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Abstract

Nonlinear Activation (Act) models which help fit the un-
derlying mappings are critical for neural representation
learning. Neuronal behaviors inspire basic Act functions,
e.g., Softplus and ReLU. We instead seek improved explain-
able Act models by re-interpreting neural feature Act from a
new philosophical perspective of Multi-Criteria Decision-
Making (MCDM). By treating activation models as selec-
tive feature re-calibrators that suppress/emphasize features
according to their importance scores measured by feature-
filter similarities, we propose a set of specific properties
of effective Act models with new intuitions. This helps us
identify the unexcavated yet critical problem of mismatched
feature scoring led by the differentiated norms of the fea-
tures and filters. We present the Instantaneous Importance
Estimation Units (IIEUs), a novel class of interpretable Act
models that address the problem by re-calibrating the fea-
ture with the Instantaneous Importance (II) score (which
we refer to as) estimated with the adaptive norm-decoupled
feature-filter similarities, capable of modeling the cross-
layer and -channel cues at a low cost. The extensive experi-
ments on various vision benchmarks demonstrate the signif-
icant improvements of our IIEUs over the SOTA Act models
and validate our interpretation of feature Act. By replacing
the popular/SOTA Act models with IIEUs, the small ResNet-
26s outperform/match the large ResNet-101s on ImageNet
with far fewer parameters and computations.

1. Introduction
Nonlinear Act models are the foundation for the un-

precedented success of neural networks in pattern recogni-
tion tasks [11, 46, 43, 7]. The choice of the Act model is a
decisive yet non-trivial factor in the performance of a neu-
ral network. Basic methods such as ReLU [38] and Soft-
plus [16] are originated from neuronal behaviors [44, 27].
Based on them, past works have proposed to improve
Act models with channel context (e.g., FReLU [32], Dy-
ReLU [10] and ACONs [31]), statistical strategies (e.g.,
GELU [22], Pserf [4], and SMU [5]), and task-specific
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Figure 1. ImageNet Top-1 Accuracy (Acc.) relative improvements
compared with the ReLU [38] baselines and SOTAs (Swish [40],
ACONs [31](CVPR’21), and SMU [5](CVPR’22)) with (1) Mo-
bileNetV2 [42] (MNv2) 0.17ˆ and 1.0ˆ; (2) ShuffleNetV2 [33]
(SNv2) 1.0ˆ; (3) ResNet-14, -26, and 50 [21]. We show the
ReLU baseline results by “(Acc.(%); parameters(M))”. Our IIEUs
achieve the new SOTA improvements to the ReLU baselines and
outperform the SOTAs remarkably, with negligible/marginal addi-
tional parameters to ReLU (shown by the relative areas of the cir-
cular patterns, where each ReLU network denotes the unit area).

periodic functions [35, 45]. Existing methods, however,
still leave critical problems in the optimal decision on Act
models. As a major reason, although several past ef-
forts [37, 2, 19] suggested extending Act models with dy-
namic approximators, it still lacks tailored interpretations
to help specify the properties of effective Act models for
pattern recognition. These specific properties, however, are
difficult to be identified from pure biological intuitions.

To explore new improvements in feature Act, we rethink
neural operations from MCDM (a typical problem in oper-
ational research) [41, 39, 26, 15, 9, 50]. As a core of our
interpretation, we treat a nonlinear Act model as a selec-
tive re-calibrator that suppresses or emphasizes features ac-
cording to their importance. Such importance, in fact, is
first modeled by the feature-filter inner product which sup-
poses to indicate the similarity of the feature to the filter.
However, differentiated feature and filter norms can signifi-
cantly bias the similarities modeled with feature-filter inner-
products, thus likely interfering with the estimation of ac-
tual feature importance. We identify this as a critical yet
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unexcavated problem, namely mismatched feature scoring
(as discussed in Figure 2(a)), which we infer from our in-
terpretation and otherwise invisible to past explanations.

To address the problem, we propose a set of specific
properties of effective Act models with new intuitions and
introduce the initial solution i.e., a novel kind of explicable
Act models which we refer to as the IIEUs, to selectively
re-calibrate features with an adaptive norm-decoupled im-
portance measure. Specifically, we first treat each feature-
filter inner product (suppose without biases and normaliza-
tion layers) as a Transitive Importance (TI) score, as its in-
put feature vector is de facto determined by a series of prior
learning factors (e.g., the initial input, filters and Acts of the
prior layers) and transmits their cues. We then estimate the
corresponding norm-decoupled Instantaneous Importance
(II) score with a low-cost adaptive shift term that incor-
porates mild learning adjustments. Finally, the feature Act
is realized by multiplying each TI-score with the II-score.
This feature re-calibration preserves meaningful prior learn-
ing information carried by the TI-scores yet eliminates the
negative effect led by the mismatched feature scoring prob-
lem. Note that we formalize the mismatched feature scoring
problem and TI-, II-scores in Section 2.

The contributions of this work are 3-fold: (1) We pro-
pose to interpret neural feature Act from MCDM, where
we identify the unexplored problem of mismatched feature
scoring and introduce a set of specific properties with our
intuitions to help explain the working mechanism of Act
models. (2) We present explainable IIEU(s) as the ini-
tial solution to the problem identified from (1). (3) We
extensively validate the (a) effectiveness and versatility of
IIEUs with various vision benchmarks, where IIEUs signif-
icantly improve the SOTA Act models; (b) our interpreta-
tion with targeted ablation studies. Code is disseminated at
https://github.com/SudongCAI/IIEU.

2. Rethinking Feature Activation from MCDM
We aim to interpret neural feature Act from MCDM, find

the unexplored critical problem, and propose our novel Act
model by addressing the new problem. We first clarify our
Intuitions and their induced Properties. We then present our
IIEU constructed on them. With the preliminaries, we for-
malize the Properties with Definitions and Propositions,
where the Deductions and Proofs are detailed in the Ap-
pendix (in Supp, marked by B). For coherence, we dis-
cuss the related works in Section 3 with our interpretation.

2.1. Preliminaries

We consider the simple settings with image inputs: (1)
A network has T sequential learning layers indexed by τ “

1, 2, . . . , T . Let Xτ
P RCτ

ˆHτ
ˆLτ

which has Cτ channels
and a spatial resolution ofHτ ˆLτ denote the input feature
map of the layer-τ . (2) Let xτ`1

c ph, lq :“ ϕ px̃τc ph, lqq de-

note the learning of the layer-τ at a given location ph, lq P

ΩHτ ˆLτ with the c-th filter wτ pcq P RCτ

and feature vec-
tor xτ ph, lq P RCτ

, where x̃τc ph, lq “ xwτ pcq,xτ ph, lqy

denotes the inner product and ΩHτ ˆLτ is the spatial lat-
tice of Xτ . Note that the layer-τ includes a total of Cτ`1

filters. ϕ : R Ñ R is a given Act function and we suppose
ϕ px̃τc ph, lqq “ ρ px̃τc ph, lqq x̃τc ph, lq, where ρ : R Ñ R
defines the reweighting function of ϕ about x̃τc ph, lq.

Note that (1) we first leave aside normalization layers
(e.g., BN [25] and LN [3]) and biases for simplicity and
will consider them in Section 2.3 (Method). (2) for region-
dependent learning with a K ˆ K convolution, we meet
the supposed settings by vectorizing the neighborhood of
features/filters from size Cτ ˆ K ˆ K to Cτ ¨ K2. From
MCDM, we treat (1) a filter wτ pcq as an updatable ideal
candidate1 of the c-th group of criteria (i.e., theCτ channels
of wτ pcq); (2) a feature vector xτ ph, lq as an alternative
candidate whose importance score about a group of criteria
is measured by the feature-filter similarity, i.e., Alternative-
Ideal (A-I) similarity. Following we omit the layer index τ
and spatial coordinate ph, lq to simplify the notations for
the operations of layer-τ (e.g., we denote xτ ph, lq, wτ pcq,
and x̃τc ph, lq by x, w, and x̃, respectively).

For clarity, as for x̃ “ xw,xy, we suppose the influ-
ence of a candidate on the inferencing and filter updating
can be quantified as x̃ and x, where the corresponding in-
tensities are |x̃| and }x}, respectively, as (1) the difference
of two vectorial candidates in a standard neural network can
be measured by Euclidean distance; (2) the influence of x
on the updating of w can be controlled by ∇w xw,xy “ x.

In particular, the supposed settings can be extended to
the case: ϕ px̃, ‚q “ ρ px̃, ‚q x̃, ϕ, ρ : 9D Ñ R, where 9D de-
notes the extended domain of x̃ with other given real vari-
ables/constants (denoted by ‚), if (1) ϕ and ρ are still func-
tions about x̃ when the values of other variables are given;
(2) ρ is continuous and differentiable about x̃ or at most has
a finite number of points where the left- and right-hand lim-
its exist but are unequal; (3) for a non-differentiable point on
ρ, let the single-side derivative of the side where the point
is defined be the derivative for calculation. In the following,
we omit “‚” (e.g., denote ϕ px̃, ‚q as ϕ px̃q) if not specified.

2.2. IIEU: Intuitions and Properties

We begin by rethinking “nonlinearity,” the foundation of
neural feature Act, from MCDM:

Intuition 1. The “Nonlinearity” of feature Act can be inter-
preted as a “loose selectivity” that is necessary but not suf-
ficient to differentiate features by their importance scores.

“Nonlinearity” is indispensable for the learning of dis-
criminative neural representations. The mathematically ab-

1With the given conditions, the ideal candidate in MCDM [26, 49, 39,
41] denotes the acquirable/virtual optimal choice capable of quantitatively
measuring the performance of an alternative candidate by the similarity.
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Figure 2. Illustration of the intuitions for IIEU. Suppose w/o normalization layers and biases. The shades of colors denote the intensities
(the darker the higher and positive if w/o “(–)”), where “orange,” “purple,” “aqua,” and “olive” denote features, filters, importance scores,
and the parameters of the term-B. (a) Mismatched feature scoring problem: it is possible to find feature vectors x,y and filters w,u s.t.
xu,yy " xw,xy and xw,yy " xw,xy, where y is far dissimilar to u and w compared with x to w, due to the significant differences of
the norms. (b) Intuition 1: a “nonlinear” Act model does not be specified to suppress/emphasize candidates with their expected importance.
(c) An example of typical Act model, where x̃ is directly applied as the approximated similarity ϱ̂ px̃q and the (a) is left unsolved. (d) and
(e) IIEU eliminates the (a) by scoring feature with the adaptive norm-decoupled approximated similarity, such that the influence of x are
relatively emphasized by assigning higher scores compared to y. (f) Properties of the term-B: u˚,ν˚ denote the (virtual) optimal u,ν for
u,ν to approach in training, respectively. we suppose ν to be updatable, positive, and bounded since (1) the perfectness of filters as ideal
candidates cannot be ensured (as discussed with Intuition 3); (2) we identify the positive translation to the codomain of the approximated
similarity ϱ̂ px̃q help to selectively suppress/emphasize the influence of targeted candidates; (3) a bounded ν ensures that the contribution
of the bounded main term-S will not be neutralized by the auxiliary ν (as further discussed in Section 2.3 with the ablation study (4)).

solute “nonlinearity,” however, can also be brought by other
basic operations, e.g., BN [25], LN [3], and the biases of lin-
ear layers. From MCDM, as for Act model, non-important
candidates are likely to be scored with negative A-I inner
products, where the candidates with intense negative inner
products are possible to deteriorate the learning (B). This
necessitates a selective re-calibration to suppress/preserve
the harmful/positive influence, respectively. Our Intuition 1
aims at bridging the meaning of “Nonlinearity” to “Selec-
tivity” with the Proposition 1:

Definition 1. For a function ρ : R Ñ R, we refer to this ρ as
a function that holds Loose Selectivity (on R) if: Dx̃, ỹ P R
while x̃, ỹ ‰ 0 and x̃ ‰ ỹ such that (s.t.) ρ px̃q ‰ ρ pỹq.

Proposition 1. B For a given ρ and ϕ : ϕ px̃q “ ρ px̃q x̃,
then, ρ satisfies Definition 1 ðñ ϕ is nonlinear about x̃.

Proposition 1 helps us to identify the meaning of a
nonlinear Act model as a selective re-calibrator, where its
reweighting function ρ can assign unequal weights to dif-
ferent A-I inner products. However, this “loose selectively”
is not yet sufficiently specified to suppress/emphasize can-
didates based on their measured importance scores (Fig-
ure 2(b)), thus our goal is to suggest improved selectivity
by proposing specific properties with further intuitions.

Intuition 2. There exists an A-I similarity measure ϱ px̃q

capable of completely reflecting the importance of x̃ about
its criteria, which we refer to as the ideal similarity.

By assuming the existence of ϱ which satisfies:
• For any given alternative and ideal candidates x,y and
w,v, suppose x̃ “ xw,xy and ỹ “ xv,yy. If ϱ px̃q ě

ϱ pỹq, then, x has higher/equal importance than y about
their importance measure criteria,

we specify the reweighting function as ρ px̃q “ ς pϱ px̃qq,
where ς is an adjuster function that casts suitable con-
straints on the codomain of ϱ such that:
Property 1. |ς pϱ px̃qq| ě |ς pϱ pỹqq| if ϱ px̃q ě ϱ pỹq.

Where ϱ px̃q is continuous and differentiable at x̃,@x̃ P

R; ς pϱ px̃qq is continuous and differentiable about ϱ px̃q

on the domain (or at most has finite points where the left-
and right-hand limits of the function exist but are unequal).
Note that Property 1 is ensured by ς , as the monotonicity of
|ϱ px̃q| about ϱ px̃q is uncertain. Moreover, Property 1 can
be met with a simplified condition, i.e.,

Proposition 2. B Property 1 ðñ (1) ς pϱxq is (monotoni-
cally) non-decreasing about ϱx ^ ς pϱxq ě 0 _ (2) ς pϱxq

is (monotonically) non-increasing about ϱx ^ ς pϱxq ď 0
(ϱx denotes ϱ px̃q; ^ denotes “and;” _ denotes “or”).

In particularly, we discuss ς pϱ px̃qq ě 0 (i.e., ς pϱ px̃qq is
lower-bounded) without loss of generality.

As for real-world application, we identify the suitable
approximation to the ideal similarity ϱ px̃q (denoted by
ϱ̂ px̃q) a critical problem, as ϱ px̃q is difficult to be deter-
mined or may not exist, which lies in the fact that the
underlying mappings of neural learning can be extremely
complex. Accordingly, we propose our fundamental intu-
ition to introduce the approximated similarity ϱ̂ px̃q of IIEU
with Property 1:
Intuition 3. Mismatched feature scoring. Typical Act
functions directly apply A-I inner product x̃ as ϱ̂ px̃q (sup-
pose w/o normalization layers and biases, Figure 2(c)).
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However, we identify A-I inner product can be largely bi-
ased by the norms of features or/and filters. This can lead to
unreliable importance scoring for features. We refer to this
problem as the mismatched feature scoring (Figure 2(a)).

We clarify Intuition 3 with the Transitive and Instan-
taneous Importance (TI and II) scores. We refer to each
A-I inner-product x̃ as an TI-score, as its input feature x is
in fact determined by a series of prior learning factors (e.g.,
the initial input and filters of the prior layers). That is, TI-
score which transmits prior layer information does not ex-
actly measure the current importance of x about the criteria
of w, as x̃ can be drastically biased by the norms }x} and
}w}. In contrast, we suppose II-score measures the current
importance of x with its norm-independent similarity to w.

We identify the cosine similarity, i.e., cos θw,x “ x̃
}w}}x}

a suitable II-score, with the prerequisite that the filter w is
a perfect representative for its criteria (i.e., channels). The
perfectness of filters in reality, however, cannot be ensured,
especially in the early/medium training stages where filters
are far from being optimized. This weakens the reliability
of the vanilla cosine similarity. To eliminate this critical
problem, we propose IIEU equipped with an adaptive term
to enable flexible II-score estimation (Figure 2(d) and 2(e)):

ϕ px̃q “ ς

ˆ

x̃

}x} }w}
` ν

˙

x̃ , (1)

where we suppose }x} }w} ą 0; ν is an updatable bias term
with specific constraints (as described in Figure 2(f)) to per-
form adaptive shifts, i.e., we propose to estimate II-score by
ρ px̃q “ ς

´

x̃
}x}}w}

` ν
¯

, where the approximated similar-

ity ϱ̂ px̃q “ x̃
}x}}w}

`ν. Then, IIEU realises norm-decoupled
feature Act by rectifying (i.e., multiplying) the TI-score x̃
with the II-score adapted to the training conditions. Partic-
ularly, we refer to these x̃

}x}}w}
and ν as the main similarity

term (term-S) and auxiliary bias term (term-B), respec-
tively. More generally, we let x̃ “ ψ pxw,xyq if with bi-
ases or normalization layers (denoted by ψ) applied to
the A-I inner product. This differs term-S from the co-
sine similarity, yet not changes its meaning of importance
scoring, as we suppose the decoupling of the norms of fea-
tures/filters as the essence to eliminate the transitive biases.

Next, we discuss further properties to embody the term-B
ν and adjuster ς by specifying the relationships of the ideal
similarity ϱ and its adjuster ς , with the preceding deduc-
tions and new intuitive assumptions, termed as Constraint
on Negative Influence (CNI), Preservation on Positive
Influence (PPI), and Oriented Discriminativeness (OD):

Intuition 4. BCNI: We suppose any non-important candi-
date have constrained influence.

Intuition 5. BPPI: We suppose any important candidates
x,y with close importance scores ϱ px̃q and ϱ pỹq will have

comparable influence, i.e., the influence of the one with
lower weight will not be covered by the higher one.

Intuition 6. BOD: We suppose the core of the Act model,
i.e., the reweighting function ρ, has a sufficient capability to
differentiate between important/non-important candidates.

The intuitions 4, 5, and 6 suggest three dependent con-
straints on the influence of negative and positive candidates,
which we formalize as three Properties, i.e., (CNI), (PPI),
and (OD), and two corresponding Propositions that further
specify the Properties for practical IIEUs, with supposing
a set of simple constraints: (1) ϕ p´8q “ 0 (i.e., we adopt
the boundedness constraint for self-gated Act functions [48]
to ensure the stability and convergence of training, with the
pre-condition that ρ px̃q is lower-bounded; (2) ∇x̃ϱ px̃q is
bounded; (3) ϱ px̃q

´1
x̃ is bounded at @ϱ px̃q ‰ 0 (as de-

tailed in the AppendixB).
Next, we present IIEU-B and IIEU-DC as two practical

IIEU derivatives, built based on the suggested intuitions and
properties. In particular, as II-score built upon the proposed
approximation to the ideal similarity (i.e., ϱ̂ p¨q), we suppose
a loosened Property 1 to bring additional learning flexibility,
i.e., ς pϱ̂ px̃qq is possible to have small negative values and
be non-monotonic about |ϱ̂ px̃q| at |ϱ̂ px̃q| ď |η|, where η
denotes a given threshold close to 0.

2.3. Practical Method

We present IIEU-B as the initial practical IIEU (Figure 3)
and IIEU-DC (Dynamic Coupler) Figure 4 as a tailored
enhancement to IIEU-B. In the subsequent, we introduce
IIEU-B and IIEU-DC in detail.

Formulation. We propose IIEU-B built on the proto-
type of IIEU (Equation (1)) described in Section 2.2, by
embodying the term-B ν and the adjuster ς with the pro-
posed properties. Specifically, for IIEU-B, we let term-B be

ν “ δ
´

LN
´

avgpool
´

X̃c

¯¯¯

, (2)

where LN denotes the LayerNorm [3] to perform flexible
channel-dependent scaling and shift to channel statistics
with negligible cost. δ is Sigmoid function to cast upper-
bounded positive constraint on channel statistics to help
meet the supposed properties (Figure 2(f)). Moreover, with
the prior that ϱ̂ px̃q of IIEU-B is bounded, we propose a suit-
able conditional adjuster ς to meet the proposed Properties:

ς pϱ̂xq “

"

ϱ̂x, ϱ̂x ě η
η exp pϱ̂x ´ ηq , ϱ̂x ă η

, (3)

where ϱ̂x denotes ϱ̂ px̃q and η a learnable threshold shared
within each channel, initialized by a small value (0.05
by default). Note that (1) ς pϱ̂xq is continuous about ϱ̂x
if the domain of ϱ̂x is continuous, as limϱ̂x´ηÑ0´ “

limϱ̂x´ηÑ0` “ η; (2) we suppose the right-hand derivative
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Figure 3. Operational illustration of IIEU-B. “Elem” and “Mult” denote “Element-wise” and “Multiplication,” respectively.

as the derivative at ϱ̂x “ η (Section 2.1); (3) the influence
of any candidate with ϱ̂x ď η will be silenced if η “ 0.

BBoundedness of ρ px̃q. We suppose the boundedness
of II-score ρ px̃q as a pre-condition for Intuitions 4, 5, and 6
to ensure training stability. As for IIEU-B, as ν is bounded
and ς is conditionally linear about ϱ̂x for ϱ̂x ą η, the
boundedness of ρ px̃q is solely determined by the term-S.
For generality, we discuss the common case that Batch-
Norm [25] is applied, i.e., with the channel scaling and
shift factors γ, β P R (extensible to LayerNorm [3]). Let
E “ }x} }w} ‰ 0, the codomain of term-S is calculated as:

´ |r| `
β ´ rµ

E
ď
x̃

E
ď |r| `

β ´ rµ

E
, (4)

where r “
γ
σ ; σ ‰ 0 and µ denote the standard deviation

and mean of x̃ for channel-c. That is, we can calculate both
the upper- and lower-bound of term-S with the factors γ and
β whose values are constrained by the weight-decay (i.e.,
L2-regularization) in the training phase. Unlike the cosine
similarity with a range r0, 1s, the range of term-S can be
broader. Moreover, as the adjuster ς constrains ρ pϱ̂xq ă η
for ϱ̂x ă η, the II-score can adaptively emphasize/suppress
the informative/meaningless candidates.

BAnalysis for term-S and -B from filter updating. We
suppose term-B to be bounded to prevent it from neutral-
izing the contribution of the term-S (Figure 2(f)). In this
paragraph, we first discuss the case that ϱ̂x ě η, i.e.,
ςpϱ̂xq “ ϱ̂x s.t. ϕ px̃q “ ς

´

x̃
}x}}w}

` ν
¯

x̃ “ x̃
}x}}w}

x̃`νx̃.
Further, we simplify the case of comparing term-B and -
S by considering x̃ “ xw,xy without loss of generality,
as they share the same BN layers. Note that we discuss
the derivatives about w and denote the term-S and -B by
s pwq “ x̃

}x}}w}
and ν pwq “ δ pLN p¯̃xqq, respectively,

where ¯̃x denotes the mean statistic for channel-c and δ is
the Sigmoid function. Moreover, we approximate the op-
eration of LN by LN p¯̃xq “ 9γ p¯̃xq ` 9β, where 9γ and 9β are
the scaling and shift factors of the LN layer. Then, we can
calculate the (partial) derivative about w of s pwq as:

∇ws pwq “
}w}

2
x ´ wwTx

}x} }w}
3 , (5)

where T denotes matrix/vector transpose. Correspondingly,

we calculate the derivative about w for term-B as:

∇wν pwq “ δ
´

9γwTx̄ ` 9β
¯ ´

1 ´ δ
´

9γwTx̄ ` 9β
¯¯

9γx̄ ,

(6)
where x̄ “ avgpool pXq P RC denotes the vectorial chan-
nel mean statistics of the feature map X. Particularly, we
can expand the top-right term in Equation (5) as:

wwTx “

´

ÿC

c“1
wcxc

¯

w . (7)

That is, we identify term-S enabling each neuron to model
detailed cross-channel feature-filter interactions at every
spatial coordinate and leverage these informative cues to
improve the filter updating. In contrast, as a control group,
we calculate the derivative about w of ReLU [38] as:

∇wReLU px̃q |xw,xyą0“ x , (8)

where ReLU is shown to model channel-independent infor-
mation only and lacks the capability to improve filter updat-
ing with inter-channel relationships.

Next, we discuss the function of term-B from filter up-
dating, which de facto realizes aligned adaptive adjustments
to the term-S with statistical inter-channel information. As
the representative of long-range channel cues, term-B, how-
ever, does not provide the instance details about the fea-
tures, hence it may dilute the contribution of the term-S
if has excessive derivative about the filter. We propose
to eliminate this problem by casting a positive constraint
on the term-B with Sigmoid. Specifically, as the terms
}w}

2
x and wwTx in Equation (5) are composed of the

same member vectors (i.e., w and x), without loss of gen-
erality, we suppose wwTx “ ´α }w}

2
x, α P R and we

have ∇ws pwq “
}w}

2x`α}w}
2x

}x}}w}3
“ 1`α

}x}}w}
x. Then, we

can calculate the average contribution of term-S to the up-
dating of filter w as:

ˇ

ˇ
¯∇ws pwq

ˇ

ˇ “

ˇ

ˇ

ˇ

1`α
}x̄}}w}

ˇ

ˇ

ˇ
|x̄|. With

the preceding conditions, we have an conditional corollary:
ˇ

ˇ

ˇ

1`α
}x̄}}w}

ˇ

ˇ

ˇ
ě 1

4 | 9γ| ùñ
ˇ

ˇ
¯∇ws pwq

ˇ

ˇ ě |∇wν pwq|, because

∇w |ν pwq| ď 1
4 | 9γ| |x̄|. In particular, with the two criti-

cal priors: (1) the range of value of learnable parameters
are tightly constrained by the L2-regularization of a small
weight-decay (e.g., 1ˆ10´4 for ImageNet experiments); (2)
| 9γ| is usually a small value fallen in 10´1 level, we suppose
}x̄} , }w} ă 1 in common, so that

ˇ

ˇ

ˇ

1`α
}x̄}}w}

ˇ

ˇ

ˇ
ą |1 ` α| ě
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Figure 4. DC operations. ¯̃x, ¯̃q P R denote the vectorial channel statistics of the main branch feature map X̃ and the residual feature map Q̃.

1
4 | 9γ| (i.e.,

ˇ

ˇ
¯∇ws pwq

ˇ

ˇ ě |∇wν pwq|) can be met easily.
This ensures the applicability of the term-B to IIEU-B.

Moreover, for ϱ̂x ă η, the relative relationship of the
term-S and -B about any given w preserves, as both have

Bς
Bϱ̂x

“
Bpη expϱ̂x´ηq

Bpϱ̂x´ηq

Bpϱ̂x´ηq

Bϱ̂x
“ η expϱ̂x´η , which still pre-

serves the applicability of the term-B to IIEU-B.
Dynamic Coupler. Recent neural networks usually

leverage the shortcut (i.e., residual) to transmit details of the
lower layers to the main branch of the current layer. The
estimated II-scores of the features from the main branch
and the shortcut, however, are un-calibrated before fusion
for their cross-layer relationships such that they possibly
meet compromised comparability in terms of importance
measure as we propose IIEU mainly to score alternative
candidates within the same layer. To address this prob-
lem, we propose the Dynamic Coupler (DC) module as a
tailor-made enhancement tool for IIEU-B. DC module is
a new lightweight joint-feature-gating model that dynami-
cally rectifies features of the main branch and the shortcut
with the channel contexts such that the cross-layers features
can be adaptively fused with calibrated intensities. In par-
ticular, we refer to the enhanced IIEU-B as IIEU-DC.

DC module works at a low-cost, which only employs a
joint-channel LayerNorm [3] with a small MLP (with a re-
duction ratio r defaulted by 16) to project the global chan-
nel statistics of the input main and shortcut features to the
adaptive channel weights. Specifically, DC aims to estimate
the channel-wise combination weights dynamically for the
effective fusion of the main and shortcut features by extend-
ing the channel attention mechanism [24] from

X̆c “ λ1,cX̃c ‘ Q̃c , (9)

i.e., a single-side channel weights estimation without in-
volving the contextual information of residual features, to

X̆c “ λ1,cX̃c ‘ λ2,cQ̃c , (10)

i.e., the double-side channel weights estimation that jointly
exploits the dual contextual cues of the main branch and
the residual features in an interactive manner, where ‘ de-
notes the element-wise summation. X̃c, Q̃c P RHˆL de-
note the main branch and residual feature matrices of the
c-th channel (i.e., the channel slices of the corresponding

feature maps), respectively. λ1,c, λ2,c P R denote the esti-
mated weights for the c-th main branch and shortcut feature
matrices, respectively. X̆c P RHˆL denotes the fused fea-
ture matrix of the c-th channel. In particular, we constrain
λ1,c ` λ2,c “ 1 by Softmax function. Note that besides
the clear differences in operations, the motivation of our
DC, i.e., to realize targeted dynamic weighted mixing of the
main branch and shortcut features, is also different from the
SK-Net [29] which generalizes SE-Net to merge multi-scale
features. The DC operations is illustrated in Figure 4

3. Related Work
In Section 2, we explore the possible working mecha-

nism of neural feature Act from MCDM with supposing
ϕ px̃q “ ς pϱ̂ px̃qq x̃. Based on it, we propose to catego-
rize the related methods of Act models by the different ad-
justers ς or/and approximated ideal similarities ϱ̂ px̃q they
introduced. As a prevailing practice, most of the popular
methods applied kx̃ as ϱ̂ px̃q, where k P R, and devoted to
presenting new variants of ς (i.e., ϕ px̃q “ ς pkx̃q x̃). In-
spired by neuronal behaviors, ReLU [38] is a maxout ap-
proximation to Softplus [16], whose ς is a binary mask of 0
and 1 for x̃ ď 0 and x̃ ą 0, respectively. LeakyReLU [34]
allows slight information leakage from the negative inter-
val to prevent dead tensors. PReLU [20] instead learns an
adaptive slope for the negative interval. Besides, ELU [13]
activates negative x̃ with an exponential function. Good-
fellow et al. [18] discussed the universal function approx-
imators with piecewise linear components. More recently,
PWLU [52] suggested a learnable piecewise linear adjuster.
Molina et al. [37] presented a versatile approximator for Act
functions (i.e., PAU) based on the Padé approximant [6].

ReLU also encouraged recent self-gated Act models.
SiLU [17] introduced the first Sigmoid-based ς to enable
smooth masking on x̃. Similarly, Swish [40] also consid-
ered a Sigmoid ς with an updatable slope k for x̃ to en-
able flexible fitting. Mish [36] proposed a recent smooth
ς , i.e., tanh psoftplus p¨qq. ACON-C [31] extended Swish
with the learnable upper/lower bounds for the gradient.
GELU [22] introduced the first Gauss-Error-Function-based
(ERF) smooth ς . GELU also inspired a series of SOTA Act
models, e.g., ErfAct/Pserf [4] and Smooth Maximum Units
(i.e., SMU-1 and SMU) [5], which are different kinds of
smooth variants/approximations to ReLU and GELU with
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Figure 5. Comparison of different Act models with ResNet (RN) backbones on ImageNet. IIEU-B and -DC are ours; ErfAct/Pserf
(AAAI’22) [4], ACON-C/Mt-ACON (i.e., Meta-ACON, CVPR’21) [31], PWLU (ICCV’21) [52], and SMU-1/SMU (CVPR’22) [5] are
SOTAs. We train our and compared Act models which have the public official projects with RN-14 and -26 from scratch using cfg-1 [51]
and report the results by “Top-1 Acc.(%); Params.(M)[cfg]”, where “p`¨q” show the improvements in Top-1 Acc. of our IIEUs over
the ReLU baselines. For RN-50, we report the official results for all the compared models (including the ReLU baselines w/ or w/o
SE-Net [24]) and implemented results for IIEUs with cfg-1 [51], -2 [31], and -3 [52], respectively. “NaN” denotes failed training; “N/A”
means non-applicable/unknown.

new ERF-based adjusters. These works achieved clear gains
to ReLU networks by introducing flexible smooth adjusters
ς . However, as discussed with Intuition 3, Act models that
apply kx̃ as the approximated similarities ϱ̂ px̃q will en-
counter the mismatched feature scoring problem which puts
an obstacle impeding them from further improvements.

Several recent works leveraged attention to activate fea-
tures, which we treat as presenting a class of approxi-
mated similarities ϱ̂ px̃q that tune x̃with content-based cues.
FReLU [32] encoded local spatial cues to rectify x̃ with
depth-wise convolutions. Dy-ReLU [10] introduced the SE-
Net-based [24] channel attention to improving feature acti-
vation. Meta-ACON [31] further extended Swish by gener-
alizing channel attention to learn a dynamic scaling factor
for x̃. These works generalized attention to enhance feature
activation, provided a promising design space, and realized
SOTA gains to ReLU networks. However, as the biasing
effects led by the norms occur before the attention, the mis-
matched feature scoring problem remains unsolved. In con-
trast, IIEU which presents the initial solution to the critical
problem achieves the new SOTA improvements with fewer
additional parameters.

More related to our work, Wu [48] comprehensively
analyzed the convergency, stability, and feasibility of the
non-monotonic self-gated Act models at a theoretical level,
which laid a solid foundation for our exploration. Wu
worked to explain past methods while did not present new
Act methods. Concurrently, in a different but related field,
Cho et al. [12] also found evidence from decision-making
to explain how neural networks capture temporal patterns in
channels. We agree with their explanations of neural oper-

ations and propose to interpret neural feature Act from the
new perspective of MCDM, in which we identify the un-
excavated yet critical mismatched feature scoring problem
and present our new Act model, IIEU, as its solution, en-
joying remarkable improvements to the SOTAs, based on
our new intuitions and the deduced properties of effective
feature Act (i.e., selective re-calibration).

4. Experiment
We evaluate the effectiveness and versatility of our IIEUs

on various vision benchmarks: ImageNet [14] and CIFAR-
100 [28] image classification; COCO [30] object detection
(in Supp); KITTI-Materials [8] road scene material seg-
mentation (in Supp). We validate our IIEU-B and IIEU-
DC through extensive experimental comparisons with the
popular and SOTA Act models which include (1) ReLU
families/derivatives: [16, 38, 34, 20]; (2) smooth/self-gated
models: [13, 22, 17, 40, 36, 5, 4]; (3) attention-based mod-
els: [10, 32, 31]; (4) others: [52, 37, 1]. We conduct tar-
geted ablation studies to validate the core components of
our IIEU-B, i.e. the proposed approximated similarity mea-
sure ϱ̂x and adjuster ς with the MCDM interpretation.

4.1. ImageNet Classification

Implementation details. We evaluate our IIEUs with
three kinds of networks, i.e., the popular ResNet [21] and
lightweight MobileNetV2 (MNV2) [42] and ShuffleNetv2
(SNV2) [33] of various sizes, where the baselines use
ReLU. To ensure fair comparisons with existing Act mod-
els trained with various configures, we adopt three different
basic configures applied in [51], [31], and [52] (denoted by
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Table 1. Comparison of different Act models on ImageNet using lightweight backbones. We train each of the networks with our IIEUs and
popular/SOTA act models from scratch using cfg-c. For SOTA competitors (Pserf (AAAI’22) [4] and SMU-1/SMU (CVPR’22) [5]), we
adopt their official model settings (i.e., the initialization strategies for learnable parameters and values of the hyper-parameters).

Backbone Method GELU[22] Swish[40] Mish[36] Pserf[4] SMU-1[5] SMU[5] ReLU[38] IIEU-B IIEU-DC

MobileNetV2 0.17ˆ [42] Top-1(%)Ò 52.9 53.7 53.1 52.6 51.7 54.2 49.7 58.0(+8.3) 58.1(+8.4)
Params. 1.4M 1.4M 1.4M 1.4M 1.4M 1.4M 1.4M 1.5M 1.5M

ShuffleNetV2 0.5ˆ [33] Top-1(%)Ò 61.5 61.8 61.5 60.8 60.2 61.8 59.9 65.8(+5.9) 66.8(+6.9)
Params. 1.4M 1.4M 1.4M 1.4M 1.4M 1.4M 1.4M 1.4M 1.4M

Table 2. Comparison of Act models with cfg-2 [31]. We compare
IIEUs with ResNet-26 and -50 backbones to the official results of
the popular/SOTA Act models with the large ResNet-101.

Method Backbone Params. FLOPs Top-1(%)Ò

ReLU [38]

ResNet-101 [21]

44.5M 7.6G 77.2
PReLU [20] 44.5M 7.6G 77.3
Swish [40] 44.5M 7.6G 77.3
FReLU [32] 45.0M 7.8G 77.9
ACON-C [31] 44.6M 7.6G 77.9
Mt-ACON [31] 44.9M 7.6G 78.9

IIEU-B (ours) ResNet-50 [21] 25.6M 4.2G 79.2
IIEU-DC (ours) 28.3M 4.2G 79.8

IIEU-B (ours) ResNet-26 [21] 16.0M 2.4G 77.3
IIEU-DC (ours) 17.5M 2.4G 78.3

Table 3. Comparing IIEUs with ReLU baseline and SOTA Act
models on ShuffleNetV2 (SNV2) with cfg-l [42].

Method Mish SMU-1 SMU Mt-Acon ReLU IIEU-B IIEU-DC

SNV2 Top-1(%)Ò 70.5 71.2 71.9 72.1 69.4 73.3(+3.9) 74.0(+4.6)
1.0ˆ Params. 2.3M 2.3M 2.3M 2.6M 2.3M 2.5M 2.6M

cfg-1, -2, and -3, respectively, as detailed in Supp) to train
ResNets equipped with IIEU-B and IIEU-DC, respectively.
We train MobileNetV2(s) and ShuffleNetv2(s) with two dif-
ferent configures, where the former is a standard configure
used in [23, 42, 33, 5, 32, 31] and the later replaces the
linear learning rate scheduler in the former with the cosine
scheduler (denoted by cfg-l and –c, respectively). This al-
lows us to investigate the stability of Act models in different
training conditions. We follow the common practice to train
and test all the implemented networks with an image size of
224 ˆ 224 and report our results and the official results for
the compared methods by Top-1 Accuracy (Acc.) with one
decimal place. Experiments are conducted on a computer
with 4ˆ A6000 GPUs.

Experimental results. Figure 5 and Tab. 1, 2, 4, 3 report
the comparative results of our and the popular/SOTA Act
models with various networks on ImageNet, where we have
three major observations: (1) IIEUs remarkably improve the
popular and SOTA Act models on different networks with
negligible/marginal additional cost to the ReLU baselines
(as detailed in Supp, where we show IIEU-B ResNets add

Table 4. Comparing IIEUs with ReLU baseline and SOTA Act
models on MobileNetV2 (MNV2) with cfg-l [42].

Method MobileNetV2 0.17ˆ [42] MobileNetV2 1.0ˆ [42]

Params. FLOPs Top-1(%)Ò Params. FLOPs Top-1(%)Ò

PWLU [52] N/A N/A N/A N/A N/A 74.7
ACON-C [31] 1.5M 48M 51.1 3.6M 350M 73.6
Mt-ACON [31] 1.9M 51M 53.8 3.9M 359M 75.0
ReLU [38] 1.4M 39M 49.7 3.5M 320M 72.1

IIEU-B (ours) 1.5M 46M 58.1(+8.4) 3.6M 344M 75.8(+3.7)
IIEU-DC (ours) 1.5M 47M 58.7(+9.0) 3.6M 345M 76.2(+4.1)

only 0.3% parameters and 1.3% FLOPs to the ReLU coun-
terparts). On ResNet-14, MobileNetV2 0.17ˆ, and Shuf-
fleNetv2 0.5ˆ, IIEU-B and -DC improve ReLU by {4.5%,
8.3%, 5.9%} and {6.1%, 8.4%, 6.9%}, respectively. It is
worth noting that the improvements of our IIEUs to the SO-
TAs on some of the networks (e.g., MobileNetV2, ResNet-
14, and ResNet-26) are more significant than the SOTAs to
the ReLU baselines. (2) With IIEUs, the small ResNet-26s
outperform/match the deeper ResNet-50s and -101s with
the SOTA Act models and the ResNet-50s enjoy clear im-
provements over the large ResNet-101s, where IIEU-B and
-DC achieve the high Top-1 Acc. of {79.7%, 79.2%,
79.2%} and {80.3%, 79.8%, 80.0%} trained with cfg-1,
-2, and -3, respectively. (3) IIEUs are highly stable with dif-
ferent training configures and consistently outperform the
SOTA activation models by a clear margin on different net-
works. We show the accuracy and loss curves in Supp,
where IIEUs not only reach the highest Top-1 Acc. but also
draw the steepest slopes of optimization. This validates our
IIEU for neural feature activation.

4.2. CIFAR-100 Classification

Implementation details. We evaluate different Act
models with the public CIFAR versions [47] of ResNets and
ShuffleNetV2, which contain fewer parameters than the Im-
ageNet networks. For fair comparisons, we train our and
each compared model from scratch with the same standard
training configures (as detailed in Supp) with basic data
augmentations used in [29].

Experimental results. As shown in Table 5, our IIEUs
significantly improve all the popular and SOTA Act models
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Table 5. Comparison of different Act models on CIFAR-100. We train each model 8 times and report the mean ˘ std of the Top-1.

Method Params. ELU[13] PReLU[20] GELU[22] SiLU[17] Swish[40] Mish[36] SMU[5] SMU-1[5] Pserf[4] AN-C[31] Mt-AN[31] ReLU[38] IIEU-B IIEU-DC

CF-RN-29 0.3M 72.6˘0.2 70.1˘0.5 71.4˘0.3 72.0˘0.4 71.5˘0.3 72.1˘0.3 71.1˘0.4 70.7˘0.3 71.6˘0.2 70.9˘0.2 72.2˘0.3 70.5˘0.3 74.7˘0.3 75.8˘0.4
CF-RN-56 0.6M 74.7˘0.3 73.2˘0.4 75.3˘0.3 75.3˘0.4 74.8˘0.2 75.2˘0.3 74.9˘0.3 74.7˘0.2 75.3˘0.2 74.1˘0.3 75.7˘0.2 74.4˘0.3 77.2˘0.3 78.1˘0.2
CF-SNV2 1.4M 71.0˘0.2 72.4˘0.3 75.2˘0.2 74.5˘0.4 74.0˘0.2 74.8˘0.2 74.7˘0.4 74.9˘0.3 74.8˘0.3 67.7˘0.5 71.1˘0.4 72.9˘0.3 76.0˘0.3 76.8˘0.4

Table 6. Ablation study on approximated similar ϱ̂x and adjuster
function ς . We report mean Top-1 accuracy for each model.

ς px̃q
ReLU Act-ς

ς pϱ̂xq
IIEU-B (-R) (-δ)

ϱ̂x
W/o ς

74.4 73.2 77.2 77.0 74.5 76.6

Table 7. Ablation study on the term-S and term-B, where we report
the mean ˘ std of the Top-1 accuracy for each model.

IIEU-B
Term-S Pos-cst on Term-B

W/ (Raw) W/o (a) δ (Raw) (b) Softplus (c) W/o
77.2˘0.3 32.6˘0.4 77.2˘0.3 76.8˘0.3 75.8˘0.2

on various networks. These experimental results are highly
consistent with the ImageNet evaluations. It is worth noting
that IIEUs show superior stability to the compared SOTA
self-gated and attention-based Act models, as IIEUs demon-
strate higher consistency for the improvements on the cor-
responding ImageNet and CIFAR networks. This validates
the scalability of IIEUs for datasets of different sizes.

4.3. Ablation Study

Approximated similarity ϱ̂x. ϱ̂x serves as the core of
the II-score estimation for IIEU. Here we discuss ϱ̂x with
three targeted control groups using CIFAR-ResNet-56: (1)
ϕ px̃q “ ς px̃q (denoted by Act-ς), i.e., let the adjuster ς ap-
ply individually without the proposed ϱ̂x such that IIEU-B
degrades to a simpler parametric Act model; (2) replacing
ς by ReLU (denoted by “(-R)”); (3) Without ς . As shown
in Table 6, Act-ς shows a significant drop in accuracy com-
pared to the original IIEU-B. In contrast, model (-R) that
preserves the approximated similarity ϱ̂x shows slight ac-
curacy decreases. Without ς , the control group (3) still im-
proves the ReLU baseline by a large margin. The experi-
mental results are consistent with our interpretation, where
ϱ̂x of IIEU is supposed to introduce the main accuracy gains
and the ς serves as a helper function to ensure Property 1
which is possibly met conditionally without ς .

Adjuster ς . We further discuss ς by replacing it with the
Sigmoid function (denoted by δ, i.e. the smooth adjuster
ς of SiLU [17] and Swish [40]). Table 6 reports the com-
parative results of different control groups, where our orig-
inal ς outperforms Sigmoid function by a large margin. It
is worth noting that our ϱ̂x also achieves competitive Top-
1 with ReLU-based ς . These results are in line with Intu-

ition 6, as our ς and ReLU function are both conditionally
linear about ϱ̂x for ϱ̂x ď 0, while the slope of Sigmoid grad-
ually declines with the increases of ϱ̂x if ϱ̂x ą 0.5. More-
over, in contrast to ReLU, our original ς introduces further
improvements with the adaptive threshold η.

W/ or W/o term-S. We suppose that the term-S (Equa-
tion (1)) which serves as the main term of the II-score es-
timation introduces the main accuracy gains. We validate
term-S by comparing IIEU-B to the abridged IIEU-B which
removes the term-S. As shown in Table 7, removing term-S
will cause a dramatic drop in accuracy, which is consis-
tent with our intuition.

Positive constraint on term-B. We suppose a bounded
and positive term-B is helpful for the II-score estimation and
choose Sigmoid function to cast effective positive constraint
(pos-cst) on term-B (Section 2.3). Herein, we further inves-
tigate the selection for positive constraint by replacing Sig-
moid (denoted by (a)) with two tailored control groups: (b)
Softplus function; (c) identity (i.e., without positive con-
straint). Experimental results in Table 7 demonstrate that
Acc. (a) ą Acc. (b) ą Acc. (c), which is in line with our
intuition, as we suppose the term-B needs to be less influ-
ential on filter updating than the term-S , which contributes
to preventing the harmful neutralization effect. That is, (1)
as term-B with (b) can have significantly higher gradients
than (a), we suppose it to show inferior accuracy to (a); (2)
we expect (c) to show relatively worst accuracy, as it likely
violates the Intuition 6 with outputting negative values.

5. Conclusion

We propose to interpret neural feature activation from the
new perspective of multi-criteria decision-making, where
we identify the critical yet unsettled problem, i.e. mis-
matched feature scoring and present our explainable activa-
tion model IIEU to solve it with new intuitions and their cor-
responding properties for effective activation models. We
validate our practical IIEUs and interpretation through com-
prehensive experimental analysis and extensive compar-
isons with popular and SOTA activation models on various
vision benchmark datasets, where IIEUs achieve the new
SOTA improvements to the ReLU baseline and also signif-
icantly outperform the current popular and SOTA activa-
tion models. As a limitation, IIEU-B brings relatively more
throughput decrease than its theoretical additional FLOPs,
which we detail in the Appendix.
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