
EfficientViT: Lightweight Multi-Scale Attention for
High-Resolution Dense Prediction

Han Cai1, Junyan Li2, Muyan Hu3, Chuang Gan4, Song Han1

1MIT, 2Zhejiang University, 3Tsinghua University, 4MIT-IBM Watson AI Lab
https://github.com/mit-han-lab/efficientvit

Abstract

High-resolution dense prediction enables many appeal-
ing real-world applications, such as computational pho-
tography, autonomous driving, etc. However, the vast
computational cost makes deploying state-of-the-art high-
resolution dense prediction models on hardware devices
difficult. This work presents EfficientViT, a new family of
high-resolution vision models with novel lightweight multi-
scale attention. Unlike prior high-resolution dense pre-
diction models that rely on heavy self-attention, hardware-
inefficient large-kernel convolution, or complicated topol-
ogy structure to obtain good performances, our lightweight
multi-scale attention achieves a global receptive field
and multi-scale learning (two critical features for high-
resolution dense prediction) with only lightweight and
hardware-efficient operations. As such, EfficientViT deliv-
ers remarkable performance gains over previous state-of-
the-art high-resolution dense prediction models with signifi-
cant speedup on diverse hardware platforms, including mo-
bile CPU, edge GPU, and cloud GPU. Without performance
loss on Cityscapes, our EfficientViT provides up to 8.8× and
3.8× GPU latency reduction over SegFormer and SegNeXt,
respectively. For super-resolution, EfficientViT provides up
to 6.4× speedup over Restormer while providing 0.11dB
gain in PSNR.

1. Introduction

High-resolution dense prediction is a fundamental task
in computer vision and has broad applications in real-world
scenarios, including autonomous driving, medical image
processing, computational photography, etc. Therefore, de-
ploying state-of-the-art (SOTA) high-resolution dense pre-
diction models on hardware devices can benefit many use
cases.

However, there is a large gap between the computational
cost required by SOTA high-resolution dense prediction
models and the limited resources of hardware devices. It

makes using these models in real-world applications im-
practical. In particular, high-resolution dense prediction
models require high-resolution images and strong context
information extraction ability to work well [2, 41, 53, 58,
54, 47]. Therefore, directly porting efficient model archi-
tecture from image classification is unsuitable for high-
resolution dense prediction.

This work introduces EfficientViT, a new family of
models for efficient high-resolution dense prediction. The
core of EfficientViT is a novel lightweight multi-scale atten-
tion module that enables a global receptive field and multi-
scale learning with hardware-efficient operations. Our mod-
ule is motivated by prior SOTA high-resolution dense pre-
diction models. They demonstrate that the multi-scale
learning [53, 58], and global receptive field [51] play a crit-
ical role in improving the performances. However, they
do not consider hardware efficiency when designing their
models, which is essential for real-world applications. For
example, SegFormer [51] introduces self-attention into the
backbone to have a global receptive field. But its computa-
tional complexity is quadratic to the input resolution, mak-
ing it unable to handle high-resolution images efficiently.
SegNeXt [18] proposes a multi-branch module with large-
kernel convolutions (kernel size up to 21) to enable a large
receptive field and multi-scale learning. However, large-
kernel convolution requires exceptional support on hard-
ware to achieve good efficiency [16, 50], which is usually
not available on hardware devices.

Hence, the design principle of our module is to en-
able these two critical features while avoiding hardware-
inefficient operations. Specifically, to have a global re-
ceptive field, we propose substituting the inefficient self-
attention with lightweight ReLU-based global attention
[28]. By leveraging the associative property of matrix
multiplication, ReLU-based global attention can reduce the
computational complexity from quadratic to linear while
preserving functionality. In addition, it avoids hardware-
inefficient operations like softmax, making it more suitable
for hardware deployment (Figure 3).

Furthermore, we propose a novel lightweight multi-scale

This ICCV paper is the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it is identical to the accepted version;

the final published version of the proceedings is available on IEEE Xplore.

17302

Input

Output

MBConv

Lightweight
MSA

EfficientViT
Module

In
pu

t

Li
ne

ar

R
eL

U

G
lo

ba
l

A
tte

nt
io

n

Q
K
V

DWConv 1x1GConv

Aggregate nearby tokens to get
multi-scale Q/K/V tokens

R
eL

U

G
lo

ba
l

A
tte

nt
io

n

C

Li
ne

ar

R
eL

U

G
lo

ba
l

A
tte

nt
io

n

d
Q

d
Q

head 1

head 2

…

d
K

d
V

d
K

d
V

… …

DSConv

DSConv

3x3

5x5

1

Figure 2: Illustration of EfficientViT’s Building Block (left) and the Lightweight Multi-Scale Attention (right). Left:
A building block of EfficientViT consists of a lightweight MSA module and an MBConv. The lightweight MSA module is
responsible for capturing context information, while the MBConv is for capturing local information. Right: After getting
Q/K/V tokens via the linear projection layer, we generate multi-scale tokens by aggregating nearby tokens via lightweight
small-kernel convolutions. ReLU-based global attention is applied to multi-scale tokens, and the outputs are concatenated
and fed to the final linear projection layer for feature fusing.

M
ob

ile
 C

PU
 L

at
en

cy
 (m

s)

0

40

80

120

160

200

24 32 40

Softmax Attention
ReLU-based Linear Attention

Input Feature Map Size

Latency

Linear Attention Latency Softmax Attention Latency

Untitled 1

Untitled 2 24 6.6 24 21.7

Untitled 3 32 19.8 32 103

Untitled 4 40 41.8 40 189

4.5x
faster

3.3x faster

Input

Linear Attention
(Global Feature)

FFN with  
Depthwise Conv
(Local Feature)

Output

Ra
w

At
te

nt
io

n
Sc

or
e

0
1
2
3
4
5

Latency-1

Linear Attention Latency Softmax Attention Latency

Untitled 1 1 1

Untitled 2 2 1

Untitled 3 3 5

Untitled 4 4 1

5 1

No
rm

al
ize

d
At

te
nt

io
n

Sc
or

e

0.0

0.5

1.0
With Softmax Without Softmax

Latency-1-1

Linear Attention Latency Softmax Attention Latency

Untitled 1 1 0.1111 1 0.0171

Untitled 2 2 0.1111 2 0.0171

Untitled 3 3 0.5556 3 0.9317

Untitled 4 4 0.1111 4 0.0171

5 0.1111 5 0.0171

In
pu

t

3x
3

C
on

v

3x
3

D
SC

on
v

3
x

10
24

 x
 2

04
8

Input Stem
C0 x 512 x 1024

M
B

C
on

v

Stage 1
C1 x 256 x 512

× L1

Stage 2
C2 x 128 x 256

× L2

FF
N

× L3⏟

Stage 3
C3 x 64 x 128

M
B

C
on

v

M
B

C
on

v

× L4⏟

Stage 4
C4 x 32 x 64

P2 P3 P4P1

En
ha

nc
ed

Li

ne
ar

 A
tt

Pr
op

or
tio

n
(%

)

0

50

100

e=1 e=1.5 e=2 e=2.5

FFN Linear Attention

MACs-2

384x64x128 LinearAtt FFN

Untitled 1 5042.6 34.2814798700151 9666.8 65.7185201299849

Untitled 2 7562.3 43.8926003099407 9666.8 56.1073996900593

Untitled 3 10082.1 51.0514509668893 9666.8 48.9485490331107

Untitled 4 12601.8 56.5899966769352 9666.8 43.4100033230648

34%
44% 51% 57%

66% 56% 49% 43%

(c) computation decomposition

(a) original (c) token augmentation  
(increase the width of each token)

Q K

Input

Attention
MatMul

Q K V

Input

Attention
MatMul

Q K V

Input

Attention
MatMul

transform
Qaug Kaug Vaug

Attention
MatMul

Fuse

(b) token augmentation  
(increase the number of tokens)

FF
N

M
B

C
on

v

En
ha

nc
ed

Li

ne
ar

 A
tt

Q K V Q K V

Input

transform Qaug Kaug Vaug

Fuse

Input

Filter

interaction between original tokens

Augmented Q/K/V

interaction between high-level tokens

spatial
aggregation

Lightweight
Attention MatMul

Lightweight
Attention MatMul

high-level
Tokens

1

Figure 3: Latency Comparison Between Softmax Atten-
tion and ReLU-Based Linear Attention. ReLU-based
linear attention is 3.3-4.5× faster than softmax attention
with similar computation, thanks to removing hardware-
unfriendly operations (e.g., softmax). Latency is measured
on Qualcomm Snapdragon 855 CPU with TensorFlow-Lite,
batch size 1, and fp32.

2. Method

This section first introduces lightweight Multi-Scale At-
tention (MSA). Unlike prior works, our lightweight MSA
module simultaneously achieves a global receptive field
and multi-scale learning with only hardware-efficient op-
erations. Then, based on the proposed MSA module, we
present a new family of vision models named EfficientViT
for high-resolution dense prediction.

2.1. Lightweight Multi-Scale Attention

Our lightweight MSA module balances two crucial as-
pects of efficient high-resolution dense prediction, i.e., per-
formance and efficiency. Specifically, a global receptive
field and multi-scale learning are essential from the perfor-
mance perspective. Previous SOTA high-resolution dense
prediction models provide strong performances by enabling
these features but fail to provide good efficiency. Our mod-
ule tackles this issue by trading slight capacity loss for sig-
nificant efficiency improvements.

An illustration of the proposed lightweight MSA mod-
ule is provided in Figure 2 (right). In particular, we pro-
pose to use lightweight ReLU-based attention [28] to enable
the global receptive field instead of the heavy self-attention
[46]. While ReLU-based attention [28] and other linear at-
tention modules [3, 12, 43, 48] has been explored in other
domains, it has never been successfully applied to high-
resolution dense prediction. To the best of our knowledge,
EfficientViT is the first work demonstrating ReLU-based at-
tention’s effectiveness in high-resolution dense prediction.
In addition, our work introduces novel designs (lightweight
MSA module) to enhance the capacity, making it more pow-
erful in high-resolution dense prediction.

Enabling Global Receptive Field with Lightweight
ReLU-based Attention. Given input x ∈ RN×f , the gen-
eralized form of self-attention can be written as:

Oi =
N∑

j=1

Sim(Qi,Kj)∑N
j=1 Sim(Qi,Kj)

Vj , (1)

17304

In
pu

t

C
on

v

D

SC
on

v

3
x

10
24

 x
 2

04
8

Input Stem
C0 x 512 x 1024

M
B

C
on

v

Stage 1
C1 x 256 x 512

× L1

Stage 2
C2 x 128 x 256

× L2 × L3

Stage 3
C3 x 64 x 128

M
B

C
on

v

M
B

C
on

v

Stage 4
C4 x 32 x 64

Ef
fic

ie
nt

Vi
T

M
od

ul
e

× L4

M
B

C
on

v

Ef
fic

ie
nt

Vi
T

M
od

ul
e

P4

P3
P2

4x up

2x up × L5

M
B

C
on

v

O
ut

pu
t

Head
C5 x 128 x 256

1

Figure 4: Macro Architecture of EfficientViT. We adopt the standard backbone-head/encoder-decoder design. In the back-
bone, we insert our EfficientViT modules in Stages 3 & 4. Following the common practice, we feed the features from the
last three stages (P2, P3, and P4) to the head. We use addition to fuse these features for simplicity and efficiency. We adopt a
simple head design that consists of several MBConv blocks and output layers.

Input

Output

MBConv

EMSA

EfficientViT
Module

In
pu

t

Li
ne

ar

R
eL

U

G
lo

ba
l

A
tte

nt
io

n

Q
K
V

DWConv 1x1GConv

Aggregate nearby tokens to get
multi-scale Q/K/V tokens

R
eL

U

G
lo

ba
l

A
tte

nt
io

n

C

Li
ne

ar

R
eL

U

G
lo

ba
l

A
tte

nt
io

n

d
Q

d
Q

head 1

head 2

…

d
K

d
V

d
K

d
V

… …

DSConv

DSConv

1

Figure 5: Illustration of the Aggregation Process for
Generating Multi-Scale Tokens. The information aggre-
gation is done independently for each Q, K, and V in each
head. ‘d’ denotes the dimension of each token. The typical
value of d is 32.

where Q = xWQ, K = xWK , V = xWV and
WQ/WK/WV ∈ Rf×d is the learnable linear projection
matrix. Oi represents the i-th row of matrix O. Sim(·, ·) is
the similarity function. When using the similarity function
Sim(Q,K) = exp(QKT

√
d
), Eq. (1) becomes the original

self-attention [46].
Apart from exp(QKT

√
d
), we can use other similarity func-

tions. In this work, we use ReLU-based global attention
[28] to achieve both the global receptive field and linear
computational complexity. In ReLU-based global attention,
the similarity function is defined as

Sim(Q,K) = ReLU(Q)ReLU(K)T . (2)

With Sim(Q,K) = ReLU(Q)ReLU(K)T , Eq. (1) can
be rewritten as:

Oi =

N∑
j=1

ReLU(Qi)ReLU(Kj)
T∑N

j=1 ReLU(Qi)ReLU(Kj)T
Vj

=

∑N
j=1(ReLU(Qi)ReLU(Kj)

T)Vj

ReLU(Qi)
∑N

j=1 ReLU(Kj)T
.

Then, we can leverage the associative property of matrix
multiplication to reduce the computational complexity and

memory footprint from quadratic to linear without changing
the functionality:

Oi =

∑N
j=1 [ReLU(Qi)ReLU(Kj)

T]Vj

ReLU(Qi)
∑N

j=1 ReLU(Kj)T

=

∑N
j=1 ReLU(Qi)[(ReLU(Kj)

TVj)]

ReLU(Qi)
∑N

j=1 ReLU(Kj)T

=
ReLU(Qi)(

∑N
j=1 ReLU(Kj)

TVj)

ReLU(Qi)(
∑N

j=1 ReLU(Kj)T)
. (3)

As shown in Eq. (3), we only need to compute
(
∑N

j=1 ReLU(Kj)
TVj) ∈ Rd×d and (

∑N
j=1 ReLU(Kj)

T)

∈ Rd×1 once, then can reuse them for each query, thereby
only requires O(N) computational cost and O(N) memory.

Another key merit of ReLU-based global attention is that
it does not involve hardware-unfriendly operations like soft-
max, making it more efficient on hardware. For example,
Figure 3 shows the latency comparison between softmax at-
tention and ReLU-based linear attention. With similar com-
putation, ReLU-based linear attention is significantly faster
than softmax attention on mobile.

Generate Multi-Scale Tokens. ReLU-based attention
alone has limited model capacity. To mitigate this limi-
tation, we first enhance it with the depthwise convolution
to improve its local information extraction ability (Figure 2
left). In addition, to enhance its multi-scale learning abil-
ity, we propose to aggregate the information from nearby
Q/K/V tokens to get multi-scale tokens. The aggregation
process is illustrated in Figure 5. This information aggre-
gation process is independent for each Q, K, and V in each
head. We only use small-kernel convolutions for informa-
tion aggregation to avoid hurting hardware efficiency.

In the practical implementation, independently executing
these aggregation operations is inefficient on GPU. There-
fore, we take advantage of the infrastructure of group con-
volution in modern deep learning frameworks to reduce the

17305

Table 2: Detailed Architecture Configurations of Different EfficientViT Variants. We build a series of models to fit
different efficiency constraints. ‘C’ denotes the number of channels. ‘L’ denotes the number of blocks. ‘H’ is the height of
the feature map, and ‘W’ is the width of the feature map.

Variants Feature Map Shape EfficientViT-B0 EfficientViT-B1 EfficientViT-B2 EfficientViT-B3

Input Stem C ×H
2
× W

2
C = 8, L = 1 C = 16, L = 1 C = 24, L = 1 C = 32, L = 1

Stage1 C ×H
4
× W

4
C = 16, L = 2 C = 32, L = 2 C = 48, L = 3 C = 64, L = 4

Stage2 C ×H
8
× W

8
C = 32, L = 2 C = 64, L = 3 C = 96, L = 4 C = 128, L = 6

Stage3 C ×H
16

× W
16

C = 64, L = 2 C = 128, L = 3 C = 192, L = 4 C = 256, L = 6

Stage4 C ×H
32

× W
32

C = 128, L = 2 C = 256, L = 4 C = 384, L = 6 C = 512, L = 9

Head C ×H
8
× W

8
C = 32, L = 1 C = 64, L = 3 C = 96, L = 3 C = 128, L = 3

number of total operations. Specifically, all DWConvs are
fused into a single DWConv while all 1x1 Convs are com-
bined into a single 1x1 group convolution (Figure 2 right)
where the number of groups is 3 × #heads and the number
of channels in each group is d.

After getting multi-scale tokens, we perform global at-
tention upon them to extract multi-scale global features.
Finally, we concatenate the features from different scales
along the head dimension and feed them to the final linear
projection layer to fuse the features.

2.2. EfficientViT Architecture

We build a new family of vision models based on the pro-
posed lightweight MSA module. The core building block
(denoted as ‘EfficientViT Module’) is illustrated in Fig-
ure 2 (left). Specifically, an EfficientViT module comprises
a lightweight MSA module and an MBConv [42]. The
lightweight MSA module is for context information extrac-
tion, while the MBConv is for local information extraction.

The macro architecture of EfficientViT is demonstrated
in Figure 4. We use the standard backbone-head/encoder-
decoder architecture design.

• Backbone. The backbone of EfficientViT also follows
the standard design, which consists of the input stem and
four stages with gradually decreased feature map size and
gradually increased channel number. We insert the Effi-
cientViT module in Stages 3 and 4. For downsampling,
we use an MBConv with stride 2.

• Head. P2, P3, and P4 denote the outputs of Stages 2, 3,
and 4, forming a pyramid of feature maps. For simplic-
ity and efficiency, we use 1x1 convolution and standard
upsampling operation (e.g., bilinear/bicubic upsampling)
to match their spatial and channel size and fuse them via
addition. Since our backbone already has a strong con-
text information extraction capacity, we adopt a simple
head design that comprises several MBConv blocks and
the output layers (i.e., prediction and upsample). In the

Table 3: Ablation Study on Two Key Components of Our
EfficientViT Module. The mIoU and MACs are measured
on Cityscapes with 1024x2048 input resolution. We rescale
the width of the models so that they have the same MACs.
Multi-scale learning and the global receptive field are essen-
tial for obtaining good semantic segmentation performance.

Components
mIoU ↑ Params ↓ MACs ↓

Multi-scale Global att.

68.1 0.7M 4.4G
✓ 72.3 0.7M 4.4G

✓ 72.2 0.7M 4.4G
✓ ✓ 74.5 0.7M 4.4G

experiments, we empirically find this simple head design
is sufficient for achieving SOTA performances thanks to
our lightweight MSA module.

In addition to dense prediction, our model can be ap-
plied to other vision tasks, such as image classification,
by combining the backbone with task-specific heads.

Following the same macro architecture, we design a se-
ries of models with different sizes to satisfy various effi-
ciency constraints. The detailed configurations are demon-
strated in Table 2. We name these models as EfficientViT-
B0, EfficientViT-B1, EfficientViT-B2, and EfficientViT-B3,
respectively.

3. Experiments
3.1. Setups

Datasets. We evaluate the effectiveness of EfficientViT
on two representative high-resolution dense predic-
tion tasks, including semantic segmentation and super-
resolution.

For semantic segmentation, we use two popular bench-
mark datasets: Cityscapes [13] and ADE20K [59].

17306

76
78
80
82
84

0 100 200 300

EfficientViT SegNeXt SegFormer

GMACs

Cityscapes

EfficientViT GMACs 8Gen(s) Nano(s) Xavier(ms) Orin(ms) A100(ms) SegNeXt GMACs 8Gen(s) Nano(s) Xavier(ms) Orin(ms) A100(ms) SegFormer GMACs 8Gen(s) Nano(ms) Xavier(ms) Orin(ms) A100(ms)

Untitled 1 4.4 0.24 0.275 32.7 9.9 3.84 79.8 50.5 7.6 2.2 287 93 10.5 76.2 125.5 6.9 3.9 368 107 14.4

Untitled 2 80.5 25 1.13 0.82 88.3 24.3 5.71 81.3 124.6 18 3.4 415 127 14.2 78.5 243.7 12 5.6 530 146 20.4

Untitled 3 82.1 74 3.09 1.676 180 46.5 8.91 82.6 275.7 767 228 24.2 717.1 1170 296 37.5

Untitled 4 83.0 179 7.35 3.192 336 81.8 14.2 962.9 407 54.3

1240.6 73.8

1460.4 82

76
78
80
82
84

0 5 10 15 20
Snapdragon 8Gen1 (s)

76
78
80
82
84

0 7 14 21 28
A100 GPU (ms)

76
78
80
82
84

0 2 4 6
Jetson Nano (s)

76
78
80
82
84

0 200 400 600 800
Jetson AGX Xavier (ms)

76
78
80
82
84

0 125 250
Jetson AGX Orin (ms)

Ci
ty

sc
ap

es
 m

Io
U

Im
ag

eN
et

 T
op

1
Ac

c

78.5

80.5

82.5

84.5

0 5 10 15 20

EfficientViT EfficientNet
ConvNeXt Swin

GMACs

ImageNet

EfficientViT EfficientNet EfficientNetV2 ConvNeXt Swin

Untitled 1 0.52 79.4 77.1 78.7 4.5 82.1 4.5 81.3

Untitled 2 0.86 80.4 0.70 79.1 79.8 8.7 83.1 8.7 83.0

Untitled 3 1.6 82.1 1.0 80.1 80.5 15.4 83.8 15.4 83.5

Untitled 4 2.1 82.7 1.8 81.6 82.1 84.3 84.5

2.6 83.1 4.2 82.9 83.9

6.5 84.2 9.9 83.6 85.1

19 84 85.7

84.3

2.9x reduction

Ci
ty

sc
ap

es
 m

Io
U

78

80

82

84

0 200 400 600 800

EfficientViT SegNeXt SegFormer

GMACs

Cityscapes-1

EfficientViT SegNeXt SegFormer

Untitled 1

Untitled 2 25 80.5 50.5 79.8

Untitled 3 74 82.1 124.6 81.3 243.7 78.5

Untitled 4 179 83.0 275.7 82.6 717.1 81.0

AD
E2

0K
 m

Io
U

40

42

44

46

48

50

0 13 26 39 52 65
GMACs

ADE20k

EfficientViT SegNeXt SegFormer

Untitled 1 3.1 42.8 6.6 41.1

Untitled 2 9.1 45.9 15.9 44.3 15.9 42.2

Untitled 3 22 49.0 34.9 48.5 62.4 46.5

Untitled 4

1

Figure 6: MACs vs. Performance. EfficientViT provides a better trade-off between MACs and performance than SOTA
semantic segmentation and image classification models.

Table 4: Backbone Performance of EfficientViT on ImageNet Classification. ‘r224’ means the input resolution is
224x224. With 6.5G MACs, EfficientViT-B3 achieves 84.2 ImageNet top1 accuracy, surpassing EfficientNet-B6 while re-
ducing the MACs by 2.9x and being 3.4x faster on Jetson Nano GPU and 3.7x faster on A100 GPU. ‘bs1’ represents that the
latency is measured with batch size 1.

Models Top1 Acc ↑ Top5 Acc ↑ Params ↓ MACs ↓ Latency ↓
Nano(bs1) Orin(bs1) A100(bs16)

EfficientNet-B1 [44] 79.1 94.4 7.8M 0.70G 36.2ms 2.0ms 2.9ms
EfficientViT-B1 (r224) 79.4 94.3 9.1M 0.52G 24.8ms 1.5ms 1.9ms

EfficientNet-B2 [44] 80.1 94.9 9.2M 1.0G 45.1ms 2.3ms 3.5ms
EfficientViT-B1 (r288) 80.4 95.0 9.1M 0.86G 34.5ms 1.8ms 2.9ms

CoAtNet-0 [14] 81.6 - 25M 4.2G 95.8ms 4.5ms 6.9ms
ConvNeXt-T [34] 82.1 - 29M 4.5G 87.9ms 3.8ms 6.1ms
EfficientNet-B3 [44] 81.6 95.7 12M 1.8G 67.8ms 3.3ms 5.1ms
EfficientViT-B2 (r256) 82.7 96.1 24M 2.1G 58.5ms 2.8ms 4.0ms

Swin-B [33] 83.5 - 88M 15G 240ms 6.0ms 6.9ms
CoAtNet-1 [14] 83.3 - 42M 8.4G 171ms 8.3ms 13.0ms
ConvNeXt-S [34] 83.1 - 50M 8.7G 146ms 6.5ms 10.0ms
EfficientNet-B4 [44] 82.9 96.4 19M 4.2G 143ms 5.7ms 9.7ms
EfficientViT-B3 (r224) 83.5 96.4 49M 4.0G 101ms 4.4ms 5.7ms

EfficientNet-B6 [44] 84.0 96.8 43M 19G 475ms 16.2ms 30.2ms
CoAtNet-2 [14] 84.1 - 75M 16G 254ms 10.3ms 16.8ms
ConvNeXt-B [34] 83.8 - 89M 15G 211ms 7.8ms 12.3ms
EfficientViT-B3 (r288) 84.2 96.7 49M 6.5G 141ms 5.6ms 8.2ms

CoAtNet-3 [14] 84.5 - 168M 35G - - 24.9ms
ConvNeXt-L [34] 84.3 - 198M 34G - - 18.5ms
EfficientNetV2-S [45] 83.9 - 22M 8.8G - - 7.0ms
EfficientViT-L1 (r224) 84.5 96.9 53M 5.3G - - 3.2ms

Cityscapes is an autonomous driving dataset that mainly
focuses on urban scenes. It contains 5,000 fine-annotated
high-resolution (1024x2048) images with 19 classes di-
vided into three subsets of size 2,975/500/1,525 for train-
ing/validation/testing. ADE20K is a scene-parsing dataset
with 150 classes. It contains 20,210/2,000/3,352 images for

training, validation, and testing, respectively.

For super-resolution, we evaluate EfficientViT under
two settings: lightweight super-resolution (SR) and high-
resolution SR. For lightweight SR, we train models on
DIV2K [1] and test on BSD100 [37]. For high-resolution
SR, we train models on the first 3000 training images of

17307

Table 5: Comparison with SOTA Semantic Segmentation Models on Cityscapes. The input resolution is 1024x2048 for
all models. Models with similar mIoU are grouped for efficiency comparison. Compared with SegNeXt-T, EfficientViT-B1
achieves 2.0x MACs reduction, 3.8x latency reduction on Jetson AGX Orin GPU, and 0.7 higher mIoU. Compared with
SegFormer-B1, EfficientViT-B1 obtains 9.8x MACs saving and 2.0 higher mIoU.

Models mIoU ↑ Params ↓ MACs ↓ Latency ↓
Nano(bs1) Orin(bs1) A100(bs1)

PSPNet-Mbv2 [58] 70.2 14M 423G - - -
DeepLabV3plus-Mbv2 [8] 75.2 15M 555G - 83.5ms 9.8ms
FCN-Mbv2 [35] 61.5 9.8M 317G 2.1s 52.0ms 6.4ms
EfficientViT-B0 75.7 0.7M 4.4G 0.28s 9.9ms 3.8ms

HRFormer-S [55] 80.0 14M 836G - - -
SegFormer-B1 [51] 78.5 14M 244G 5.6s 146ms 20.4ms
SegNeXt-T [18] 79.8 4.3M 51G 2.2s 93.2ms 10.5ms
EfficientViT-B1 80.5 4.8M 25G 0.82s 24.3ms 5.7ms

HRFormer-B [55] 81.9 56M 2224G - - -
SegFormer-B3 [51] 81.7 47M 963G - 407ms 54.3ms
SegNeXt-S [18] 81.3 14M 125G 3.4s 127ms 14.2ms
EfficientViT-B2 82.1 15M 74G 1.7s 46.5ms 8.9ms

SegFormer-B5 [51] 82.4 85M 1460G - 638ms 82.1ms
SegNeXt-B [18] 82.6 28M 276G - 228ms 24.2ms
EfficientViT-B3 83.0 40M 179G 3.2s 81.8ms 14.2ms

76
78
80
82
84

0 100 200 300

EfficientViT SegNeXt SegFormer

GMACs

Cityscapes

EfficientViT GMACs 8Gen(s) Nano(s) Xavier(ms) Orin(ms) A100(ms) SegNeXt GMACs 8Gen(s) Nano(s) Xavier(ms) Orin(ms) A100(ms) SegFormer GMACs 8Gen(s) Nano(ms) Xavier(ms) Orin(ms) A100(ms)

Untitled 1 4.4 0.24 0.275 32.7 9.9 3.84 79.8 50.5 7.6 2.2 287 93 10.5 76.2 125.5 6.9 3.9 368 107 14.4

Untitled 2 80.5 25 1.13 0.82 88.3 24.3 5.71 81.3 124.6 18 3.4 415 127 14.2 78.5 243.7 12 5.6 530 146 20.4

Untitled 3 82.1 74 3.09 1.676 180 46.5 8.91 82.6 275.7 767 228 24.2 717.1 1170 296 37.5

Untitled 4 83.0 179 7.35 3.192 336 81.8 14.2 962.9 407 54.3

1240.6 73.8

1460.4 82

76
78
80
82
84

0 5 10 15 20
Snapdragon 8Gen1 (s)

76
78
80
82
84

0 7 14 21 28
A100 GPU (ms)

76
78
80
82
84

0 2 4 6
Jetson Nano (s)

76
78
80
82
84

0 200 400 600 800
Jetson AGX Xavier (ms)

76
78
80
82
84

0 125 250
Jetson AGX Orin (ms)

Ci
ty

sc
ap

es
 m

Io
U

Im
ag

eN
et

 T
op

1
Ac

c

78.5

80.5

82.5

84.5

0 5 10 15 20

EfficientViT EfficientNet
ConvNeXt Swin

GMACs

ImageNet

EfficientViT EfficientNet EfficientNetV2 ConvNeXt Swin

Untitled 1 0.52 79.4 77.1 78.7 4.5 82.1 4.5 81.3

Untitled 2 0.86 80.4 0.70 79.1 79.8 8.7 83.1 8.7 83.0

Untitled 3 1.6 82.1 1.0 80.1 80.5 15.4 83.8 15.4 83.5

Untitled 4 2.1 82.7 1.8 81.6 82.1 84.3 84.5

2.6 83.1 4.2 82.9 83.9

6.5 84.2 9.9 83.6 85.1

19 84 85.7

84.3

2.9x reduction

Ci
ty

sc
ap

es
 m

Io
U

78

80

82

84

0 200 400 600 800

EfficientViT SegNeXt SegFormer

GMACs

Cityscapes-1

EfficientViT SegNeXt SegFormer

Untitled 1

Untitled 2 25 80.5 50.5 79.8

Untitled 3 74 82.1 124.6 81.3 243.7 78.5

Untitled 4 179 83.0 275.7 82.6 717.1 81.0

AD
E2

0K
 m

Io
U

40

42

44

46

48

50

0 13 26 39 52 65
GMACs

ADE20k

EfficientViT SegNeXt SegFormer

Untitled 1 3.1 42.8 6.6 41.1

Untitled 2 9.1 45.9 15.9 44.3 15.9 42.2

Untitled 3 22 49.0 34.9 48.5 62.4 46.5

Untitled 4

Ef
fic
ie
nt
Vi
T

47
m
s@

O
rin

Se
gN
eX
t

90
m
s@

O
rin

Se
gF
or
m
er

10
5m

s@
O
rin

1

Figure 7: Qualitative results on Cityscapes.

FFHQ [27] and test on the first 500 validation images of
FFHQ.

Apart from dense prediction, we also study the effective-
ness of EfficientViT for image classification using the Ima-
geNet dataset [15].

Latency Measurement. We measure the mobile latency
on Qualcomm Snapdragon 8Gen1 CPU with Tensorflow-
Lite1, batch size 1 and fp32. We use TensorRT2 and fp16 to
measure the latency on edge GPU and cloud GPU. The data

1https://www.tensorflow.org/lite
2https://docs.nvidia.com/deeplearning/tensorrt/

transfer time is included in the reported latency.

Implementation Details. We implement our models us-
ing Pytorch [39] and train them on GPUs. We use the
AdamW optimizer with cosine learning rate decay for train-
ing our models. For lightweight multi-scale attention, we
use a two-branch design for the best trade-off between per-
formance and efficiency, where 5x5 nearby tokens are ag-
gregated to generate multi-scale tokens.

For semantic segmentation experiments, we use the
mean Intersection over Union (mIoU) as our evaluation
metric. The backbone is initialized with weights pretrained
on ImageNet and the head is initialized randomly, following
the common practice.

For super-resolution, we use PSNR and SSIM on the Y
channel as the evaluation metrics, same as previous work
[31]. The models are trained with random initialization.

3.2. Ablation Study

Effectiveness of Our Lightweight MSA Module. We
conduct ablation study experiments on Cityscapes to study
the effectiveness of two key design components of our Ef-
ficientViT module, i.e., multi-scale learning and global at-
tention. To eliminate the impact of pre-training, we train all
models from random initialization. In addition, we rescale
the width of the models so that they have the same #MACs.
The results are summarized in Table 3. We can see that re-
moving either global attention or multi-scale learning will
significantly hurt the performances. It shows that all of them

17308

Table 6: Comparison with SOTA Semantic Segmentation Models on ADE20K. Compared with SegNeXt-S, EfficientViT-
B2 provides a 2.0x speedup on Jetson Nano GPU and 1.6 mIoU gain. Compared with SegFormer-B1, EfficientViT-B1
achieves 0.6 higher mIoU with a 3.1x speedup on Jetson AGX Orin GPU.

Models mIoU ↑ Params ↓ MACs ↓ Latency ↓
Nano(bs1) Orin(bs1) A100(bs1)

SegFormer-B1 [51] 42.2 14M 16G 389ms 12.3ms 2.7ms
SegNeXt-T [18] 41.1 4.3M 6.6G 281ms 12.4ms 3.0ms
EfficientViT-B1 42.8 4.8M 3.1G 110ms 4.0ms 1.6ms

HRFormer-S [55] 44.0 14M 110G - - -
SegNeXt-S [18] 44.3 14M 16G 428ms 17.2ms 3.3ms
EfficientViT-B2 45.9 15M 9.1G 212ms 7.3ms 2.2ms

HRFormer-B [55] 48.7 56M 280G - - -
Mask2Former [10] 47.7 47M 74G - - -
MaskFormer [11] 46.7 42M 55G - - -
SegFormer-B2 [51] 46.5 28M 62G 920ms 24.3ms 4.6ms
SegNeXt-B [18] 48.5 28M 35G 806ms 32.9ms 6.2ms
EfficientViT-B3 49.0 39M 22G 411ms 12.5ms 3.3ms

are essential for achieving a better trade-off between perfor-
mance and efficiency.

Backbone Performance on ImageNet. To understand
the effectiveness of EfficientViT’s backbone in image clas-
sification, we train our models on ImageNet following the
standard training strategy. We summarize the results and
compare our models with SOTA image classification mod-
els in Table 4.

Though EfficientViT is designed for high-resolution
dense prediction, it achieves highly competitive per-
formances on ImageNet classification. In particular,
EfficientViT-B3 obtains 84.2 top1 accuracy on ImageNet,
providing +0.2 accuracy gain over EfficientNet-B6 and 3.7x
speedup on A100 GPU.

3.3. Main Results

Cityscapes. Table 5 reports the comparison between Ef-
ficientViT and SOTA semantic segmentation models on
Cityscapes. EfficientViT achieves remarkable efficiency
improvements over prior SOTA semantic segmentation
models without sacrificing performances. Specifically,
compared with SegFormer, EfficientViT obtains up to 13x
MACs saving and up to 8.8x latency reduction with higher
mIoU. Compared with SegNeXt, EfficientViT provides up
to 2.0x MACs reduction and 3.8x speedup on GPU while
maintaining higher mIoU.

Having similar computational cost, EfficientViT yields
significant performance gains over previous SOTA models.
For example, EfficientViT-B3 yields +4.5 mIoU gain over
SegFormer-B1 with lower MACs.

In addition to the quantitative results, we visualize
EfficientViT and the baseline models qualitatively on

Cityscapes. The results are shown in Figure 7. We can find
that EfficientViT can better recognize boundaries and small
objects than the baseline models while achieving lower la-
tency on GPU.

ADE20K. Table 6 summarizes the comparison between
EfficientViT and SOTA semantic segmentation models on
ADE20K. Similar to Cityscapes, we can see that Ef-
ficientViT also achieves significant efficiency improve-
ments on ADE20K. For example, with +0.6 mIoU gain,
EfficientViT-B1 provides 5.2x MACs reduction and up to
3.5x GPU latency reduction than SegFormer-B1. With +1.6
mIoU gain, EfficientViT-B2 requires 1.8x fewer computa-
tional cost and runs 2.4x faster on Jetson AGX Orin GPU
than SegNeXt-S.

Super-Resolution. Table 7 presents the comparison of
EfficientViT with SOTA ViT-based SR methods (SwinIR
[31] and Restormer [56]) and SOTA CNN-based SR meth-
ods (VapSR [60] and BSRN [30]). EfficientViT provides
a better latency-performance trade-off than all compared
methods.

On lightweight SR, EfficientViT provides up to 0.09dB
gain in PSNR on BSD100 while maintaining the same or
lower GPU latency compared with SOTA CNN-based SR
methods. Compared with SOTA ViT-based SR methods, Ef-
ficientViT provides up to 5.4× speedup on GPU and main-
tains the same PSNR on BSD100.

On high-resolution SR, the advantage of EfficientViT
over previous ViT-based SR methods becomes more sig-
nificant. Compared with Restormer, EfficientViT achieves
up to 6.4× speedup on GPU and provides 0.11dB gain in
PSNR on FFHQ.

17309

Table 7: Comparison with SOTA super-resolution models. Regarding the latency-performance trade-off, EfficientViT
outperforms previous SOTA models by a significant margin, providing up to 6.4× A100 latency reduction while providing
higher PSNR and SSIM on FFHQ compared with Restormer.

Model
FFHQ (512x512 → 1024x1024) BSD100 (160x240 → 320x480)

PSNR ↑ SSIM ↑ A100(bs1) ↓ Speedup ↑ PSNR ↑ SSIM ↑ A100(bs1) ↓ Speedup ↑

Restormer [56] 43.43 0.9806 92.0ms 1x 32.31 0.9021 15.1ms 1x
SwinIR [31] 43.49 0.9807 61.2ms 1.5x 32.31 0.9012 9.7ms 1.6x
VapSR [60] - - - - 32.27 0.9011 4.8ms 3.1x
BSRN [30] - - - - 32.24 0.9006 4.5ms 3.4x

EfficientViT w0.75 43.54 0.9809 14.3ms 6.4x 32.31 0.9016 2.8ms 5.4x
EfficientViT 43.58 0.9810 17.8ms 5.2x 32.33 0.9019 3.2ms 4.7x

4. Related Work
High-Resolution Dense Prediction. Dense prediction
targets producing predictions for each pixel given the in-
put image. It can be viewed as an extension of image
classification from per-image prediction to per-pixel predic-
tions. Extensive studies have been done to improve the per-
formance of CNN-based high-resolution dense prediction
models [2, 41, 53, 58, 54, 47].

In addition, there are also some works targeting improv-
ing the efficiency of high-resolution dense prediction mod-
els [57, 40, 29, 52]. While these models provide good
efficiency, their performances are far behind SOTA high-
resolution dense prediction models.

Compared to these works, our models provide a bet-
ter trade-off between performance and efficiency by en-
abling a global receptive field and multi-scale learning with
lightweight operations.

Efficient Vision Transformer. While ViT provides im-
pressive performances in the high-computation region, it is
usually inferior to previous efficient CNNs [44, 25, 6, 19]
when targeting the low-computation region. To close the
gap, MobileViT [38] proposes to combine the strength of
CNN and ViT by replacing local processing in convolu-
tions with global processing using transformers. Mobile-
Former [9] proposes to parallelize MobileNet and Trans-
former with a two-way bridge in between for feature fus-
ing. NASViT [17] proposes to leverage neural architecture
search to search for efficient ViT architectures.

However, these models mainly focus on image classifica-
tion and still rely on self-attention with quadratic computa-
tional complexity, thus unsuitable for high-resolution dense
prediction.

Efficient Deep Learning. Our work is also related to effi-
cient deep learning, which aims at improving the efficiency
of deep neural networks so that we can deploy them on
hardware platforms with limited resources, such as mobile

phones and IoT devices. Typical technologies in efficient
deep learning include network pruning [21, 23, 32], quanti-
zation [20], efficient model architecture design [26, 36], and
training techniques [24, 5]. In addition to manual designs,
many recent works use AutoML techniques [61, 4, 7] to au-
tomatically design [6], prune [22] and quantize [49] neural
networks.

5. Conclusion
In this work, we studied efficient architecture design

for high-resolution dense prediction. We introduced a
lightweight multi-scale attention module that simultane-
ously achieves a global receptive field, and multi-scale
learning with lightweight and hardware-efficient opera-
tions, thus providing significant speedup on diverse hard-
ware devices without performance loss than SOTA high-
resolution dense prediction models. For future work, we
will explore applying EfficientViT to other vision tasks and
further scaling up our EfficientViT models.

Acknowledgments
We thank MIT-IBM Watson AI Lab, MIT AI Hardware

Program, Amazon and MIT Science Hub, Qualcomm In-
novation Fellowship, National Science Foundation for sup-
porting this research.

References
[1] Eirikur Agustsson and Radu Timofte. Ntire 2017 challenge

on single image super-resolution: Dataset and study. In Pro-
ceedings of the IEEE conference on computer vision and pat-
tern recognition workshops, pages 126–135, 2017. 6

[2] Vijay Badrinarayanan, Alex Kendall, and Roberto Cipolla.
Segnet: A deep convolutional encoder-decoder architecture
for image segmentation. IEEE transactions on pattern anal-
ysis and machine intelligence, 39(12):2481–2495, 2017. 1,
9

[3] Daniel Bolya, Cheng-Yang Fu, Xiaoliang Dai, Peizhao
Zhang, and Judy Hoffman. Hydra attention: Efficient at-

17310

tention with many heads. In Computer Vision–ECCV 2022
Workshops: Tel Aviv, Israel, October 23–27, 2022, Proceed-
ings, Part VII, pages 35–49. Springer, 2023. 3

[4] Han Cai, Tianyao Chen, Weinan Zhang, Yong Yu, and Jun
Wang. Efficient architecture search by network transforma-
tion. In AAAI, 2018. 9

[5] Han Cai, Chuang Gan, Ji Lin, and Song Han. Net-
work augmentation for tiny deep learning. arXiv preprint
arXiv:2110.08890, 2021. 9

[6] Han Cai, Chuang Gan, Tianzhe Wang, Zhekai Zhang, and
Song Han. Once for all: Train one network and specialize it
for efficient deployment. In ICLR, 2020. 9

[7] Han Cai, Ligeng Zhu, and Song Han. ProxylessNAS: Direct
neural architecture search on target task and hardware. In
ICLR, 2019. 9

[8] Liang-Chieh Chen, Yukun Zhu, George Papandreou, Florian
Schroff, and Hartwig Adam. Encoder-decoder with atrous
separable convolution for semantic image segmentation. In
Proceedings of the European conference on computer vision
(ECCV), pages 801–818, 2018. 7

[9] Yinpeng Chen, Xiyang Dai, Dongdong Chen, Mengchen
Liu, Xiaoyi Dong, Lu Yuan, and Zicheng Liu. Mobile-
former: Bridging mobilenet and transformer. In Proceed-
ings of the IEEE conference on computer vision and pattern
recognition, 2022. 9

[10] Bowen Cheng, Ishan Misra, Alexander G Schwing, Alexan-
der Kirillov, and Rohit Girdhar. Masked-attention mask
transformer for universal image segmentation. In Proceed-
ings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pages 1290–1299, 2022. 8

[11] Bowen Cheng, Alex Schwing, and Alexander Kirillov. Per-
pixel classification is not all you need for semantic segmen-
tation. Advances in Neural Information Processing Systems,
34, 2021. 8

[12] Krzysztof Choromanski, Valerii Likhosherstov, David Do-
han, Xingyou Song, Andreea Gane, Tamas Sarlos, Peter
Hawkins, Jared Davis, Afroz Mohiuddin, Lukasz Kaiser,
et al. Rethinking attention with performers. arXiv preprint
arXiv:2009.14794, 2020. 3

[13] Marius Cordts, Mohamed Omran, Sebastian Ramos, Timo
Rehfeld, Markus Enzweiler, Rodrigo Benenson, Uwe
Franke, Stefan Roth, and Bernt Schiele. The cityscapes
dataset for semantic urban scene understanding. In Proceed-
ings of the IEEE conference on computer vision and pattern
recognition, pages 3213–3223, 2016. 5

[14] Zihang Dai, Hanxiao Liu, Quoc V Le, and Mingxing Tan.
Coatnet: Marrying convolution and attention for all data
sizes. Advances in Neural Information Processing Systems,
34:3965–3977, 2021. 6

[15] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li,
and Li Fei-Fei. Imagenet: A large-scale hierarchical image
database. In CVPR, 2009. 7

[16] Xiaohan Ding, Xiangyu Zhang, Yizhuang Zhou, Jungong
Han, Guiguang Ding, and Jian Sun. Scaling up your kernels
to 31x31: Revisiting large kernel design in cnns. In Proceed-
ings of the IEEE conference on computer vision and pattern
recognition, 2022. 1

[17] Chengyue Gong, Dilin Wang, Meng Li, Xinlei Chen,
Zhicheng Yan, Yuandong Tian, qiang liu, and Vikas Chan-
dra. NASVit: Neural architecture search for efficient vision
transformers with gradient conflict aware supernet training.
In International Conference on Learning Representations,
2022. 9

[18] Meng-Hao Guo, Cheng-Ze Lu, Qibin Hou, Zheng-Ning Liu,
Ming-Ming Cheng, and Shi min Hu. Segnext: Rethink-
ing convolutional attention design for semantic segmenta-
tion. In Alice H. Oh, Alekh Agarwal, Danielle Belgrave,
and Kyunghyun Cho, editors, Advances in Neural Informa-
tion Processing Systems, 2022. 1, 2, 7, 8

[19] Kai Han, Yunhe Wang, Qi Tian, Jianyuan Guo, Chunjing
Xu, and Chang Xu. Ghostnet: More features from cheap
operations. In Proceedings of the IEEE/CVF conference on
computer vision and pattern recognition, pages 1580–1589,
2020. 9

[20] Song Han, Huizi Mao, and William J Dally. Deep com-
pression: Compressing deep neural networks with pruning,
trained quantization and huffman coding. In ICLR, 2016. 9

[21] Song Han, Jeff Pool, John Tran, and William Dally. Learning
both weights and connections for efficient neural network. In
NeurIPS, 2015. 9

[22] Yihui He, Ji Lin, Zhijian Liu, Hanrui Wang, Li-Jia Li, and
Song Han. Amc: Automl for model compression and accel-
eration on mobile devices. In ECCV, 2018. 9

[23] Yihui He, Xiangyu Zhang, and Jian Sun. Channel pruning
for accelerating very deep neural networks. In ICCV, 2017.
9

[24] Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. Distill-
ing the knowledge in a neural network. arXiv preprint
arXiv:1503.02531, 2015. 9

[25] Andrew Howard, Mark Sandler, Grace Chu, Liang-Chieh
Chen, Bo Chen, Mingxing Tan, Weijun Wang, Yukun Zhu,
Ruoming Pang, Vijay Vasudevan, et al. Searching for mo-
bilenetv3. In ICCV, 2019. 9

[26] Andrew G Howard, Menglong Zhu, Bo Chen, Dmitry
Kalenichenko, Weijun Wang, Tobias Weyand, Marco An-
dreetto, and Hartwig Adam. Mobilenets: Efficient convolu-
tional neural networks for mobile vision applications. arXiv
preprint arXiv:1704.04861, 2017. 9

[27] Tero Karras, Samuli Laine, and Timo Aila. A style-based
generator architecture for generative adversarial networks.
In Proceedings of the IEEE/CVF conference on computer vi-
sion and pattern recognition, pages 4401–4410, 2019. 7

[28] Angelos Katharopoulos, Apoorv Vyas, Nikolaos Pappas, and
François Fleuret. Transformers are rnns: Fast autoregressive
transformers with linear attention. In International Confer-
ence on Machine Learning, pages 5156–5165. PMLR, 2020.
1, 3, 4

[29] Hanchao Li, Pengfei Xiong, Haoqiang Fan, and Jian Sun.
Dfanet: Deep feature aggregation for real-time semantic seg-
mentation. In Proceedings of the IEEE/CVF conference on
computer vision and pattern recognition, pages 9522–9531,
2019. 9

[30] Zheyuan Li, Yingqi Liu, Xiangyu Chen, Haoming Cai, Jinjin
Gu, Yu Qiao, and Chao Dong. Blueprint separable residual

17311

network for efficient image super-resolution. In Proceedings
of the IEEE/CVF Conference on Computer Vision and Pat-
tern Recognition, pages 833–843, 2022. 8, 9

[31] Jingyun Liang, Jiezhang Cao, Guolei Sun, Kai Zhang, Luc
Van Gool, and Radu Timofte. Swinir: Image restoration us-
ing swin transformer. In Proceedings of the IEEE/CVF Inter-
national Conference on Computer Vision, pages 1833–1844,
2021. 7, 8, 9

[32] Zhuang Liu, Jianguo Li, Zhiqiang Shen, Gao Huang,
Shoumeng Yan, and Changshui Zhang. Learning efficient
convolutional networks through network slimming. In ICCV,
2017. 9

[33] Ze Liu, Yutong Lin, Yue Cao, Han Hu, Yixuan Wei, Zheng
Zhang, Stephen Lin, and Baining Guo. Swin transformer:
Hierarchical vision transformer using shifted windows. In
Proceedings of the IEEE/CVF International Conference on
Computer Vision, pages 10012–10022, 2021. 6

[34] Zhuang Liu, Hanzi Mao, Chao-Yuan Wu, Christoph Feicht-
enhofer, Trevor Darrell, and Saining Xie. A convnet for the
2020s. In Proceedings of the IEEE conference on computer
vision and pattern recognition, 2022. 6

[35] Jonathan Long, Evan Shelhamer, and Trevor Darrell. Fully
convolutional networks for semantic segmentation. In Pro-
ceedings of the IEEE conference on computer vision and pat-
tern recognition, pages 3431–3440, 2015. 7

[36] Ningning Ma, Xiangyu Zhang, Hai-Tao Zheng, and Jian Sun.
Shufflenet v2: Practical guidelines for efficient cnn architec-
ture design. In ECCV, 2018. 9

[37] David Martin, Charless Fowlkes, Doron Tal, and Jitendra
Malik. A database of human segmented natural images
and its application to evaluating segmentation algorithms and
measuring ecological statistics. In Proceedings Eighth IEEE
International Conference on Computer Vision. ICCV 2001,
volume 2, pages 416–423. IEEE, 2001. 6

[38] Sachin Mehta and Mohammad Rastegari. Mobilevit: Light-
weight, general-purpose, and mobile-friendly vision trans-
former. In International Conference on Learning Represen-
tations, 2022. 9

[39] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer,
James Bradbury, Gregory Chanan, Trevor Killeen, Zeming
Lin, Natalia Gimelshein, Luca Antiga, et al. Pytorch: An im-
perative style, high-performance deep learning library. Ad-
vances in neural information processing systems, 32, 2019.
7

[40] Rudra PK Poudel, Stephan Liwicki, and Roberto Cipolla.
Fast-scnn: Fast semantic segmentation network. arXiv
preprint arXiv:1902.04502, 2019. 9

[41] Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-
net: Convolutional networks for biomedical image segmen-
tation. In Medical Image Computing and Computer-Assisted
Intervention–MICCAI 2015: 18th International Conference,
Munich, Germany, October 5-9, 2015, Proceedings, Part III
18, pages 234–241. Springer, 2015. 1, 9

[42] Mark Sandler, Andrew Howard, Menglong Zhu, Andrey Zh-
moginov, and Liang-Chieh Chen. Mobilenetv2: Inverted
residuals and linear bottlenecks. In CVPR, 2018. 5

[43] Zhuoran Shen, Mingyuan Zhang, Haiyu Zhao, Shuai Yi,
and Hongsheng Li. Efficient attention: Attention with lin-
ear complexities. In Proceedings of the IEEE/CVF winter
conference on applications of computer vision, pages 3531–
3539, 2021. 3

[44] Mingxing Tan and Quoc Le. Efficientnet: Rethinking model
scaling for convolutional neural networks. In ICML, 2019.
6, 9

[45] Mingxing Tan and Quoc Le. Efficientnetv2: Smaller models
and faster training. In International Conference on Machine
Learning, pages 10096–10106. PMLR, 2021. 6

[46] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszko-
reit, Llion Jones, Aidan N Gomez, Łukasz Kaiser, and Illia
Polosukhin. Attention is all you need. In NeurIPS, 2017. 3,
4

[47] Jingdong Wang, Ke Sun, Tianheng Cheng, Borui Jiang,
Chaorui Deng, Yang Zhao, Dong Liu, Yadong Mu, Mingkui
Tan, Xinggang Wang, et al. Deep high-resolution repre-
sentation learning for visual recognition. IEEE transactions
on pattern analysis and machine intelligence, 43(10):3349–
3364, 2020. 1, 9

[48] Sinong Wang, Belinda Z Li, Madian Khabsa, Han Fang, and
Hao Ma. Linformer: Self-attention with linear complexity.
arXiv preprint arXiv:2006.04768, 2020. 3

[49] Tianzhe Wang, Kuan Wang, Han Cai, Ji Lin, Zhijian Liu,
Hanrui Wang, Yujun Lin, and Song Han. Apq: Joint search
for network architecture, pruning and quantization policy. In
CVPR, 2020. 9

[50] Yihan Wang, Muyang Li, Han Cai, Wei-Ming Chen, and
Song Han. Lite pose: Efficient architecture design for 2d
human pose estimation. In Proceedings of the IEEE confer-
ence on computer vision and pattern recognition, 2022. 1

[51] Enze Xie, Wenhai Wang, Zhiding Yu, Anima Anandkumar,
Jose M Alvarez, and Ping Luo. Segformer: Simple and
efficient design for semantic segmentation with transform-
ers. Advances in Neural Information Processing Systems,
34, 2021. 1, 2, 7, 8

[52] Changqian Yu, Jingbo Wang, Chao Peng, Changxin Gao,
Gang Yu, and Nong Sang. Bisenet: Bilateral segmentation
network for real-time semantic segmentation. In Proceed-
ings of the European conference on computer vision (ECCV),
pages 325–341, 2018. 9

[53] Fisher Yu and Vladlen Koltun. Multi-scale context
aggregation by dilated convolutions. arXiv preprint
arXiv:1511.07122, 2015. 1, 9

[54] Yuhui Yuan, Xilin Chen, and Jingdong Wang. Object-
contextual representations for semantic segmentation. In
European conference on computer vision, pages 173–190.
Springer, 2020. 1, 9

[55] Yuhui Yuan, Rao Fu, Lang Huang, Weihong Lin, Chao
Zhang, Xilin Chen, and Jingdong Wang. Hrformer: High-
resolution vision transformer for dense predict. Advances in
Neural Information Processing Systems, 34, 2021. 2, 7, 8

[56] Syed Waqas Zamir, Aditya Arora, Salman Khan, Mu-
nawar Hayat, Fahad Shahbaz Khan, and Ming-Hsuan Yang.
Restormer: Efficient transformer for high-resolution image
restoration. In Proceedings of the IEEE/CVF Conference

17312

on Computer Vision and Pattern Recognition, pages 5728–
5739, 2022. 8, 9

[57] Hengshuang Zhao, Xiaojuan Qi, Xiaoyong Shen, Jianping
Shi, and Jiaya Jia. Icnet for real-time semantic segmenta-
tion on high-resolution images. In Proceedings of the Eu-
ropean conference on computer vision (ECCV), pages 405–
420, 2018. 9

[58] Hengshuang Zhao, Jianping Shi, Xiaojuan Qi, Xiaogang
Wang, and Jiaya Jia. Pyramid scene parsing network. In
Proceedings of the IEEE conference on computer vision and
pattern recognition, pages 2881–2890, 2017. 1, 7, 9

[59] Bolei Zhou, Hang Zhao, Xavier Puig, Sanja Fidler, Adela
Barriuso, and Antonio Torralba. Scene parsing through
ade20k dataset. In Proceedings of the IEEE conference on
computer vision and pattern recognition, pages 633–641,
2017. 5

[60] Lin Zhou, Haoming Cai, Jinjin Gu, Zheyuan Li, Yingqi Liu,
Xiangyu Chen, Yu Qiao, and Chao Dong. Efficient image
super-resolution using vast-receptive-field attention. arXiv
preprint arXiv:2210.05960, 2022. 8, 9

[61] Barret Zoph and Quoc V Le. Neural architecture search with
reinforcement learning. In ICLR, 2017. 9

17313

