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Figure 1. Teaser. This work studies continual learning for NeRFs. We propose a new benchmark – World Across Time (WAT) – to study
practical scenarios where images of a scene arrive as a sequence of multiple scans with appearance and geometry changes, over an extended
period of time. We also propose an effective system – CLNeRF – that can sequentially learn from these scans, without requiring stored
historical images. The top and bottom rows show rendered novel views of the same scene for the current and past scans respectively.
CLNeRF accurately renders both the current and the past scans, performing on-par with the upper bound model (UB) trained on all scans at
once. Naively training (NT) on the sequence of scans overfits to the current scan, resulting in erroneous appearance (lightning) and geometry
(extra cups marked by bounding boxes, which only exist in the current scan) for the past scan.

Abstract

Novel view synthesis aims to render unseen views given
a set of calibrated images. In practical applications, the
coverage, appearance or geometry of the scene may change
over time, with new images continuously being captured.
Efficiently incorporating such continuous change is an open
challenge. Standard NeRF benchmarks only involve scene
coverage expansion. To study other practical scene changes,
we propose a new dataset, World Across Time (WAT), con-
sisting of scenes that change in appearance and geometry
over time. We also propose a simple yet effective method,
CLNeRF, which introduces continual learning (CL) to Neu-
ral Radiance Fields (NeRFs). CLNeRF combines gener-
ative replay and the Instant Neural Graphics Primitives
(NGP) architecture to effectively prevent catastrophic forget-
ting and efficiently update the model when new data ar-
rives. We also add trainable appearance and geometry
embeddings to NGP, allowing a single compact model to
handle complex scene changes. Without the need to store
historical images, CLNeRF trained sequentially over mul-

tiple scans of a changing scene performs on-par with the
upper bound model trained on all scans at once. Com-
pared to other CL baselines CLNeRF performs much better
across standard benchmarks and WAT. The source code,
a demo, and the WAT dataset are available at https:
//github.com/IntelLabs/CLNeRF.

1. Introduction
Neural Radiance Fields (NeRFs) have emerged as the pre-

eminent method for novel view synthesis. Given images of a
scene from multiple views, NeRFs can effectively interpolate
between them. However, in practical applications (e.g., city
rendering [32]), the scene may change over time, resulting
in a gradually revealed sequence of images with new scene
coverage (new city blocks), appearance (lighting or weather)
and geometry (new construction). Learning continually from
such sequential data is an important problem.

Naive model re-training on all revealed data is expensive,
millions of images may need to be stored for large scale
systems [32]. Meanwhile, updating the model only on new
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data leads to catastrophic forgetting [22], i.e., old scene
geometry and appearances can no longer be recovered (see
Fig. 1). Inspired by the continual learning literature for
image classification [7], this work studies continual learning
in the context of NeRFs to design a system that can learn
from a sequence of scene scans without forgetting while
requiring minimal storage.

Replay is one of the most effective continual learning
algorithms; it trains models on a blend of new and historical
data. Experience replay [5] explicitly stores a tiny portion
of the historical data for replay, while generative replay [30]
synthesizes replay data using a generative model (e.g., a
GAN [9]) trained on historical data. Experience replay is
more widely used in image classification, since generative
models are often hard to train, perform poorly on high res-
olution images, and introduce new model parameters. In
contrast, NeRFs excel at generating high-resolution images,
making them ideal candidates for generative replay.

Motivated by this synergy between advanced NeRF mod-
els and generative replay, we propose CLNeRF which com-
bines generative replay with Instant Neural Graphics Prim-
itives (NGP) [24] to enable efficient model updates and to
prevent forgetting without the need to store historical images.
CLNeRF also introduces trainable appearance and geometry
embeddings into NGP so that various scene changes can
be handled by a single model. Unlike classification-based
continual learning methods whose performance gap to the
upper bound model is still non-negligible [30], the synergy
between continual learning and advanced NeRF architec-
tures allows CLNeRF to achieve a similar rendering quality
as the upper bound model (see Fig. 1).
Contributions: (1) We study the problem of continual learn-
ing in the context of NeRFs. We present World Across Time
(WAT), a practical continual learning dataset for NeRFs that
contains scenes with real-world appearance and geometry
changes over time. (2) We propose CLNeRF, a simple yet
effective continual learning system for NeRFs with minimal
storage and memory requirements. Extensive experiments
demonstrate the superiority of CLNeRF over other continual
learning approaches on standard NeRF datasets and WAT.

2. Related Work

NeRF. Learning Neural Radiance Fields (NeRFs) is arguably
the most popular technique for novel view synthesis (see [8]
for a detailed survey). Vanilla NeRF [23] represents a scene
implicitly using neural networks, specifically, multi-layer
perceptrons (MLPs). These MLPs map a 3D location and a
view direction to their corresponding color and opacity. An
image of the scene is synthesized by casting camera rays into
3D space and performing volume rendering. Though effec-
tive at interpolating novel views, vanilla NeRF has several
limitations, for example, the slow training/inference speed.

This problem is addressed by using explicit scene represen-
tations [31, 24], or spatially-distributed small MLPs [26].
CLNeRF applies these advanced architectures to ensure effi-
cient model updates during continual learning. Vanilla NeRF
only considers static scenes; to handle varied lightning or
weather conditions, trainable appearance embeddings are
introduced [20, 32]. Transient objects in in-the-wild pho-
tos are handled by either introducing a transient MLP [20]
or using segmentation masks [32]. CLNeRF adopts these
techniques to allow a single model to handle complex scene
changes. Concurrent to this work, Chung et al. [6] also study
NeRFs in the context of continual learning. However, they
only consider static scenes and the vanilla NeRF architecture.
We consider scenes with changing appearance/geometry, and
introduce a new dataset to study such scenarios. The proper
combination of continual learning and more advanced archi-
tectures also makes CLNeRF simpler (no extra hyperparam-
eters) and much more effective at mitigating forgetting.
Continual Learning. Continual learning aims to learn from
a sequence of data with distribution shifts, without storing
historical data (see [7] for a detailed survey). Naive train-
ing over non-IID data sequences suffers from catastrophic
forgetting [12] and performs poorly on historical data. A
popular line of work regularizes the training objective to pre-
vent forgetting [12, 15]. However, since the regularization
does not rely on historical data it is less effective in practice.
Parameter isolation methods prevent forgetting by freezing
(a subset of) neurons from previous tasks and use new neu-
rons to learn later tasks [19, 29]. Though remembrance can
be guaranteed [19], these methods have a limited capacity or
grow the network significantly given a large number of tasks.
Replay-based approaches use historical data to prevent for-
getting. This historical data is either stored in a small replay
buffer [5, 18], or synthesized by a generative model [30].
Generative replay [30], i.e., synthesizing historical data, is
less effective for image classification, since the generative
model introduces extra parameters, and performs poorly on
high resolution images. In contrast, this work shows that
advanced NeRF models and generative replay benefit from
each other, since high quality replay data can be rendered
without introducing new model parameters.

3. Method
3.1. Preliminaries

Before introducing CLNeRF, we first review the basics
of NeRFs, and formulate the problem of continual learning.
NeRF. Given a set of images, NeRFs train a model param-
eterized by ✓ that maps a 3D location x 2 R3 and a view
direction d 2 S3 (a unit vector from the camera center to x)
to the corresponding color c(x,d|✓) 2 [0, 1]3 and opacity
�(x|✓) 2 [0, 1]. Given a target image view, we render the
color for each pixel independently. For each pixel, we cast a
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Figure 2. System overview. (a): At each time step t of continual NeRF, a new set of data St is generated. To update the model ✓t, we
randomly generate in each training iteration a set of camera rays from camera parameters stored for experience replay (PER), generative
replay (PGR) and in the new data (Pt). For rays from new data (Xt) or experience replay (XER), the corresponding image color is used for
supervision. For rays from generative replay, i.e., XGR, we use the latest deployed model ✓t�1 to generate pseudo-labels for supervision.
After training ✓t, we replace the previously deployed model ✓t�1 with ✓t, and update the replay buffer Mt. (b): To update the replay buffer
Mt under optional experience replay, we perform reservoir sampling over image-camera-parameter pairs in Mt�1 and St, and add into
PGR camera parameters for all images not selected by reservoir sampling. (c) We use segmentation masks to filter transient objects, and
apply appearance embeddings ea and geometry embeddings eg to the base architecture to handle scene changes at different time steps.

ray from the camera center o 2 R3 towards the pixel center,
and sample a set of 3D points X = {xi|xi = o+⌧id} along
the ray, where ⌧i is the euclidean distance from the camera
center to the sampled point. Then, we render the color Ĉ(X)
of the ray following the volume rendering [21] equation:

Ĉ(X) =
X

i

wic(xi,d|✓), (1)

where wi = e�
Pi�1

j=1 �(xj |✓)(⌧j+1�⌧j)(1 � e��(xi|✓)(⌧i+1�⌧i)).
Intuitively, Equation (1) computes the weighted sum of the colors
on all sampled points. The weights wi are computed based on the
opacity and the distance to the camera center.
Continual NeRF. Throughout this paper, we refer to the continual
learning problem for NeRFs as continual NeRF. At each time step
t of continual NeRF:

1. A set of training images along with their camera parameters
(intrinsics and extrinsics) St are generated.

2. The current model ✓t and the replay buffer Mt (for storing
historical data) are updated by:

{Mt,✓t} update(St,✓t�1,Mt�1) (2)

3. ✓t is deployed for rendering novel views until t+ 1.

This process simulates the practical scenario where the model ✓t

is deployed continually. Once in a while, a set of new images
arrives, potentially containing new views of the scene and changes
in appearance or geometry. The goal is to update ✓t; ideally storage

(to maintain historical data in Mt) and memory (to deploy ✓t)
requirements are small.

As shown in Fig. 2, CLNeRF addresses three major problems
of continual NeRF: (1) effectively updating ✓t using minimal stor-
age, (2) updating Mt during optional experience replay, and (3)
handling various scene changes with a single compact model. We
provide further details on each of these components below.

3.2. Model Update
CLNeRF applies replay-based methods [5, 30] to prevent catas-

trophic forgetting. To enable applications with extreme storage
limits, CLNeRF combines generative replay [30] with advanced
NeRF architectures so that it is effective even when no historical
image can be stored.

Fig. 2(a) depicts the model update process of CLNeRF at each
time step t. The camera parameters of all historical images are
stored in the replay buffer Mt�1 for generative replay. A small
number of images IER are optionally maintained when the storage is
sufficient for experience replay [5]. At each training iteration of ✓t,
CLNeRF generates a batch of camera rays X = XER

S
XGR

S
Xt

uniformly from Pt
S

PER
S

PGR, where Pt, PGR and PER are
respectively the camera parameters of new data St, generative
replay data and experience replay data. The training objective is:

minimize
✓t

P
X2X LNeRF(C(X), Ĉ(X|✓t))

|X | , (3)

where LNeRF is the loss for standard NeRF training, C(·) is the
supervision signal from new data or replay, and Ĉ(·|✓t) is the color
rendered by ✓t. For the rays X 2 XGR sampled from PGR, we
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perform generative replay, i.e., we set the supervision signal C(X)
as the image colors Ĉ(X|✓t�1) generated by ✓t�1. For the other
rays, C(X) is the ground-truth image color. After the model update,
we replace the previously deployed model ✓t�1 with ✓t and update
the replay buffer Mt (see Sec. 3.3 for more details). Only ✓t and
Mt are maintained until the next set of data St+1 arrives.

Although all camera parameters are stored in Mt�1, they only
consume a small amount of storage, at most Nt�1(dpose + dint),
where Nt�1 is the number of historical images, and dpose and dint

are the dimensions of camera poses and intrinsic parameters respec-
tively; dpose = 6 and dint  5 for common camera models [10].
dint is shared if multiple images are captured by the same camera.
As a concrete example, storing the parameters for 1000 samples
each captured with a different camera requires roughly 45KB of
storage in our experiment, much less than storing a single high
resolution image. This guarantees the effectiveness of CLNeRF
(see Sec. 5.1) even for applications with extreme storage limits.

We also emphasize the importance of random sampling.
CLNeRF assigns uniform sampling weights between all views
revealed so far. Some image-classification-based continual learning
methods [5] and the cocurrent work for NeRFs [6] propose biased
sampling strategies, where a fixed and large percentage ( 12 to 2

3 ) of
the rays are sampled from new data (Pt). This strategy not only
introduces new hyperparameters (e.g., loss weights of old data or
the proportion of rays from new data [6]), but also performs worse
than uniform random sampling, as shown in Sec. 5.

3.3. Replay Buffer Update
In the extreme case where no image can be stored for experience

replay, we only store the camera parameters of historical data in Mt

to make CLNeRF flexible and effective for practical systems with
various storage sizes. When the storage is sufficient to maintain a
subset of historical images for experience replay, we use a reservoir
buffer [5]. Specifically, current data is added to Mt as long as
the storage limit is not reached. Otherwise, as shown in Fig. 2
(b), given Mt�1 capable of storing K images, we first generate for
each image Ii 2 St a random integer ji 2 {1, 2, ..., Ni}, where Ni

represents the order of Ii in the continual learning data sequence. If
ji > K, we do not add Ii into Mt. Otherwise, we replace the ji’th
image in Mt�1 with Ii. Note that Mt stores all camera parameters
regardless of if the corresponding image is stored or not.

We also experiment with the prioritized replay buffer [27],
where Mt keeps images with the lowest rendering quality. Specif-
ically, after updating ✓t, we iterate over all images in Mt�1 and
St and keep the K images with the lowest rendering PSNR [11]
from ✓t. Though widely used in reinforcement learning, prioritized
replay does not perform better than reservoir sampling in continual
NeRF (see Sec. 5.2.2). A reservoir buffer is also simpler to imple-
ment and more efficient (no need to compare the rendering quality)
to update; hence CLNeRF applies it by default.

3.4. Architecture
CLNeRF by default uses the Instant Neural Graphics Primitives

(NGP) [24] architecture. This not only enables efficient model
updates during continual NeRF, but also ensures the low overhead
and effectiveness of generative replay. As shown in Sec. 5.2.3, using
NGP as the backbone for CLNeRF results in better performance
and efficiency compared to vanilla NeRF [23].

(a) Test view rendered by NGP
with transient MLP.

(b) Test view rendered by NGP
with masked transient objects.

(c) Training view rendered by
NGP with transient MLP. (d) GT training view.

Figure 3. Result of NGP with transient MLPs. Similar to [20],
we add artificial transient objects and lightning changes to the Lego
scene. NGP with transient MLPs overfits to the training views and
fails to filter transient objects automatically.

A compact continual NeRF system should use a single model to
incorporate scene changes, so that the model size does not increase
significantly over time. We achieve this by adding trainable appear-
ance and geometry embeddings to the base architecture (Fig. 2 (c)).
Given a spatial location x and a viewing direction d, we first en-
code x into a feature vector f (using the grid-based hash encoder for
NGP, and an MLP for vanilla NeRF). Then, we generate the color
and opacity respectively by c = Dc(f ,d, ea) and � = D�(f , eg),
where Dc and D� are the color and opacity decoders (MLP for both
NGP and vanilla NeRF); ea is the trainable appearance embedding
and eg is the geometry embedding. Given a sequence of scans of
the same scene, with appearance and geometry changes between
different scans, we add one appearance embedding and one geome-
try embedding for each scan, i.e., for each time step t of continual
NeRF. We set the dimension of appearance and geometry embed-
dings to 48 and 16 respectively, which ensures minimal model size
increase during continual NeRF and is sufficient to encode complex
real-world scene changes as shown in Sec. 5.

CLNeRF uses segmentation masks (from [3]) to filter transient
objects. As shown in Fig. 3, we also explored using the transient
MLP and robust training objectives [20] but found empirically
that NGP is not compatible with this strategy – the non-transient
network overfits to the transient objects and fails to filter them
automatically. Note that we only remove transient/dynamic objects
within a single scan, e.g., moving pedestrians. Scene changes
between different scans, e.g., newly constructed buildings, are
handled by geometry embeddings.

4. WAT: A Continual NeRF Benchmark
Most continual learning methods in the literature are evaluated

on datasets synthesized from standard image classification bench-
marks [7]. Although a similar strategy can be used on standard
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Figure 4. Images and properties of the proposed WAT dataset.
WAT contains both indoor and outdoor scenes (samples on top),
which change in both appearance and geometry over different scans.
Each column of the images shows the same scene scanned at two
different times. The scans are naturally ordered according to real-
world time during continual NeRF, simulating realistic applications.
Compared to WAT, standard benchmarks (see Sec. 5 for details)
either lack appearance or geometry change, or natural order of these
changes, making continual NeRF less challenging.

NeRF benchmarks, it is not practical as it only considers static
scenes with a gradually expanding rendering range. However, this
does not model the real-world distribution shifts introduced by the
change of time [4, 16], such as the change of scene appearance
(e.g., lighting and weather) and geometry (e.g., new decoration of
a room). To solve this problem, we propose World Across Time
(WAT), a new dataset and benchmark for practical continual NeRF.

As shown in Fig. 4, WAT consists of images captured from 6
different scenes (both indoor and outdoor). For each scene, we
capture 5-10 videos at different real-world time to generate natural
appearance or geometry changes across videos. We extract a subset
of the video frames (200-400 images for each scene), and use
colmap [28] to compute the camera parameters. For each scene, we
hold out 1

8 of the images for testing and use the remaining images
for training. We order the images naturally based on the time that
the corresponding videos were captured. At each time step t of
continual NeRF, all images belonging to a new video are revealed
to the model. Compared to standard NeRF datasets, WAT has
diverse scene types, scene changes, and a realistic data order based
on real-world time. As shown in Sec. 5.1, the natural time-based
order makes WAT much more challenging than randomly dividing
standard in-the-wild datasets into subsets (e.g., as in the case of
phototourism, which has similar appearance and pose distributions
between different subsets). WAT enables us to study the importance
of the model design for changing scenes. As shown in Sec. 5.1,
methods designed only for static scenes perform poorly on WAT.

5. Experiments
In the experiments, we first compare CLNeRF against other con-

tinual learning approaches (Sec. 5.1). Then, we analyse different
continual NeRF components in detail (Sec. 5.2). Although NGP is
used by default in CLNeRF, we also experiment with vanilla NeRF
to demonstrate the effect of architectures.
Implementation Details. Our implementation of the vanilla NeRF

and NGP backbones is based on NeRFAcc [14] and NGP-PL [2]
respectively. Following the base implementations, we allow 50K
training iterations for vanilla NeRF and 20K for NGP whenever
we train or update the model. We find that NGP produces “NaN”
losses and exploding gradients when trained for too long , making
it hard to initialize ✓t with ✓t�1. Hence, we randomly initialize
✓t and train the model from scratch at each time step, as done in
GDumb [25]. Empirical results (Sec. 5.2.3) on vanilla NeRF show
that initializing ✓t with ✓t�1 can help continual NeRF, and we
leave further investigation of this issue on NGP for future work.
Unless otherwise stated, all hyperparameters strictly follow the
base code. See Appendix A for further implementation details of
different continual learning methods. Training one model with
either NGP or vanilla NeRF backbone takes 5-20 minutes or 1-2
hours on a single RTX6000 GPU respectively.

Datasets. Besides WAT, we also evaluate methods on datasets
derived from standard NeRF benchmarks. Specifically, we uni-
formly divide the training data of standard benchmarks into 10-20
subsets and reveal them sequentially during continual NeRF. For
synthetic data, we use the dataset proposed in [23] (referred to as
Synth-NeRF), resulting in 8 scenes, each with 10 time steps and 20
training images (with consecutive image IDs) per time step. For
real-world data, we use two Tanks and Temples [13] subsets pro-
posed in [17] (with background filter, referred to as NSVF) and [33]
(without background filter, referred to as NeRF++). Both datasets
are divided into multiple sub-trajectories with consecutive video
frames. NeRF++ has 4 scenes, 10 time steps and 60-80 images
per time step. For NSVF, we mimic the construction process of
the concurrent work [6], and divide the first 100 training images of
each scene into 20 subsets, resulting in 5 scenes, each with 20 time
steps and 5 images per time step. Finally, we use 4 Phototourism
scenes (Brandenburg Gate, Sacre Coeur, Trevi Fountain and Taj
Mahal) along with the train-test split from [20]. Due to the lack of
time stamps, we randomly divide each scene into 20 time steps and
42-86 images per time step (with consecutive image IDs).

Evaluation protocol. To evaluate a continual NeRF approach, we
first train it sequentially over all time steps, then compute the mean
PSNR/SSIM [11] on the held-out test images for all time steps.

5.1. Main Results
To evaluate CLNeRF, we compare it against: (1) Naive Training

(NT), where we train a model sequentially on new data without
continual learning. NT represents the lower-bound performance
that we can achieve on continual NeRF. (2) Elastic Weight Consoli-
dation (EWC) [12], a widely-used regularization-based continual
learning method. (3) Experience Replay (ER) [5], one of the most
effective continual learning methods. (4) MEIL-NeRF [6], a con-
current work that also uses generative replay. For fair comparison,
we use the ground-truth camera parameters to generate replay cam-
era rays for MEIL-NeRF as done in CLNeRF, rather than using a
small MLP to learn the rays of interests. This strategy makes the
implementation simpler and performs better, as also demonstrated
in the original paper. (5) The upper bound model (UB) trained
on all data at once, representing the upper-bound performance of
continual NeRF. For all methods that involve experience replay (ER
and CLNeRF), we allow 10 images to be stored in the replay buffer
to simulate the case of highly limited storage (see Sec. 5.2.2 for the
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Method
Dataset Synth-NeRF NeRF++ NSVF WAT

NT (NeRF) 28.53/0.938 14.81/0.462 18.58/0.768 16.70/0.649
EWC (NeRF) 28.32/0.925 15.03/0.442 18.12/0.778 16.29/0.672
ER (NeRF) 30.29/0.948 17.35/0.542 26.51/0.902 21.36/0.709

MEIL-NeRF (NGP) 30.69/0.953 19.40/0.595 27.19/0.909 24.05/0.730
CLNeRF-noER (NGP) 31.96/0.956 20.31/0.632 29.32/0.924 25.44/0.762

CLNeRF (NGP) 32.16/0.957 20.33/0.634 29.48/0.923 25.45/0.764

UB (NGP) 32.94/0.959 20.34/0.648 30.28/0.931 25.85/0.767

Method
Dataset Phototourism

NT (NGP) 19.28/0.692
ER (NGP) 20.03/0.713

MEIL-NeRF (NGP) 22.35/0.746
CLNerf-noER (NGP) 22.67/0.751

CLNerf (NGP) 22.88/0.752

UB (NeRFW) 22.78/0.823
UB (NGP) 23.05/0.763

Table 1. Main results. The results are in the form of PSNR/SSIM [11], with the best performing method in bold. We label each method with
the best performing architecture, i.e., (vanilla) NeRF or NGP. CLNeRF performs the best among all continual NeRF approaches and across
all datasets, even without storing any historical images (CLNeRF-noER). The performance gap between CLNeRF and the upper-bound
model UB remains low for all datasets. We equip all competitors on WAT with trainable embeddings proposed in Sec. 3.4 for fairer
comparison to CLNeRF. Without using the embeddings, the performance gap between these methods and CLNeRF increases significantly
(NT: 16.17/0.625, EWC: 15.81/0.650, ER: 17.99/0.666, MEIL-NeRF: 20.92/0.720). On Phototourism, the performance difference across
methods is much smaller due to the random division of time steps (making pose and appearance distributions similar over time). CLNerf still
performs close to the upper-bound model. UB with NerfW performs worse than UB with NGP in terms of PSNR but better in terms of SSIM.

effect of the replay buffer size). For fair comparison, we choose
the best-performing architecture for each method. See Sec. 5.2 for
the effect of architectures, and Appendix D for NGP-only results.

As shown in Tab. 1, CLNeRF, even without storing historical
data for experience replay (CLNeRF-noER), performs much better
than other continual NeRF approaches across all datasets (see Ap-
pendix C for the results of individual scenes). With only 10 images
(2.5%-10% of the complete dataset size) stored in the replay buffer,
CLNeRF achieves comparable performance as UB, which requires
storing all historical data. Although MEIL-NeRF also applies gen-
erative replay, the biased sampling strategy (towards new data) and
the complex loss designed for vanilla NeRF are not suitable for
advanced architectures like NGP. As a result, there is a significant
performance gap compared to UB which is consistent with the
results in the original paper. As shown later in Sec. 5.2.3, CLNeRF
also performs better than MEIL-NeRF with a vanilla NeRF back-
bone. Interestingly, methods without generative replay (NT, EWC,
ER) work better with vanilla NeRF. We analyze this phenomenon
in detail in Sec. 5.2.3. For a fairer comparison on WAT, we use
the trainable embeddings of CLNeRF also for the other methods in
Tab. 1. The results without embeddings are reported in the caption;
the gap to CLNeRF increases significantly.

We also apply CLNeRF to in-the-wild images from Photo-
tourism. Since the NeRFAcc-based vanilla NeRF implementation
does not perform well on Phototourism, and NeRFW [20] is slow
(> 1 week per time step with 8 GPUs) in continual NeRF, we
instead report the performance using NGP for NT and ER, and the
UB version of NeRFW based on the implementation of [1]. EWC
cannot be applied to NGP since we need to perform re-initialization
at each time step. We assign 1 appearance embedding to each
image (rather than each time step) to handle per-image appearance
change. As shown in Tab. 1 the NGP-based upper bound model
performs better than NeRFW in terms of PSNR and worse in terms
of SSIM. CLNeRF performs close to the upper bound model. Due
to the lack of time stamps, we do not have a natural data order
for Phototourism. This simplifies the problem since images from
different (artificially created) time steps have similar pose and ap-

pearance distributions. As a result, the performance gap between
different methods is much smaller compared to other datasets, even
with a much larger number of images (800-1700 in Phototourism
versus 100-400 in other datasets).

Fig. 5 shows qualitative results (see Appendix C for more).
Each two rows show the novel views rendered for the current and
past time steps. CLNeRF provides similar rendering quality as
UB, with a much lower storage consumption. Without using con-
tinual learning, NT overfits to the current data, resulting in wrong
geometry (the redundant lamp and the wrongly closed curtain in
Living room - past), lightning and severe artifacts for past time
steps. Due to the lack of historical data, EWC not only fails to
recover past scenes, but also hinders the model from learning on
new data. ER stores a small amount of historical data to prevent
forgetting. However, the limited replay buffer size makes it hard
to recover details in past time steps (see Sec. 5.2.2 for the effect
of replay buffer sizes). The biased sampling strategy and complex
loss design make MEIL-NeRF not only more complex (e.g., extra
hyperparameters), but also underfit on historical data. As a result,
it loses detail from past time steps, even when equipped with the
same trainable embeddings of CLNeRF.

These results show the importance of WAT on benchmarking
continual NeRF under practical scene changes. They also show
the superiority of CLNeRF over other baselines to robustly handle
appearance and geometry changes.

5.2. Analysis
5.2.1 Ablation

This section analyzes the effectiveness of individual CLNeRF com-
ponents. Specifically, we remove each component and report the
performance drop. As shown in Tab. 2, the performance drops
only slightly without experience replay (No ER). However, without
generative replay (No GenRep), the performance dropps signifi-
cantly. Note that NoGenRep is ER with NGP instead of vanilla
NeRF. Hence, generative replay is more important in CLNeRF than
experience replay to prevent forgetting. Without using NGP, i.e.,
when applied to vanilla NeRF, CLNeRF also performs much worse,
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Figure 5. Qualitative results. Each two rows show the (zoom-in) test views of the current and past scans rendered by different methods.
CLNeRF has a similar rendering quality as UB, even without storing any historical images. NT overfits to the new data, resulting in
erroneous renderings for early scans. The regularization from EWC not only hinders the model from adapting to new data but also fails
to recover the old scene appearance/geometry. Blur and artifacts appear on images rendered by ER and MEIL-NeRF, especially in early
scans, due to the lack of enough replay data (ER), the biased sampling and loss function design (MEIL-NeRF). Without using the trainable
embeddings proposed in CLNeRF (WAT - Living room (noEmbed)), other continual NeRF approaches perform much worse on WAT.

and sometimes (e.g., on Synth-NeRF) worse than ER (NeRF) in
Tab. 1. This result shows the importance of advanced architectures
for guaranteeing the effectiveness of generative replay. Without the
trainable embeddings (No Embed), CLNeRF cannot adapt well to
changing appearance and geometry of WAT.

5.2.2 Effect of Replay Buffer

Replay Buffer Size. To mimic the case of highly limited storage,
we only allow 10 historical images to be stored for experience
replay in the main experiment. Here, we investigate the effect of
replay buffer size. Specifically, we vary the replay buffer size of ER
(with NGP) and CLNeRF in the pattern of {0, 10, 10%, ..., 100%}
and report the performance change. 0 and 10 (roughly 2.5%� 5%
on WAT) are the number of stored images. The percentages are

with respect to all images across time steps. As shown in Fig. 6,
CLNeRF does not require any samples stored in the replay buffer
to perform well but it also does not hurt performance. ER requires
a large replay buffer size (80%) to perform on-par with CLNeRF.
This interesting result shows that widely-used CL methods designed
for image classification can be sub-optimal for other problems.

Replay Buffer Update Strategy. CLNeRF applies reservoir sam-
pling to update the replay buffer at each time step. Here, we analyze
the effect of different replay buffer update strategies. Specifically,
we compare the performance of CLNeRF using reservoir sam-
pling [5] and prioritized replay [27]. As shown in Tab. 3, changing
the reservoir buffer to a prioritized replay buffer does not improve
CLNeRF. Hence, a uniform coverage of the whole scene (changes)
is sufficient for effective experience replay.
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Method
Dataset Synth-NeRF WAT

CLNeRF 32.16/0.957 25.45/0.764
No ER 31.96/0.957 25.44/0.762

No GenRep 27.35/0.919 18.52/0.634
No NGP 29.23/0.940 23.50/0.728

No Embed N.A. 21.09/0.725

Table 2. Ablation study. The performance of CLNeRF drops
slightly without ER, but significantly without generative replay (No
GenRep) or the use of the NGP architecture. Without using the
trainable embeddings (No Embed), CLNeRF performs much worse
under the appearance and geometry changes of WAT. Synth-NeRF
has only static scenes, hence no trainable embeddings are required.

Figure 6. Effect of replay buffer sizes (on WAT). The performance
of CLNeRF remains high across different replay buffer sizes. ER on
NGP requires a replay buffer size of more than 80% of the dataset
size to perform on-par with CLNeRF. Note that 80% corresponds to
almost all historical data before the current time step, since all data
from the current time step is always available. “10(2.5%� 5%)”
means we allow 10 images to be stored in the replay buffer, which
is roughly 2.5%� 5% of all images of a scene. “10%” means the
replay buffer can store “10%” of all images from the same scene.

Method
Dataset Synth-NeRF WAT

Reservoir 32.16/0.957 25.45/0.764
Prioritized 32.16/0.957 25.40/0.767

Table 3. Effect of replay buffer update methods. Prioritized
sampling and reservoir sampling perform similarly. Due to the
simplicity and efficiency, we use a reservoir buffer for CLNeRF.

Method
Dataset SynthNeRF WAT

MEIL-NeRF (NeRF) 27.99/0.931 23.05/0.721
CLNeRF-noER (NeRF) 28.56/0.936 23.40/0.727

UB (NeRF) 31.52/0.948 24.01/0.740

Table 4. CLNeRF vs. MEIL with vanilla NeRF. CLNeRF also
outperforms MEIL-NeRF with vanilla NeRF backbone, despite
equipping MEIL-NeRF with the proposed trainable embeddings.

5.2.3 Effect of Architecture

To show the effectiveness of CLNeRF across architectures, we com-
pare it against UB and MEIL-NeRF using vanilla NeRF as a back-

Method NeRF NeRF-Reinit NGP

NT 28.53/0.938 25.01/0.900 21.66/0.858
ER 30.29/0.948 28.09/0.928 27.35/0.919

CLNeRF-noER 28.56/0.936 28.20/0.933 31.96/0.956

UB 31.52/0.948 NA 32.94/0.959

Table 5. Effect of architectures to different methods (on Synth-
NeRF). The performance gain of NT and ER using vanilla NeRF
comes largely from the capability to initialize the current model
✓t with the previous model ✓t�1. With re-initialization, vanilla
NeRF still performs better than NGP on ER and NT. We conjecture
that NGP overfits more to training data in the case of sparse views.
Generative replay in CLNeRF allows NGP to overcome this issue,
and perform better than vanilla NeRF.

bone. We do not use experience replay for either CLNeRF or MEIL-
NeRF, and we equip all methods with the trainable embeddings
proposed in Sec. 3.4. As shown in Tab. 4, CLNeRF still performs
slightly better than MEIL-NeRF, even though MEIL-NeRF was
specifically designed based on vanilla NeRF. The performance gap
between CLNeRF/MEIL-NeRF and UB on SynthNeRF is larger
with vanilla NeRF than with NGP, highlighting the importance of
advanced architectures for generative replay.

As shown in Tab. 1, both ER and NT benefit more from vanilla
NeRF. To reveal the underlying reason, we compare NT, ER,
CLNeRF under 3 different training strategies: (1) Trained us-
ing vanilla NeRF without re-initialization (NeRF). (2) Trained
using vanilla NeRF with re-initialization at each time step t (NeRF-
Reinit). (3) Trained using NGP (NGP). As shown in Tab. 5, a
large portion of the performance gap lies in the inheritance of
model parameters from previous time steps, i.e., not performing re-
initialization for vanilla NeRF. When both are re-initialized, vanilla
NeRF still performs slightly better than NGP for methods without
generative replay. We conjecture that this is because NGP overfits
more to the training data given sparse views (which is the case for
NT and ER), and generalizes poorly on novel views. Performing
generative replay allows NGP to overcome the sparse training view
issue and exceed the performance of vanilla NeRF.

6. Conclusion

This work studies continual learning for NeRFs. We propose
a new dataset – World Across Time (WAT) – containing natural
scenes with appearance and geometry changes over time. We
also propose CLNeRF, an effective continual learning system that
performs close to the upper bound model trained on all data at once.
CLNeRF uses generative replay and performs well even without
storing any historical images. While our current experiments only
cover scenes with hundreds of images, they are an important step
toward deploying practical NeRFs in the real world. There are many
interesting future research directions for CLNeRF. For example,
solving the NaN loss problem of NGP to make model inheritance
more effective during continual learning. Extending CLNeRF to
the scale of Block-NeRF [32] is also an interesting future work.
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