. The output is used for estimating
the search window radius,

Rp = rmin + rmaxOp (5)

where Rp is the window radius at pixel p, rmin =
ψmin(bmax − bmin) and rmax = ψmax(bmax − bmin) are
the minimum and maximum allowable bound for the win-
dow radius respectively, andOp is the output of the 2D con-
volutional network at pixel p. The scalars ψmin and ψmax

are used to select a percentage of the full input hypothesis
range (bmax− bmin) as the minimum and maximum allow-
able search window radii. These parameters are in place to
prevent the network from estimating extreme radius values.

Using this estimated window radius, we can define the
depth hypothesis bounds centered around the initial window
center estimates.

Bmin
p = Dcenter

p −Rp (6)

Bmax
p = Dcenter

p +Rp (7)

Here, Bmin
p and Bmax

p are the minimum and maximum
depth bounds defining the search window at pixel p. We
then interpolate between these new bounds to obtain M
depth hypotheses, Sp = [Bmin

p , ..., Bmax
p ] ∈ RM . The

new hypothesis volume S, with per-pixel hypotheses sets,
is then used to build the VCV as described in Section 3.1.

4. Loss Function
We train our network in a supervised manner on the out-

put depth and confidence maps of MVS frameworks. We
formulate two loss functions, one for each sub-network.

4.1. Depth Regression Loss

We specify the depth regression loss as the l1 loss be-
tween the estimated fused depth maps Df and the ground
truth depth maps Dgt.

Ld =
∑
p∈Ωp

|Df
p −Dgt

p | (8)

Here, Ωp is the set of all valid pixels where ground truth
depths are available. This loss is mainly used to super-
vise the construction of the VCV and the regularization
network; however, there are no barriers in place to prevent
back-propagation through the SWE sub-network. That be-
ing said, it is not sufficient to rely on the regression loss to
supervise our SWE sub-network.

4.2. Depth Search Window Loss

In order to supervise the SWE network module, we for-
mulate two objective functions. The first term, named the
coverage loss, penalizes estimated search windows that do
not encompass the ground truth depth.

Lc =
∑
p∈Ωp

|Dcenter
p −Dgt

p |
Rp

(9)

Using the coverage loss in isolation would not prevent the
network from learning to simply maximize the window ra-
dius. Therefore, as a regularizing term, we add the magni-
tude of the window radius to the joint loss function.
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(c) Image (b) Input Error (b) Fused Error
Figure 4. Error comparison between the input depth maps from
NP-CVP-MVSNet [40] and the fused maps from V-FUSE. The er-
rors are encoded as heat maps, with brighter colors corresponding
to higher errors. V-FUSE helps recover from inconsistencies due
to texture-less regions, such as the top of the power supply and
sections of the roof.

(a) Image (b) Input Depth (c) Fused Depth
Figure 5. Qualitative examples comparing the input depth maps
with the fused output depth maps from the DTU [1] dataset using
GBi-Net [25] as input. The depth maps generated by V-FUSE im-
prove fine details, texture-less surfaces, and estimates near depth
discontinuities.

Lr =
∑
p∈Ωp

Rp (10)

This term directly penalizes large window radii, guiding the
SWE sub-network to produce tight search windows that in-
clude the ground truth depth. The formulation of the loss
in this manner bears some similarity to the work of Kendall
and Gal [17], with the window radii used as a proxy for
uncertainty.

Our total loss is the weighted sum of these three objec-
tive functions.

L = λdLd + λcLc + λrLr (11)

5. Experiments
5.1. Datasets

DTU The DTU dataset [1] is an indoor dataset that con-
tains images of 124 scenes taken from a camera mounted
on an industrial robot arm. All scenes share the same cam-
era trajectories, with ground-truth point clouds captured via

Method DTU
MAE↓ < 0.125 ↑ < 0.25 ↑ < 0.50 ↑ < 1.00 ↑

MVSNet [42] 9.200 9.55 18.67 34.55 55.35
+ Conventional [23] 9.050 13.19 25.57 45.34 65.16
+ V-FUSE 6.838 15.00 28.57 48.45 66.51
UCSNet [3] 12.071 9.99 19.52 35.90 56.24
+ Conventional [23] 13.633 12.45 24.06 42.59 61.15
+ V-FUSE 9.667 12.85 24.85 43.96 62.69
NP-CVP-MVSNet [40] 12.897 11.76 23.16 42.92 64.27
+ Conventional [23] 11.933 12.79 25.35 47.42 68.94
+ V-FUSE 8.566 16.47 31.49 53.06 70.58
GBi-Net [25] 5.845 12.77 24.89 45.10 65.94
+ Conventional [23] 5.009 17.30 32.93 55.52 73.66
+ V-FUSE 4.196 18.41 34.79 57.50 74.66

Table 1. Quantitative comparison of the 2D depth map errors on
the evaluation set of DTU [1] benchmark. All threshold values
are measured in mm. Conventional fusion improves almost all in-
puts, even those from recent state-of-the-art methods, in terms of
average error over all pixels with ground truth and also by increas-
ing the number of inliers for each threshold. Learned fusion via
V-FUSE leads to even larger improvements in all cases.

a structured light scanner. We follow the training, valida-
tion, and evaluation split used by Yao et al. [42].
Tanks & Temples The Tanks & Temples dataset [19] is
a large-scale, mostly outdoor dataset containing video se-
quences of challenging scenes. The dataset is divided into
a training set and two evaluations sets; intermediate and ad-
vanced.
BlendedMVS The BlendedMVS [43] dataset is a large-
scale, synthetic dataset containing images processed by
blending original images with rendered images from each
scene mesh. The dataset is split into training and validation
sets, containing 106 and 7 scenes respectively.

5.2. Implementation Details

Training Details We implement the model with PyTorch
[28] and train on the output depth and confidence maps of
the DTU [1] dataset from several deep MVS methods, sep-
arately. For improved generalization, we follow the robust
training strategy used by PatchmatchNet [35], in which we
randomly chooseN−1 of the 10 best source views to use as
training for a given reference view. We train on an NVIDIA
RTX A6000 GPU for 30 epochs. The model has approx-
imately 300,000 parameters and training takes 1 hour per
epoch for the high resolution data. We use the Adam op-
timizer with a learning rate of 0.0003 using an exponential
decay of 0.95 every 2 epochs. For additional model param-
eters, please see the supplement.

5.3. Evaluation

Metrics As our method is focused on generating depth and
confidence maps, we mainly focus our evaluation on 2D
metrics. For depth map evaluation, we report the mean
absolute error (MAE) between the estimated and ground
truth depth maps. We also report the percentage of pixels
with depth estimates within several error thresholds. We
also present 3D metrics on output point clouds generated
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Method DTU [Sparse] (mm) ↓ DTU [Dense] (mm) ↓
Acc. Comp. Overall Acc. Comp. Overall

MVSNet [42]
+ Gipuma [9] 0.396 0.527 0.462 0.419 0.383 0.401
+ V-FUSE 0.432 0.390 0.411 0.388 0.349 0.368
UCSNet [3]
+ Gipuma [9] 0.338 0.349 0.344 0.320 0.261 0.290
+ V-FUSE 0.354 0.329 0.342 0.265 0.276 0.270
NP-CVP-MVSNet [40]
+ Gipuma [9] 0.356 0.275 0.316 0.288 0.194 0.241
+ V-FUSE 0.337 0.277 0.307 0.256 0.181 0.219
GBi-Net [25]
+ ∼ COLMAP [31] 0.315 0.262 0.289 0.254 0.173 0.214
+ V-FUSE 0.310 0.274 0.292 0.227 0.180 0.204

Table 2. Chamfer distances (lower is better) of the final fused point
clouds from the evaluation set of DTU [1] benchmark. We evalu-
ate the final models using the official script that enforces a sparse
minimum point-spacing of 0.2mm (left). Since the errors are ap-
proaching this threshold, we also evaluate the models enforcing a
dense minimum point-spacing of 0.03mm (right). MVSNet [42],
UCSNet [3], and NP-CVP-MVSNet [40] use Gipuma [9] to fuse
depth estimates into a final 3D model. GBi-Net [25] uses an adap-
tation of the fusion approach of COLMAP, in which geometric and
photometric filters are used to filter and average consistent depth
estimates across views.

from the fused depth maps. We evaluate our point clouds
on the DTU benchmark [1], measuring accuracy, complete-
ness, and overall scores. Accuracy is the mean distance be-
tween every point in the estimated point cloud to the clos-
est point in the ground truth model and completeness is the
mean distance between every point in the ground truth point
cloud to the closest point in the estimated model. The over-
all score is the average of these metrics. We show a variation
of these metrics when comparing to DeFuSR [7] following
the evaluations performed in their work. Donné and Geiger
[7] report the Chamfer distances as the percentage of points
within a threshold of τ = 2.0mm. We also evaluate our
point clouds on the Tanks & Temples benchmark. We re-
port the f-score for each scene, as well as the mean f-score
for all scenes.
MVS Baselines We compare the results of applying V-
FUSE on the outputs of MVSNet [42], UCSNet [3] as a
representative multi-resolution algorithm and two state-of-
the-art methods, NP-CVP-MVSNet [40] and GBi-Net [25].
Fusion Baselines We compare the results of V-FUSE with
the conventional fusion approach of Merrell et al. [23] for
2D evaluations, and Gipuma [9] for 3D evaluations, since
Gipuma is the method of choice by state-of-the-art MVS
frameworks to produce final 3D models. We also provide
comparisons to the learning-based fusion method, DeFuSR
[7]. Methods operating on implicit TSDF volumes, such
as VolumeFusion [4], RoutedFusion [37], and NeuralFu-
sion [38] are not included in our evaluations, since they are
better suited for reconstructing closed, watertight objects.
These papers do not provide any quantitative evaluations
on DTU or Tanks & Temples, with NeuralFusion present-
ing qualitative-only results on select scenes from Tanks &
Temples.

Method DTU (full) ↑
Acc. (%) Comp. (%) Mean (%)

MVSNet [42] 88 66 77
+ DeFuSR [7] 86 65 76
+ V-FUSE 98 98 98

Table 3. Chamfer distances (lower is better) of the final 3D models
of MVSNet [42] using DeFuSR [7] and V-FUSE for fusion. Here,
accuracy and completeness are reported as the percentage of points
with accuracy and completeness scores within τ = 2.0mm.

Evaluation on DTU Dataset We first compute ground truth
depth maps for DTU in the same manner as MVSNet [42].
Specifically, we run screened Poisson surface reconstruc-
tion (SPSR) [16] on the provided ground truth point clouds
for each scene and produce a watertight mesh. We then ren-
der this mesh into all cameras to obtain ground truth depth
maps. To produce our final point clouds, we use heuristic
filtering, similar to the post-processing presented in GBi-
Net. We first filter out depth estimates that have a confi-
dence value below a threshold. We then project each esti-
mate into neighboring views, using the depth estimates in
each view to reproject back to the reference view, measur-
ing the pixel reprojection error and filtering out estimates
whose error is above a threshold.

Table 1 shows a comparison of the depth map errors
between all baseline methods and V-FUSE. Observing the
fused depth map errors, we can see that even using the
low resolution inputs of MVSNet, V-FUSE can generate
depth maps with a lower MAE than UCSNet and NP-CVP-
MVSNet. Additionally, V-FUSE produces depth maps with
more inliers at all threshold values compared to the input
depth maps generated by all baseline methods. A compar-
ison of error maps is shown in Figure 4. Qualitative depth
map results can be seen in Figure 5. We can observe that V-
FUSE removes much of the noise in the input depth maps,
while producing better estimates near depth discontinuities.
In Table 2, we evaluate the final 3D models of all MVS
baselines and compare the fusion choice from each method
to V-FUSE. V-FUSE shows clear improvements in the over-
all results in both Sparse and Dense evaluation scenarios. In
the case of GBi-Net, the improvements realized by V-FUSE
are more noticeable without the sampling procedure used in
the Sparse evaluation. DeFuSR [7] provides results evalu-
ating fusion of COLMAP [31] and MVSNet [42] inputs on
DTU. We provide a comparison according to the evaluation
protocol used in [7] in Table 3. The threshold used by De-
FuSR is τ = 2.0mm, which is quite large. V-FUSE outper-
forms DeFuSR by a substantial margin, which is expected
as the authors state they are not able to refine the MVSNet
inputs much.
Evaluation on Tanks & Temples Dataset We use the
model trained on the DTU output depth and confidence
maps of each network without any fine-tuning for evalua-
tion. In order to evaluate the depth maps on Tanks & Tem-
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(a) Image (b) Input Depth (c) Fused Depth (d) Image (e) Input Depth (f) Fused Depth
Figure 6. Qualitative comparison of depth maps for scenes from the Tanks & Temples benchmark [19] using GBi-Net [25] as input.

Method intermediate ↑
Mean Fam. Franc. Horse Light. M60 Pan. Play. Train

UCSNet [3]
+ Gipuma [9] 54.83 76.09 53.16 43.03 54.00 55.60 51.49 57.38 47.89
+ V-FUSE 55.03 75.64 57.60 46.03 54.35 55.78 49.42 56.02 45.37
GBi-Net [25]
+ ∼ COLMAP [31] 61.42 79.77 67.69 51.81 61.25 60.37 55.87 60.67 53.89
+ V-FUSE 59.08 78.92 65.23 49.96 59.16 57.08 53.13 58.58 50.61

Table 4. F-score (higher is better) of the final fused point clouds from the evaluation sets of the Tanks & Temples [19] benchmark. The best
results between the baseline and V-FUSE are marked as bold.

Method Tanks & Temples
MAE↓ < τ ↑ < 2τ ↑ < 4τ ↑

UCSNet [3] 0.175 11.83 19.69 30.17
UCSNet + V-FUSE 0.167 12.18 19.75 29.84
NP-CVP-MVSNet [40] 0.177 15.49 25.16 37.38
NP-CVP-MVSNet + V-FUSE 0.155 15.68 25.13 37.57
GBi-Net [25] 0.240 12.02 19.51 29.24
GBi-Net + V-FUSE 0.243 12.88 20.57 30.22

Table 5. Quantitative comparison of depth map errors on the train-
ing set of Tanks & Temples [19]. All methods have been trained
on DTU. The threshold value τ is selected per-scene and is derived
from the thresholds provided by the benchmark.

ples, we use the training set and the provided ground truth
point clouds, computing ground truth depth maps the same
way they are computed for DTU. Table 5 shows the depth
map errors between each baseline and V-FUSE. The fused
depth maps are more accurate overall for UCSNet and NP-
CVP-MVSNet. For GBi-Net, we show improved accuracy
for estimates within the error thresholds. See Figure 6 for
a qualitative comparison of depth maps. Table 4 shows the
f-scores for the final point clouds on the Tanks & Temples
intermediate set. We show comparable results to both input
MVS baselines. We provide the precision and recall split
for each method in the supplement.
Additional Experiments We provide results on the valida-
tion set of the BlendedMVS [43] dataset in the supplement.
Using the outputs of GBi-Net trained on the BlendedMVS
training set and the V-FUSE model trained on DTU with-
out any fine-tuning, V-FUSE produces higher quality depth
maps for all scenes, with a mean MAE of 0.288 compared
to 0.319 for GBi-Net. We also provide evaluations of the
output confidence maps, reporting the AUC of all methods.
Using GBi-Net as input, the AUC of V-FUSE is 2.480 com-

pared to 3.690 for GBi-Net. We show several ablation stud-
ies in the supplement, testing the individual contributions of
different aspects of the network architecture. Specifically,
we evaluate the contributions of the visibility constraints, as
well as the efficiency gains of the SWE sub-network. As de-
tailed in the supplement, introducing the SWE sub-network
results in 8.5× memory and 9× run-time efficiency gains,
as well as a 20% decrease in MAE.

6. Conclusion

We have presented an end-to-end depth map fusion net-
work that leverages long-range visibility constraints en-
coded into a learnable pipeline. Our method improves input
depth and confidence maps generated by MVS networks,
integrating multi-view consensus and inconsistency mea-
sures. We also present a novel depth search space refine-
ment sub-network that estimates a narrow search window
along each ray to increase memory and run-time efficiency,
as well as allow for high resolution depth estimation near
surfaces. The combination of these concepts is able to ob-
tain fused depth maps that are quantitatively and qualita-
tively much better than the inputs. While the depth map fu-
sion in our work is end-to-end, merging the depth estimates
into a unified point cloud remains a heuristic-driven pro-
cess. We aim to incorporate a more principled point cloud
reconstruction procedure from a collection of depth maps
in future work. We also aim to explore the generalization
ability of learning-based fusion.
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