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Abstract

High-resolution dense prediction enables many appeal-
ing real-world applications, such as computational pho-
tography, autonomous driving, etc. However, the vast
computational cost makes deploying state-of-the-art high-
resolution dense prediction models on hardware devices
difficult. This work presents EfficientViT, a new family of
high-resolution vision models with novel lightweight multi-
scale attention. Unlike prior high-resolution dense pre-
diction models that rely on heavy self-attention, hardware-
inefficient large-kernel convolution, or complicated topol-
ogy structure to obtain good performances, our lightweight
multi-scale attention achieves a global receptive field
and multi-scale learning (two critical features for high-
resolution dense prediction) with only lightweight and
hardware-efficient operations. As such, EfficientViT deliv-
ers remarkable performance gains over previous state-of-
the-art high-resolution dense prediction models with signifi-
cant speedup on diverse hardware platforms, including mo-
bile CPU, edge GPU, and cloud GPU. Without performance
loss on Cityscapes, our EfficientViT provides up to 8.8× and
3.8× GPU latency reduction over SegFormer and SegNeXt,
respectively. For super-resolution, EfficientViT provides up
to 6.4× speedup over Restormer while providing 0.11dB
gain in PSNR.

1. Introduction

High-resolution dense prediction is a fundamental task
in computer vision and has broad applications in real-world
scenarios, including autonomous driving, medical image
processing, computational photography, etc. Therefore, de-
ploying state-of-the-art (SOTA) high-resolution dense pre-
diction models on hardware devices can benefit many use
cases.

However, there is a large gap between the computational
cost required by SOTA high-resolution dense prediction
models and the limited resources of hardware devices. It

makes using these models in real-world applications im-
practical. In particular, high-resolution dense prediction
models require high-resolution images and strong context
information extraction ability to work well [2, 41, 53, 58,
54, 47]. Therefore, directly porting efficient model archi-
tecture from image classification is unsuitable for high-
resolution dense prediction.

This work introduces EfficientViT, a new family of
models for efficient high-resolution dense prediction. The
core of EfficientViT is a novel lightweight multi-scale atten-
tion module that enables a global receptive field and multi-
scale learning with hardware-efficient operations. Our mod-
ule is motivated by prior SOTA high-resolution dense pre-
diction models. They demonstrate that the multi-scale
learning [53, 58], and global receptive field [51] play a crit-
ical role in improving the performances. However, they
do not consider hardware efficiency when designing their
models, which is essential for real-world applications. For
example, SegFormer [51] introduces self-attention into the
backbone to have a global receptive field. But its computa-
tional complexity is quadratic to the input resolution, mak-
ing it unable to handle high-resolution images efficiently.
SegNeXt [18] proposes a multi-branch module with large-
kernel convolutions (kernel size up to 21) to enable a large
receptive field and multi-scale learning. However, large-
kernel convolution requires exceptional support on hard-
ware to achieve good efficiency [16, 50], which is usually
not available on hardware devices.

Hence, the design principle of our module is to en-
able these two critical features while avoiding hardware-
inefficient operations. Specifically, to have a global re-
ceptive field, we propose substituting the inefficient self-
attention with lightweight ReLU-based global attention
[28]. By leveraging the associative property of matrix
multiplication, ReLU-based global attention can reduce the
computational complexity from quadratic to linear while
preserving functionality. In addition, it avoids hardware-
inefficient operations like softmax, making it more suitable
for hardware deployment (Figure 3).

Furthermore, we propose a novel lightweight multi-scale
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Figure 2: Illustration of EfficientViT’s Building Block (left) and the Lightweight Multi-Scale Attention (right). Left:
A building block of EfficientViT consists of a lightweight MSA module and an MBConv. The lightweight MSA module is
responsible for capturing context information, while the MBConv is for capturing local information. Right: After getting
Q/K/V tokens via the linear projection layer, we generate multi-scale tokens by aggregating nearby tokens via lightweight
small-kernel convolutions. ReLU-based global attention is applied to multi-scale tokens, and the outputs are concatenated
and fed to the final linear projection layer for feature fusing.
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Figure 3: Latency Comparison Between Softmax Atten-
tion and ReLU-Based Linear Attention. ReLU-based
linear attention is 3.3-4.5× faster than softmax attention
with similar computation, thanks to removing hardware-
unfriendly operations (e.g., softmax). Latency is measured
on Qualcomm Snapdragon 855 CPU with TensorFlow-Lite,
batch size 1, and fp32.

2. Method

This section first introduces lightweight Multi-Scale At-
tention (MSA). Unlike prior works, our lightweight MSA
module simultaneously achieves a global receptive field
and multi-scale learning with only hardware-efficient op-
erations. Then, based on the proposed MSA module, we
present a new family of vision models named EfficientViT
for high-resolution dense prediction.

2.1. Lightweight Multi-Scale Attention

Our lightweight MSA module balances two crucial as-
pects of efficient high-resolution dense prediction, i.e., per-
formance and efficiency. Specifically, a global receptive
field and multi-scale learning are essential from the perfor-
mance perspective. Previous SOTA high-resolution dense
prediction models provide strong performances by enabling
these features but fail to provide good efficiency. Our mod-
ule tackles this issue by trading slight capacity loss for sig-
nificant efficiency improvements.

An illustration of the proposed lightweight MSA mod-
ule is provided in Figure 2 (right). In particular, we pro-
pose to use lightweight ReLU-based attention [28] to enable
the global receptive field instead of the heavy self-attention
[46]. While ReLU-based attention [28] and other linear at-
tention modules [3, 12, 43, 48] has been explored in other
domains, it has never been successfully applied to high-
resolution dense prediction. To the best of our knowledge,
EfficientViT is the first work demonstrating ReLU-based at-
tention’s effectiveness in high-resolution dense prediction.
In addition, our work introduces novel designs (lightweight
MSA module) to enhance the capacity, making it more pow-
erful in high-resolution dense prediction.

Enabling Global Receptive Field with Lightweight
ReLU-based Attention. Given input x ∈ RN×f , the gen-
eralized form of self-attention can be written as:

Oi =
N∑

j=1

Sim(Qi,Kj)∑N
j=1 Sim(Qi,Kj)

Vj , (1)
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Figure 4: Macro Architecture of EfficientViT. We adopt the standard backbone-head/encoder-decoder design. In the back-
bone, we insert our EfficientViT modules in Stages 3 & 4. Following the common practice, we feed the features from the
last three stages (P2, P3, and P4) to the head. We use addition to fuse these features for simplicity and efficiency. We adopt a
simple head design that consists of several MBConv blocks and output layers.
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Figure 5: Illustration of the Aggregation Process for
Generating Multi-Scale Tokens. The information aggre-
gation is done independently for each Q, K, and V in each
head. ‘d’ denotes the dimension of each token. The typical
value of d is 32.

where Q = xWQ, K = xWK , V = xWV and
WQ/WK/WV ∈ Rf×d is the learnable linear projection
matrix. Oi represents the i-th row of matrix O. Sim(·, ·) is
the similarity function. When using the similarity function
Sim(Q,K) = exp(QKT

√
d
), Eq. (1) becomes the original

self-attention [46].
Apart from exp(QKT

√
d
), we can use other similarity func-

tions. In this work, we use ReLU-based global attention
[28] to achieve both the global receptive field and linear
computational complexity. In ReLU-based global attention,
the similarity function is defined as

Sim(Q,K) = ReLU(Q)ReLU(K)T . (2)

With Sim(Q,K) = ReLU(Q)ReLU(K)T , Eq. (1) can
be rewritten as:

Oi =

N∑
j=1

ReLU(Qi)ReLU(Kj)
T∑N

j=1 ReLU(Qi)ReLU(Kj)T
Vj

=

∑N
j=1(ReLU(Qi)ReLU(Kj)

T )Vj

ReLU(Qi)
∑N

j=1 ReLU(Kj)T
.

Then, we can leverage the associative property of matrix
multiplication to reduce the computational complexity and

memory footprint from quadratic to linear without changing
the functionality:

Oi =

∑N
j=1 [ReLU(Qi)ReLU(Kj)

T ]Vj

ReLU(Qi)
∑N

j=1 ReLU(Kj)T

=

∑N
j=1 ReLU(Qi)[(ReLU(Kj)

TVj)]

ReLU(Qi)
∑N

j=1 ReLU(Kj)T

=
ReLU(Qi)(

∑N
j=1 ReLU(Kj)

TVj)

ReLU(Qi)(
∑N

j=1 ReLU(Kj)T )
. (3)

As shown in Eq. (3), we only need to compute
(
∑N

j=1 ReLU(Kj)
TVj) ∈ Rd×d and (

∑N
j=1 ReLU(Kj)

T )

∈ Rd×1 once, then can reuse them for each query, thereby
only requires O(N) computational cost and O(N) memory.

Another key merit of ReLU-based global attention is that
it does not involve hardware-unfriendly operations like soft-
max, making it more efficient on hardware. For example,
Figure 3 shows the latency comparison between softmax at-
tention and ReLU-based linear attention. With similar com-
putation, ReLU-based linear attention is significantly faster
than softmax attention on mobile.

Generate Multi-Scale Tokens. ReLU-based attention
alone has limited model capacity. To mitigate this limi-
tation, we first enhance it with the depthwise convolution
to improve its local information extraction ability (Figure 2
left). In addition, to enhance its multi-scale learning abil-
ity, we propose to aggregate the information from nearby
Q/K/V tokens to get multi-scale tokens. The aggregation
process is illustrated in Figure 5. This information aggre-
gation process is independent for each Q, K, and V in each
head. We only use small-kernel convolutions for informa-
tion aggregation to avoid hurting hardware efficiency.

In the practical implementation, independently executing
these aggregation operations is inefficient on GPU. There-
fore, we take advantage of the infrastructure of group con-
volution in modern deep learning frameworks to reduce the
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Table 2: Detailed Architecture Configurations of Different EfficientViT Variants. We build a series of models to fit
different efficiency constraints. ‘C’ denotes the number of channels. ‘L’ denotes the number of blocks. ‘H’ is the height of
the feature map, and ‘W’ is the width of the feature map.

Variants Feature Map Shape EfficientViT-B0 EfficientViT-B1 EfficientViT-B2 EfficientViT-B3

Input Stem C ×H
2
× W

2
C = 8, L = 1 C = 16, L = 1 C = 24, L = 1 C = 32, L = 1

Stage1 C ×H
4
× W

4
C = 16, L = 2 C = 32, L = 2 C = 48, L = 3 C = 64, L = 4

Stage2 C ×H
8
× W

8
C = 32, L = 2 C = 64, L = 3 C = 96, L = 4 C = 128, L = 6

Stage3 C ×H
16

× W
16

C = 64, L = 2 C = 128, L = 3 C = 192, L = 4 C = 256, L = 6

Stage4 C ×H
32

× W
32

C = 128, L = 2 C = 256, L = 4 C = 384, L = 6 C = 512, L = 9

Head C ×H
8
× W

8
C = 32, L = 1 C = 64, L = 3 C = 96, L = 3 C = 128, L = 3

number of total operations. Specifically, all DWConvs are
fused into a single DWConv while all 1x1 Convs are com-
bined into a single 1x1 group convolution (Figure 2 right)
where the number of groups is 3 × #heads and the number
of channels in each group is d.

After getting multi-scale tokens, we perform global at-
tention upon them to extract multi-scale global features.
Finally, we concatenate the features from different scales
along the head dimension and feed them to the final linear
projection layer to fuse the features.

2.2. EfficientViT Architecture

We build a new family of vision models based on the pro-
posed lightweight MSA module. The core building block
(denoted as ‘EfficientViT Module’) is illustrated in Fig-
ure 2 (left). Specifically, an EfficientViT module comprises
a lightweight MSA module and an MBConv [42]. The
lightweight MSA module is for context information extrac-
tion, while the MBConv is for local information extraction.

The macro architecture of EfficientViT is demonstrated
in Figure 4. We use the standard backbone-head/encoder-
decoder architecture design.

• Backbone. The backbone of EfficientViT also follows
the standard design, which consists of the input stem and
four stages with gradually decreased feature map size and
gradually increased channel number. We insert the Effi-
cientViT module in Stages 3 and 4. For downsampling,
we use an MBConv with stride 2.

• Head. P2, P3, and P4 denote the outputs of Stages 2, 3,
and 4, forming a pyramid of feature maps. For simplic-
ity and efficiency, we use 1x1 convolution and standard
upsampling operation (e.g., bilinear/bicubic upsampling)
to match their spatial and channel size and fuse them via
addition. Since our backbone already has a strong con-
text information extraction capacity, we adopt a simple
head design that comprises several MBConv blocks and
the output layers (i.e., prediction and upsample). In the

Table 3: Ablation Study on Two Key Components of Our
EfficientViT Module. The mIoU and MACs are measured
on Cityscapes with 1024x2048 input resolution. We rescale
the width of the models so that they have the same MACs.
Multi-scale learning and the global receptive field are essen-
tial for obtaining good semantic segmentation performance.

Components
mIoU ↑ Params ↓ MACs ↓

Multi-scale Global att.

68.1 0.7M 4.4G
✓ 72.3 0.7M 4.4G

✓ 72.2 0.7M 4.4G
✓ ✓ 74.5 0.7M 4.4G

experiments, we empirically find this simple head design
is sufficient for achieving SOTA performances thanks to
our lightweight MSA module.

In addition to dense prediction, our model can be ap-
plied to other vision tasks, such as image classification,
by combining the backbone with task-specific heads.

Following the same macro architecture, we design a se-
ries of models with different sizes to satisfy various effi-
ciency constraints. The detailed configurations are demon-
strated in Table 2. We name these models as EfficientViT-
B0, EfficientViT-B1, EfficientViT-B2, and EfficientViT-B3,
respectively.

3. Experiments
3.1. Setups

Datasets. We evaluate the effectiveness of EfficientViT
on two representative high-resolution dense predic-
tion tasks, including semantic segmentation and super-
resolution.

For semantic segmentation, we use two popular bench-
mark datasets: Cityscapes [13] and ADE20K [59].
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Figure 6: MACs vs. Performance. EfficientViT provides a better trade-off between MACs and performance than SOTA
semantic segmentation and image classification models.

Table 4: Backbone Performance of EfficientViT on ImageNet Classification. ‘r224’ means the input resolution is
224x224. With 6.5G MACs, EfficientViT-B3 achieves 84.2 ImageNet top1 accuracy, surpassing EfficientNet-B6 while re-
ducing the MACs by 2.9x and being 3.4x faster on Jetson Nano GPU and 3.7x faster on A100 GPU. ‘bs1’ represents that the
latency is measured with batch size 1.

Models Top1 Acc ↑ Top5 Acc ↑ Params ↓ MACs ↓ Latency ↓
Nano(bs1) Orin(bs1) A100(bs16)

EfficientNet-B1 [44] 79.1 94.4 7.8M 0.70G 36.2ms 2.0ms 2.9ms
EfficientViT-B1 (r224) 79.4 94.3 9.1M 0.52G 24.8ms 1.5ms 1.9ms

EfficientNet-B2 [44] 80.1 94.9 9.2M 1.0G 45.1ms 2.3ms 3.5ms
EfficientViT-B1 (r288) 80.4 95.0 9.1M 0.86G 34.5ms 1.8ms 2.9ms

CoAtNet-0 [14] 81.6 - 25M 4.2G 95.8ms 4.5ms 6.9ms
ConvNeXt-T [34] 82.1 - 29M 4.5G 87.9ms 3.8ms 6.1ms
EfficientNet-B3 [44] 81.6 95.7 12M 1.8G 67.8ms 3.3ms 5.1ms
EfficientViT-B2 (r256) 82.7 96.1 24M 2.1G 58.5ms 2.8ms 4.0ms

Swin-B [33] 83.5 - 88M 15G 240ms 6.0ms 6.9ms
CoAtNet-1 [14] 83.3 - 42M 8.4G 171ms 8.3ms 13.0ms
ConvNeXt-S [34] 83.1 - 50M 8.7G 146ms 6.5ms 10.0ms
EfficientNet-B4 [44] 82.9 96.4 19M 4.2G 143ms 5.7ms 9.7ms
EfficientViT-B3 (r224) 83.5 96.4 49M 4.0G 101ms 4.4ms 5.7ms

EfficientNet-B6 [44] 84.0 96.8 43M 19G 475ms 16.2ms 30.2ms
CoAtNet-2 [14] 84.1 - 75M 16G 254ms 10.3ms 16.8ms
ConvNeXt-B [34] 83.8 - 89M 15G 211ms 7.8ms 12.3ms
EfficientViT-B3 (r288) 84.2 96.7 49M 6.5G 141ms 5.6ms 8.2ms

CoAtNet-3 [14] 84.5 - 168M 35G - - 24.9ms
ConvNeXt-L [34] 84.3 - 198M 34G - - 18.5ms
EfficientNetV2-S [45] 83.9 - 22M 8.8G - - 7.0ms
EfficientViT-L1 (r224) 84.5 96.9 53M 5.3G - - 3.2ms

Cityscapes is an autonomous driving dataset that mainly
focuses on urban scenes. It contains 5,000 fine-annotated
high-resolution (1024x2048) images with 19 classes di-
vided into three subsets of size 2,975/500/1,525 for train-
ing/validation/testing. ADE20K is a scene-parsing dataset
with 150 classes. It contains 20,210/2,000/3,352 images for

training, validation, and testing, respectively.

For super-resolution, we evaluate EfficientViT under
two settings: lightweight super-resolution (SR) and high-
resolution SR. For lightweight SR, we train models on
DIV2K [1] and test on BSD100 [37]. For high-resolution
SR, we train models on the first 3000 training images of
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Table 5: Comparison with SOTA Semantic Segmentation Models on Cityscapes. The input resolution is 1024x2048 for
all models. Models with similar mIoU are grouped for efficiency comparison. Compared with SegNeXt-T, EfficientViT-B1
achieves 2.0x MACs reduction, 3.8x latency reduction on Jetson AGX Orin GPU, and 0.7 higher mIoU. Compared with
SegFormer-B1, EfficientViT-B1 obtains 9.8x MACs saving and 2.0 higher mIoU.

Models mIoU ↑ Params ↓ MACs ↓ Latency ↓
Nano(bs1) Orin(bs1) A100(bs1)

PSPNet-Mbv2 [58] 70.2 14M 423G - - -
DeepLabV3plus-Mbv2 [8] 75.2 15M 555G - 83.5ms 9.8ms
FCN-Mbv2 [35] 61.5 9.8M 317G 2.1s 52.0ms 6.4ms
EfficientViT-B0 75.7 0.7M 4.4G 0.28s 9.9ms 3.8ms

HRFormer-S [55] 80.0 14M 836G - - -
SegFormer-B1 [51] 78.5 14M 244G 5.6s 146ms 20.4ms
SegNeXt-T [18] 79.8 4.3M 51G 2.2s 93.2ms 10.5ms
EfficientViT-B1 80.5 4.8M 25G 0.82s 24.3ms 5.7ms

HRFormer-B [55] 81.9 56M 2224G - - -
SegFormer-B3 [51] 81.7 47M 963G - 407ms 54.3ms
SegNeXt-S [18] 81.3 14M 125G 3.4s 127ms 14.2ms
EfficientViT-B2 82.1 15M 74G 1.7s 46.5ms 8.9ms

SegFormer-B5 [51] 82.4 85M 1460G - 638ms 82.1ms
SegNeXt-B [18] 82.6 28M 276G - 228ms 24.2ms
EfficientViT-B3 83.0 40M 179G 3.2s 81.8ms 14.2ms
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Figure 7: Qualitative results on Cityscapes.

FFHQ [27] and test on the first 500 validation images of
FFHQ.

Apart from dense prediction, we also study the effective-
ness of EfficientViT for image classification using the Ima-
geNet dataset [15].

Latency Measurement. We measure the mobile latency
on Qualcomm Snapdragon 8Gen1 CPU with Tensorflow-
Lite1, batch size 1 and fp32. We use TensorRT2 and fp16 to
measure the latency on edge GPU and cloud GPU. The data

1https://www.tensorflow.org/lite
2https://docs.nvidia.com/deeplearning/tensorrt/

transfer time is included in the reported latency.

Implementation Details. We implement our models us-
ing Pytorch [39] and train them on GPUs. We use the
AdamW optimizer with cosine learning rate decay for train-
ing our models. For lightweight multi-scale attention, we
use a two-branch design for the best trade-off between per-
formance and efficiency, where 5x5 nearby tokens are ag-
gregated to generate multi-scale tokens.

For semantic segmentation experiments, we use the
mean Intersection over Union (mIoU) as our evaluation
metric. The backbone is initialized with weights pretrained
on ImageNet and the head is initialized randomly, following
the common practice.

For super-resolution, we use PSNR and SSIM on the Y
channel as the evaluation metrics, same as previous work
[31]. The models are trained with random initialization.

3.2. Ablation Study

Effectiveness of Our Lightweight MSA Module. We
conduct ablation study experiments on Cityscapes to study
the effectiveness of two key design components of our Ef-
ficientViT module, i.e., multi-scale learning and global at-
tention. To eliminate the impact of pre-training, we train all
models from random initialization. In addition, we rescale
the width of the models so that they have the same #MACs.
The results are summarized in Table 3. We can see that re-
moving either global attention or multi-scale learning will
significantly hurt the performances. It shows that all of them
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Table 6: Comparison with SOTA Semantic Segmentation Models on ADE20K. Compared with SegNeXt-S, EfficientViT-
B2 provides a 2.0x speedup on Jetson Nano GPU and 1.6 mIoU gain. Compared with SegFormer-B1, EfficientViT-B1
achieves 0.6 higher mIoU with a 3.1x speedup on Jetson AGX Orin GPU.

Models mIoU ↑ Params ↓ MACs ↓ Latency ↓
Nano(bs1) Orin(bs1) A100(bs1)

SegFormer-B1 [51] 42.2 14M 16G 389ms 12.3ms 2.7ms
SegNeXt-T [18] 41.1 4.3M 6.6G 281ms 12.4ms 3.0ms
EfficientViT-B1 42.8 4.8M 3.1G 110ms 4.0ms 1.6ms

HRFormer-S [55] 44.0 14M 110G - - -
SegNeXt-S [18] 44.3 14M 16G 428ms 17.2ms 3.3ms
EfficientViT-B2 45.9 15M 9.1G 212ms 7.3ms 2.2ms

HRFormer-B [55] 48.7 56M 280G - - -
Mask2Former [10] 47.7 47M 74G - - -
MaskFormer [11] 46.7 42M 55G - - -
SegFormer-B2 [51] 46.5 28M 62G 920ms 24.3ms 4.6ms
SegNeXt-B [18] 48.5 28M 35G 806ms 32.9ms 6.2ms
EfficientViT-B3 49.0 39M 22G 411ms 12.5ms 3.3ms

are essential for achieving a better trade-off between perfor-
mance and efficiency.

Backbone Performance on ImageNet. To understand
the effectiveness of EfficientViT’s backbone in image clas-
sification, we train our models on ImageNet following the
standard training strategy. We summarize the results and
compare our models with SOTA image classification mod-
els in Table 4.

Though EfficientViT is designed for high-resolution
dense prediction, it achieves highly competitive per-
formances on ImageNet classification. In particular,
EfficientViT-B3 obtains 84.2 top1 accuracy on ImageNet,
providing +0.2 accuracy gain over EfficientNet-B6 and 3.7x
speedup on A100 GPU.

3.3. Main Results

Cityscapes. Table 5 reports the comparison between Ef-
ficientViT and SOTA semantic segmentation models on
Cityscapes. EfficientViT achieves remarkable efficiency
improvements over prior SOTA semantic segmentation
models without sacrificing performances. Specifically,
compared with SegFormer, EfficientViT obtains up to 13x
MACs saving and up to 8.8x latency reduction with higher
mIoU. Compared with SegNeXt, EfficientViT provides up
to 2.0x MACs reduction and 3.8x speedup on GPU while
maintaining higher mIoU.

Having similar computational cost, EfficientViT yields
significant performance gains over previous SOTA models.
For example, EfficientViT-B3 yields +4.5 mIoU gain over
SegFormer-B1 with lower MACs.

In addition to the quantitative results, we visualize
EfficientViT and the baseline models qualitatively on

Cityscapes. The results are shown in Figure 7. We can find
that EfficientViT can better recognize boundaries and small
objects than the baseline models while achieving lower la-
tency on GPU.

ADE20K. Table 6 summarizes the comparison between
EfficientViT and SOTA semantic segmentation models on
ADE20K. Similar to Cityscapes, we can see that Ef-
ficientViT also achieves significant efficiency improve-
ments on ADE20K. For example, with +0.6 mIoU gain,
EfficientViT-B1 provides 5.2x MACs reduction and up to
3.5x GPU latency reduction than SegFormer-B1. With +1.6
mIoU gain, EfficientViT-B2 requires 1.8x fewer computa-
tional cost and runs 2.4x faster on Jetson AGX Orin GPU
than SegNeXt-S.

Super-Resolution. Table 7 presents the comparison of
EfficientViT with SOTA ViT-based SR methods (SwinIR
[31] and Restormer [56]) and SOTA CNN-based SR meth-
ods (VapSR [60] and BSRN [30]). EfficientViT provides
a better latency-performance trade-off than all compared
methods.

On lightweight SR, EfficientViT provides up to 0.09dB
gain in PSNR on BSD100 while maintaining the same or
lower GPU latency compared with SOTA CNN-based SR
methods. Compared with SOTA ViT-based SR methods, Ef-
ficientViT provides up to 5.4× speedup on GPU and main-
tains the same PSNR on BSD100.

On high-resolution SR, the advantage of EfficientViT
over previous ViT-based SR methods becomes more sig-
nificant. Compared with Restormer, EfficientViT achieves
up to 6.4× speedup on GPU and provides 0.11dB gain in
PSNR on FFHQ.
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Table 7: Comparison with SOTA super-resolution models. Regarding the latency-performance trade-off, EfficientViT
outperforms previous SOTA models by a significant margin, providing up to 6.4× A100 latency reduction while providing
higher PSNR and SSIM on FFHQ compared with Restormer.

Model
FFHQ (512x512 → 1024x1024) BSD100 (160x240 → 320x480)

PSNR ↑ SSIM ↑ A100(bs1) ↓ Speedup ↑ PSNR ↑ SSIM ↑ A100(bs1) ↓ Speedup ↑

Restormer [56] 43.43 0.9806 92.0ms 1x 32.31 0.9021 15.1ms 1x
SwinIR [31] 43.49 0.9807 61.2ms 1.5x 32.31 0.9012 9.7ms 1.6x
VapSR [60] - - - - 32.27 0.9011 4.8ms 3.1x
BSRN [30] - - - - 32.24 0.9006 4.5ms 3.4x

EfficientViT w0.75 43.54 0.9809 14.3ms 6.4x 32.31 0.9016 2.8ms 5.4x
EfficientViT 43.58 0.9810 17.8ms 5.2x 32.33 0.9019 3.2ms 4.7x

4. Related Work
High-Resolution Dense Prediction. Dense prediction
targets producing predictions for each pixel given the in-
put image. It can be viewed as an extension of image
classification from per-image prediction to per-pixel predic-
tions. Extensive studies have been done to improve the per-
formance of CNN-based high-resolution dense prediction
models [2, 41, 53, 58, 54, 47].

In addition, there are also some works targeting improv-
ing the efficiency of high-resolution dense prediction mod-
els [57, 40, 29, 52]. While these models provide good
efficiency, their performances are far behind SOTA high-
resolution dense prediction models.

Compared to these works, our models provide a bet-
ter trade-off between performance and efficiency by en-
abling a global receptive field and multi-scale learning with
lightweight operations.

Efficient Vision Transformer. While ViT provides im-
pressive performances in the high-computation region, it is
usually inferior to previous efficient CNNs [44, 25, 6, 19]
when targeting the low-computation region. To close the
gap, MobileViT [38] proposes to combine the strength of
CNN and ViT by replacing local processing in convolu-
tions with global processing using transformers. Mobile-
Former [9] proposes to parallelize MobileNet and Trans-
former with a two-way bridge in between for feature fus-
ing. NASViT [17] proposes to leverage neural architecture
search to search for efficient ViT architectures.

However, these models mainly focus on image classifica-
tion and still rely on self-attention with quadratic computa-
tional complexity, thus unsuitable for high-resolution dense
prediction.

Efficient Deep Learning. Our work is also related to effi-
cient deep learning, which aims at improving the efficiency
of deep neural networks so that we can deploy them on
hardware platforms with limited resources, such as mobile

phones and IoT devices. Typical technologies in efficient
deep learning include network pruning [21, 23, 32], quanti-
zation [20], efficient model architecture design [26, 36], and
training techniques [24, 5]. In addition to manual designs,
many recent works use AutoML techniques [61, 4, 7] to au-
tomatically design [6], prune [22] and quantize [49] neural
networks.

5. Conclusion
In this work, we studied efficient architecture design

for high-resolution dense prediction. We introduced a
lightweight multi-scale attention module that simultane-
ously achieves a global receptive field, and multi-scale
learning with lightweight and hardware-efficient opera-
tions, thus providing significant speedup on diverse hard-
ware devices without performance loss than SOTA high-
resolution dense prediction models. For future work, we
will explore applying EfficientViT to other vision tasks and
further scaling up our EfficientViT models.
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