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Abstract

Vector-quantized image modeling has shown great po-
tential in synthesizing high-quality images. However, gen-
erating high-resolution images remains a challenging task
due to the quadratic computational overhead of the self-
attention process. In this study, we seek to explore a
more efficient two-stage framework for high-resolution im-
age generation with improvements in the following three
aspects. (1) Based on the observation that the first quan-
tization stage has solid local property, we employ a local
attention-based quantization model instead of the global at-
tention mechanism used in previous methods, leading to bet-
ter efficiency and reconstruction quality. (2) We emphasize
the importance of multi-grained feature interaction during
image generation and introduce an efficient attention mech-
anism that combines global attention (long-range seman-
tic consistency within the whole image) and local attention
(fined-grained details). This approach results in faster gen-
eration speed, higher generation fidelity, and improved res-
olution. (3) We propose a new generation pipeline incorpo-
rating autoencoding training and autoregressive generation
strategy, demonstrating a better paradigm for image syn-
thesis. Extensive experiments demonstrate the superiority
of our approach in high-quality and high-resolution image
reconstruction and generation.

1. Introduction
High-fidelity image synthesis has achieved promising

performance thanks to the progress of generative mod-
els, such as generative adversarial networks (GANs) [12,
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† Corresponding author.

21, 22], diffusion models [15, 8] and autoregressive mod-
els [11, 44]. Moreover, high-resolution image generation, a
vital generation task with many practical applications, pro-
vides better visual effects and user experience in the adver-
tising and design industries. Some recent studies have at-
tempted to achieve high-resolution image generation. Style-
GAN [21, 22] leverages progressive growth to generate
high-resolution images. However, GAN-based models of-
ten suffer from training stability and poor mode cover-
age [35, 48]. As diffusion models continue to evolve, recent
studies [31, 34] have begun to explore the utilization of cas-
caded diffusion models for generating high-resolution im-
ages. This approach involves training multiple independent
and enormous models to collectively accomplish a gener-
ation task. On another note, some researchers [11, 44, 5]
leverage a two-stage vector-quantized (VQ) framework for
image generation, which first quantizes images into discrete
latent codes and then model the data distribution over the
discrete space in the second stage. Nonetheless, under the
limited computational resources (e.g., memory and train-
ing time), the architectures of the existing vector-quantized
methods are inferior. In this paper, to solve the problems of
existing models, we would like to explore a more efficient
two-stage vector quantized framework for high-resolution
image generation and make improvements from the follow-
ing three aspects.

Firstly, prior methods [11, 44] claim the importance of
the attention mechanism in the first quantization stage for
better image understanding, and they leverage global atten-
tion to capture long-range interactions between discrete to-
kens. However, we find this global attention not necessary
for image quantization based on the observation that the al-
teration of several tokens will only influence their nearby
tokens. Hence, local attention can yield satisfactory re-
construction results and circumvent the computationally in-
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tensive nature of global attention, especially when gener-
ating high-resolution images. Consequently, we propose
Efficient-VQGAN for image quantization adopting image
feature extractor with local attention mechanism. This con-
tributes to the acceleration of image reconstruction and ded-
icates more computation to the local information, further
improving the reconstruction quality.

Besides, for the second stage of the existing vector-
quantized methods [11, 44, 5], it would be intractable to
generate high-resolution images since the quadratic space
and time complexity is respected to the discrete sequence
length. Further, the global self-attention interaction could
lead to the insufficient ability to capture fine details in local
areas. Accordingly, the fined-grained local attention at a to-
ken level for better local details capturing plays an essential
role as coarse-grained global interaction for long-range con-
text information capturing. We then utilize multi-grained at-
tention, which implements different granularity of attention
operations depending on the distance between tokens. As a
result, it can support high-resolution image generation with
a reduced length of the quantized image token sequence and
reasonable computational cost.

Additionally, some recent studies related to text gener-
ation [43, 2] in the field of natural language processing,
which combine the merits of autoencoding pretraining and
autoregressive generation, show great potential in gener-
ating high-quality text sequence. Pretrained autoencoding
models like BERT [23] can exploit bidirectional context to
capture more information for reconstructing the masked in-
put corpus, while autoregressive generation performing ex-
plicit density estimation can ensure consistency of output
token sequence. Inspired by such combined training and
inference strategy, we propose a similar pipeline for im-
age generation tasks. In the training stage, we utilize an
autoencoding-based masked visual token modeling strategy
which is trained to recover the randomly masked image to-
kens by attending to tokens from all directions, better cap-
turing contextual information. In the inference stage, com-
bined with our block-based multi-grained attention mech-
anism, we autoregressively sample each image block in
a fixed order and iteratively sample the tokens within the
block in parallel, contributing to improved sampling speed
and generation quality.

The contributions of this work can be summarized as fol-
lows. (1) We propose a more efficient two-stage vector-
quantized framework with several improvements in the
first quantization stage and the second generative model-
ing stage, yielding faster computational efficiency and bet-
ter image quality. (2) We propose a new image genera-
tion pipeline that combines the advantages of autoencoding
training and autoregressive generation, further improving
the synthesis quality. (3) The proposed two-stage vector-
quantized model demonstrates the capability to generate

higher-quality images at a faster speed on FFHQ and Im-
ageNet datasets compared to previous methods.

2. Related Work
2.1. Image Synthesis

Recent development in generative modeling enables al-
gorithms to generate high-quality and realistic images.
Generative adversarial networks (GANs) facilitate image
generation with promising results. However, GAN-based
models [12, 21, 22] have poor mode coverage and strug-
gle to model complex distributions due to the inductive pri-
ors imposed by convolutions. Diffusion models have re-
ceived substantial attention these days, among which many
attempts have been made at continuous diffusion models
with remarkable results in image generation [8, 27] and im-
age editing tasks [24, 1]. Some Transformer-based meth-
ods [6, 40, 29, 33] have shown strong power of density es-
timation using a fixed forward factorization order for image
generation tasks. GAN-based methods[47, 18] incorporate
Transformer with block-wise self-attention to scale up to
higher-resolution images. In this paper, we are interested in
exploiting two-stage vector quantized models based on vi-
sion transformers with multi-grained attention mechanism,
which model the data distribution in compressed space and
can increase the resolution of the generated images.

2.2. Vector-Quantized Image Modeling

Two-stage vector-quantized approaches will first utilize
an image tokenizer to extract a discrete image token se-
quence. Then in the second stage, a generative model is
trained to model the token distribution in the discrete la-
tent space. VQ-VAE [40] tokenizes an image into dis-
crete visual tokens by performing online clustering and then
models token distribution autoregressively with a convo-
lutional architecture. DALL·E [32] utilizes the first stage
of VQ-VAE with Gumbel-Softmax strategy [17], and then
uses an autoregressive Transformer-based likelihood model
to generate visual tokens from the given text input. VQ-
GAN [11] extends VQ-VAE by adding an adversarial and
perceptual metric training loss in the first stage, produc-
ing higher-quality reconstructed images. Recently, ViT-
VQGAN [44] improves VQGAN in architecture design and
proposes to use a VIT backbone, yielding better recon-
struction quality and inefficient. However, all those pre-
vious approaches employ an autoregressive model for im-
age generation following the raster scan order, which is not
efficient. MaskGIT [5] proposes a new image generation
paradigm using a bidirectional Transformer decoder trained
on Masked Visual Token Modeling(MVTM). In the infer-
ence stage, MaskGIT employs a non-autoregressive decod-
ing strategy to produce images in a constant number of
steps. However, these vector-quantized models still struggle
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Figure 1. The locality of image quantization. When replacing
a local region of latent codes encoded by ViT-VQGAN [44] with
a specific token, only surrounding area is affected, while others
remain the same.

to generate high-resolution images due to the design of sub-
optimal two-stage architecture. Our model develops a more
efficient framework for both stages, supporting the genera-
tion of high-resolution images.

3. Methodology
Our goal is to achieve high-resolution image genera-

tion through a more efficient two-stage vector-quantized im-
age modeling framework, Efficient-VQGAN. Fig. 2 shows
the structure of our model. For the first stage, instead of
representing an image based on global attention, we de-
sign a more efficient vector-quantized model utilizing local
attention-based encoder-decoder, as described in Sec. 3.1.
For the second stage, we propose to learn a Transformer
that incorporates global and local attention, which dramat-
ically reduces the sequence length, tackling the quadratic
dilemma in previous Transformer-based generative mod-
els, as described in Sec. 3.2. Additionally, we introduce
a new training and inference paradigm for image synthe-
sis, which performs masked visual token modeling in the
training stage and autoregressive sampling in the generation
stage, further improving the image quality, as described in
Sec. 3.3.

3.1. Locality of Image Quantization

VQGAN [11] adds a non-local attention block in the en-
coder and decoder model, demonstrating the importance
of the attention mechanism for better image understand-
ing. ViT-VQGAN [44] replace the CNN encoder and de-
coder with Vision Transformer [9] using the global atten-
tion mechanism, which further improves the reconstruction
quality. However, after conducting extensive experiments,
we found that the global attention used in the previous im-
age quantization process is not necessary because of the
locality of image quantization (see Fig. 1), which instead
increases the computational cost. Based on the observa-
tion, we propose our efficient vector-quantized autoencoder,
performing local interaction based on Swin Transformer
block [26] that has also shown outstanding performance in

other image recognition and dense prediction tasks [25, 4].
The overall architecture of the first stage consists of an en-
coder, a discrete codebook, a decoder, and a discriminator.
Given an image x ∈ R3×H×W , the encoder will downsam-
ple it into a feature map z ∈ Rd× H

16×
W
16 . Then a discrete

codebook is queried to produce a quantized image feature
map zq , and then we feed zq to the decoder to reconstruct
the original image.
Efficient-VQGAN Encoder. Given an input image, the en-
coder will first divide it into patches with fixed size (4× 4),
and then a linear embedding layer is applied to transform
the patch feature into an arbitrary dimension. Then the
patch feature will be passed through several Swin Trans-
former blocks to perform local attention, and achieve 2×
downsampling through patch merging layers. Downsam-
pling factor f can be adjusted by adding or removing down-
sample blocks. Therefore, after being encoded by the
Efficient-VQGAN encoder with default two downsample
blocks, the resolution of the feature map is 1/16 of the orig-
inal image. Output feature map z produced by encoder will
be passed through the quantized module introduced from
VQGAN [11] to output quantized feature map zq .
Efficient-VQGAN Decoder. The Efficient-VQGAN de-
coder and encoder are symmetrical. The decoder module
also consists of several stages, totally implement upsample
scale equal to f . In these stages, each Patch Expanding
block achieve 2× upsampling, and finally, a nearest neigh-
bor interpolation upsample module is used to perform 2×
up-sampling to generate the reconstructed image.
Training loss of Image Quantization. To enable training
process stable and convergent for high-resolution images,
Projected GANs discriminator [36] is applied to produce
GAN loss LAdv , discriminating samples in deep feature
space by using pretrained image feature extraction model,
leading to improvement in quality and convergence speed.
Besides, perceptual loss [19] is applied to enhance details
and perceptual quality. The pixel level l2 loss between input
and reconstructed images and vector quantization loss [11]
LV Q are also introduced. The total loss defined as follow:

L = LPerceptual + L2 + LV Q + λ ∗ LAdv (1)

where λ is adaptive weight [11].

3.2. Multi-Grained Attention for Efficient Image
Generation

The quadratic computational complexity of the num-
ber of visual tokens limits the capability of self-attention
Transformer based-models to generate high-resolution im-
ages. As mentioned in Sec. 3.1, applying global attention to
each visual token is redundant and costly. Nevertheless, we
cannot naively employ only local attention again to reduce
complexity, since the generation process differs from image
quantization, where global attention maintains the semantic
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(c) Overall Structure of Efficient-VQGAN

Stage 2Stage 1

Efficient-VQGAN 
Encoder

Efficient-VQGAN 
Decoder

…

Transformer

Projected GAN
Discriminator

Real/ Fake

Bidirectional Autoencoding Training

Autoregressive Inference

VQ

(a) Efficient-VQGAN 
Encoder

(b) Efficient-VQGAN
Decoder

Figure 2. Overview of Efficient-VQGAN. Efficient-VQGAN consists of two stages: an encoder-decoder-based vector quantization model
(left) and a proposed efficient Transformer model. (c) shows the model architecture and pipeline of Efficient-VQGAN. VQ denotes Vector
Quantizer. During the training stage, a subset of tokens is randomly replaced by a mask token (marked in gray) and the Transformer
is trained to reconstruct them in a masked autoencoding manner. During the generation stage, starting with masked codes, the model
gradually predicts tokens block by block. Within each block, the tokens are iteratively sampled parallelly in a few steps.

Convolution
Kernel size=4

Stride=4
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 concatenate
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Local blocks
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Figure 3. Multi-Grained Attention calculating process. Yellow
square in XL denotes the modeled target tokens. Blue square in
XL denotes the extended local token matrix. Each local block will
be transformed into a global token (red square in XG).

consistency of the image. Consequently, both global and
local attention is required to model the visual tokens by the
transformer.

Inspired by some works [46, 42] which leverages the
multi-grained attention mechanism in image recognition
task, we combine this mechanism with our masking strategy
for image generation. Given an image I , we can obtain the
discrete token matrix X = (x1, x2, · · · , xH×W ) by pass-
ing the image through the Efficient-VQGAN encoder and
quantization module, where H,W is the latent size. Then
the image token matrix is split into blocks of size Ws×Ws,
as shown in Fig. 3. We then perform the multi-grained at-
tention for each query token in the token matrix. Here, we
define the query token (the token within yellow square in
XL) as the target tokens will be predicted in this calcula-

tion. Then we define the extend local tokens (blue square
in XL ) which is the region surrounding the query block
with a block size of (Ws + 2Es)× (Ws + 2Es) to provide
more local information cross the blocks, where Es denotes
extend size. As for the global tokens GT , we separately
perform a convolutional operation for each block to group
all the tokens in a block into a global token. Here, the fil-
ter size and convolutional stride are set to the block size Ws.
After this aggregation operation, we obtain H

Ws
× W

Ws
global

tokens for a token matrix. The final token sequence is de-
fined as the concatenation of global tokens and local tokens,
namely FT = [GT , LT ]. We then feed FT into Transformer
to perform self-attention and output the refined feature that
incorporates both the global semantic and local contextual
information.

The design of combining block-based global interac-
tion, with local interaction calculated within a local block,
leading to considerable reduction in the number of to-
kens, which facilitate our model to achieve efficient high-
resolution image generation.

3.3. Autoencoding Training and Autoregressive In-
ference

In natural language generation tasks, some re-
searchers [43, 2] point out the pros and cons of BERT-like
autoencoding training and autoregressive language model-
ing. These works aim at exploring a pretraining objective
that combines the advantages of both strategies while avoid-
ing their weaknesses. In general, both natural language
generation and VQ-based image generation aim at finding
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optimal token sequence s = (s1, s2, · · · , sl). When adopt-
ing the autoregressive generation strategy, we can factorize
the probability likelihood into a forward product, which can
be learned readily by the model pθ(s) =

∏l
i=1 p

i
θ(si|s<i).

Nonetheless, autoregressive models are challenging to
capture deep bidirectional context information due to the
uni-directional training constraint. On the other hand,
BERT-like bidirectional autoencoding training strategy
allows the model to capture bidirectional context better,
however, an independent assumption is required that the
tokens predicted in parallel ought to be independent of
each other, otherwise semantic inconsistency will occur.
Accordingly, in this section, we propose our training
and inference pipeline, which incorporates the unique
advantages of autoencoding training and autoregressive
generation.
Masked Autoencoding training Strategy. Given the dis-
crete token sequence X = (x1, x2, · · · , xH×W ), follow-
ing MaskGIT [5], a subset of tokens are randomly masked.
The mask ratio is defined by a cosine scheduling function
γ(r) = cosine(π2 r) ∈ (0, 1], where the ratio r is from 0
to 1. We uniformly choose ⌈γ(r) · (H ×W )⌉ tokens in X
and replace them with mask token, producing the corrupted
token matrix XL = (x1, [MASK], · · · , [MASK], xH×W ).

During the training process, we divide the masking strat-
egy into two parts, for calculating local and global attention,
respectively. Local attention is performed on XL within
each block as mentioned above to produce LT . When cal-
culating global attention, entire patches of tokens will be
randomly masked first. This operation enables our model
to predict blocks in arbitrary order, including autoregres-
sive order and non-autoregressive order, which also make it
possible to achieve inpainting, outpainting and image edit-
ing tasks. Then we perform a convolutional operation that
transforms each block in XG into one global token, produc-
ing a corrupted global token matrix with H

Ws
× W

Ws
global vi-

sual tokens, namely GT . After obtaining all tokens FT , we
feed them to the Transformer module to predict the proba-
bility distribution of each masked token within one block.
The loss function can be formulated as:

L = −E
[ ∑
∀i∈[1,H×W ],LTi

=[MASK]

log p(xi|LT , GT )
]
, (2)

where the negative log-likelihood is computed as the cross-
entropy reconstruction loss between the true one-hot token
within a block and the predicted token.
Autoregressive Inference Strategy. In previous autore-
gressive decoding methods [11, 44], tokens are sequen-
tially generated based on all previously generated tokens,
which could improve the generation consistency. For high-
resolution image generation, however, the sampling speed
is intolerable due to the long sequence length. Based on
bidirectional training, MaskGIT [5] can generate multiple

Input VQGAN ViT-VQGAN
Efficient-

VQGAN(Ours)

Figure 4. Reconstruction comparison between VQGAN [11],
ViT-VQGAN [44] and Efficient-VQGAN on ImageNet dataset.
Ours can perfectly reconstruct the original image, preserving more
details compared to others.

image tokens in a single pass, and iteratively generate a
complete image, which greatly reduces the sampling steps
during inference. However, as claimed in [38], when sam-
pling multiple tokens simultaneously and each token is sam-
pled independently with an estimated probability will result
in ignoring the dependencies between different tokens at
different locations. In [38], they propose a fewer tokens
sampling strategy that samples fewer tokens at each step to
alleviate this joint distribution issue. Inspired by such strat-
egy, we propose to generate image tokens block by block
in an autoregressive manner, which incorporates the design
of our block-based model architecture and the merit of au-
toregressive sampling. The difference compared to [38] is
that [38] fixes the number of tokens generated in the whole
image for each step, we fix the order of generation for each
step, which essentially achieves a similar effect. Besides, in
each block, we adopt parallel decoding used in MaskGIT
that generates multiple tokens at the same time within a
block. Under the setting of MaskGIT training strategy that
randomly masks tokens in a whole image, it is difficult to
include all the situations during inference stage (different
masked token mode), especially for high-resolution image
generation. However, limiting parallel sampling to a sin-
gle block in our inference strategy would greatly alleviate
this problem. Therefore, our sampling strategy follows an
overall autoregressive and local parallel generation manner.

4. Experiments
In this section, we evaluate the ability of Efficient-

VQGAN in the first vector quantization stage (Sec. 4.1) and
image synthesis tasks (Sec. 4.2) on FFHQ [21], CelebA-
HQ [20], and ImageNet [7] dataset. In Sec. 4.3, we present
some direct applications of Efficient-VQGAN on image in-
painting, outpainting, and editing tasks. In Sec. 4.4, we con-
duct some ablation studies. The following tests are imple-
mented on 2562 images unless otherwise specified. Details
of experiment settings can be found in our appendix.
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Figure 5. Synthesized samples by Efficient-VQGAN on ImageNet dataset at 2562 resolution.

Methods Dataset
Codebook

Size
Latent
Size

FID on
Validation ↓

VQGAN [11] FFHQ 1024 16x16 4.39
ViT-VQGAN [44] FFHQ 8192 32x32 3.13
Ours FFHQ 1024 16x16 3.38
Ours FFHQ 1024 32x32 2.72
VQGAN ImageNet 16384 16x16 4.98
VQGAN* ImageNet 8192 32x32 1.49
VQGAN** ImageNet 512 64x64 & 32x32 1.45
ViT-VQGAN ImageNet 8192 32x32 1.55
Ours ImageNet 1024 16x16 2.34
Ours ImageNet 1024 32x32 0.95

Table 1. Fréchet Inception Distance (FID) [14] between recon-
structed validation split and original validation split. ∗ means
model trained with Gumbel-Softmax strategy. ∗∗ means model
leveraging multi-scale hierarchical codebook proposed in [17].
Ours shows the best reconstruction quality.

Methods
Downsampling

factor f Latent Size
Throughput
(imgs/sec) ↑ FID↓

VQGAN [11] 16 16x16 112 4.98
Ours 16 16x16 142 2.34
VQGAN [11] 8 32x32 103 1.49
ViT-VQGAN [44] 8 32x32 95 1.55
Ours 8 32x32 108 0.95

Table 2. Reconstruction speed comparison. Under the same la-
tent size, ours achieve faster reconstruction speed and better qual-
ity. Tests are implemented on single A100-80GB GPU.

4.1. Image Quantization

When training the image quantization model, we follow
the default train and validation split for each dataset and
conduct experiments with different downsampling factor f .
For each setting, the Codebook Size |Z| is set to 1024. On
FFHQ and CelebA-HQ dataset, our models are trained with
a batch size of 16 in 8*A100 GPU for a total of 50 epochs,
while on ImageNet we find that the model has converged
for only 20 epochs. Quantitative reconstruction compari-
son results (2562 resolution) are shown in Tab. 1 and Tab. 2.
Our method achieves higher inference speed due to the re-

Figure 6. Synthesized samples by Efficient-VQGAN on FFHQ
dataset at 10242 resolution. Best viewed zoomed in.

duced computation cost of local attention operations. Be-
sides, under the same downsampling factor f , our model
achieves better reconstruction fidelity with a lower capac-
ity of codebook (1024 codebook entries). Qualitative com-
parison results display in Fig. 4. We claim that the global
attention mechanism may bring some noises during image
quantization so that our method which only performs local
attention could put more computation on local interactions
and improve generative details. More quantitative results
for different resolutions (5122, 10242) can be found in our
appendix.

4.2. Image Synthesis

Based on the well-trained Efficient-VQGAN autoen-
coder, we train our transformer model and evaluate the
performance on unconditional and class-conditioned image
synthesis tasks. To speed up the generation process, we set
the downsampling factor f of the first stage to 16. Our mod-
els are trained in 8*A100 GPU for a total of 200 epochs.
When synthesizing samples, in-block iteration steps T = 8
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CelebA-HQ 256× 256 FFHQ 256× 256
Methods FID ↓ Methods FID ↓
NVAE [39] 40.3 BigGAN [3] 12.4
VAEBM [41] 20.4 ImageBART [10] 9.57
Style ALAE [30] 19.2 GANformer [16] 7.42
DC-VAE [28] 15.8 VQ-Diffusion [13] 6.33
StyleSwin [45] 3.25 StyleGAN-XL [37] 2.19
VQGAN [11] 10.2 VQGAN [11] 9.6
VIM-Large [44] 7.0 VIM-Large [44] 5.3
Ours 7.81 Ours 5.28

Table 3. Quantitative comparison of face image generation.

Methods FID↓
StyleGAN-XL [37] 2.02
StyleGAN2 [22] 2.84
HiT-B [47] 6.37
Ours 11.81
StyleALAE [30] 13.09

Table 4. Quantitative comparison on FFHQ at 10242 resolu-
tion.

is applied.
We compare the quantitative results of our Efficient-

VQGAN with several state-of-the-art methods on FID
score. The results of unconditional image synthesis on
CelebA-HQ and FFHQ are shown in Tab. 3. While some
task-specialized GAN models report better FID scores, our
model architecture is more flexible and can support a va-
riety of tasks. The reported FID score of VIM-large [44]
on CelebA-HQ is slightly better than ours, due to the num-
ber of parameters that are 8 times larger than our model.
Quantitative comparisons of face synthesis at 1024 reso-
lution are shown in Tab. 4. Existing methods are almost
GAN-based, and to our knowledge, no VQ-based method
reports better performance. Compared to our baseline VQ-
GAN [11] and VIM-base [44], we also improve the quality
of class-conditioned image synthesis as shown in Tab. 5.
The impressive generated images of ImageNet dataset are
shown in Fig. 5. Furthermore, we evaluate the memory
cost of existing vector quantized transformer models during
training time, as shown in Tab. 6. When the image token
sequence is too long, the out-of-memory(OOM) issue oc-
curs in other methods due to the computational overhead
of the global self-attention mechanism. Benefiting from
the multi-grained attention design, our model requires less
memory resources and can synthesize higher resolution im-
ages (10242), as shown in Fig. 6. We also adopt the pre-
traind VQGAN quantizer [11] as the first stage of our model
and retrained the generative model for the second stage. On
the basis of the same quantization model, the generation
results of our model greatly exceed the baseline VQGAN
model [11] (see Tab. 7), demonstrating the effectiveness of
our multi-grained attention and overall generation pipeline.

Methods Acceptance Rate FID ↓ IS ↑
IDDPM [27] 1 12.3 -
StyleGAN-XL [37] 1 2.3 265.12
VQ-Diffusion [13] 1 11.89 -
ADM-G [8] 1 10.94 101
VIM-Base [44] 1 11.2 97.2
MaskGIT [5] 1 6.18 182.1
VQGAN [11] 1 17.04 70.6
VQGAN [11] 0.5 10.26 125.5
Ours 1 9.92 82.2
Ours 0.5 6.81 135.84

Table 5. FID comparison of class-conditioned image synthesis
on ImageNet at 2562 resolution. All VQ-based models above
take 16 × 16 latent size. Acceptance rate reports classifier-based
rejection sampling using ResNet-101.

Training Time Memory Cost [M] ↓

Methods #Params
Latent Size

32x32
Latent Size

64x64
Latent Size

128x128
VQGAN [11] 1.4B 21848 OOM OOM
VIM-Base [44] 650M 11638 OOM OOM
MaskGIT [5] 227M 6780 49056 OOM
Ours 185M 5560 14154 58096

Table 6. Training time memory cost of Stage-2 models in dif-
ferent latent size. For a fixed image quantization compress rate, a
larger latent size indicates higher image resolution. OOM denotes
out-of-memory.

Dataset Ours FID ↓ Baseline FID [11] ↓
FFHQ 7.5 9.6

ImageNet 13.67 17.04

Table 7. FID comparison of second stage model between Ours
and VQGAN based on the same first stage quantization model.
Proposed model greatly outperforms VQGAN stage-2 baseline.

4.3. Image Editing Applications

Due to causality limitations in the inference process, it
is challenging for autoregressive generative models to per-
form image editing. Efficient-VQGAN can be seamlessly
applied to three image editing tasks (see Fig. 7), without
any modifications of the model architecture. We tokenize
the input masked image and feed the corrupted image to-
ken matrix into the second stage to iteratively complete the
masked image. As shown in the first and second row of
Fig. 7, Efficient-VQGAN can make consistent completions
thanks to the multi-grained interaction that allows the model
to capture both the global semantic as well as the local fine-
grained details. Further, due to the randomness in the in-
ference stage, we can obtain diverse editing results. Class-
conditional image editing is defined as regenerating the im-
age content inside a bounding box conditioned on the given
class label. Efficient-VQGAN can replace the selected ob-
ject while preserving the background outside the bounding
box, and the entire image is visually harmonious.
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Input —— Our Samples ——

Figure 7. Inpainting, outpainting and class-conditional image
editing. While maintaining the semantic consistency of images,
our model shows the diversity of inpainting (first row) and out-
painting (second row). Replace the given image in the bounding
box with a target class object (third row).

4.4. Ablation Studies

We conduct ablation studies at 2562 resolution images
with 16 × 16 latent size. More ablation results could be
found in our appendix.
Block Size Ws. We evaluate the generation performance
with the block size of 2, 4, 8, 16 in the left image of Fig. 8.
When the block size is too small, e.g., 2 ∗ 2, the model is
prone to overfitting since there is only 24 = 16 masked
mode when learning local relationship within a block. It’s
worth noting that when block size is equal to latent size, i.e.
Ws = 16 here, our model will degrade into MaskGIT [5],
that is, there is only one block during inference. Then all to-
kens will be predicted in a non-autoregressive manner. As
we mentioned in Sec. 3.3, due to the large number of dif-
ferent masked patterns, the training phase cannot cover all
the cases in inference stage. Besides, predicting many to-
kens simultaneously will lead to a more serious joint dis-
tribution problem, resulting in a bad FID score. The block
size of 8 obtains the best FID score since the suitable block
size allows the model to learn both global semantics and lo-
cal details relatively well. This comparison results shows
the advantage of our sampling method over MaskGIT. Be-
sides, to study the effect of block size on generation speed,
we compare autoregressive method, i.e., VQGAN and our
model with different block sizes. As shown in Fig. 9, when
Ws = 1, our model performs as an autoregressive method.
Ours with a larger block size runs faster, demonstrating the
efficiency of the block-based design.
In-block Iteration Steps T . We investigate the influence of
the number of iterations within a block for image synthesis,
as shown in the right image of Fig. 8. We assess the gener-
ated images as T = 4, 8, 12, 16, 24, 32 on two models with
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1 4 8 12 16 24 32
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8.58

9.31

30.46

9.06

5.95

7.81 8.36

FID on interation steps(Ws = 8)
FID on interation steps(Ws = 4)

Figure 8. Ablation study on the block size and in-block itera-
tion steps.
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Ours (Ws = 4)
Ours (Ws = 8)
Ours (Ws = 16)

Figure 9. Generation runtime comparison between ours with
different block size Ws and autoregressive method [11].

different block sizes. When T increases from 4 to 8, the FID
gradually decreases since fewer steps means more tokens
will be predicted simultaneously, which is hard to meet the
independence assumption. However, more iteration steps
do not lead to better quality because more iteration steps
means more predictions based on known tokens, which nar-
rows the sample probability distribution across the dataset,
leading to less diversity. This observation is consistent with
the findings in MaskGIT [5].

5. Conclusion and Discussion

This paper proposes Efficient-VQGAN, an efficient two-
stage vector quantized model, for high-resolution image
generation. We make several improvements in both the first
quantization and second generative modeling stage, con-
tributing to higher computational efficiency and generation
quality. A new image generation paradigm is developed
that combines the masked autoencoding training and autore-
gressive inference, facilitating better generation quality. As
for the limitations, we sample multiple tokens in parallel
within each block, increasing the sampling speed at the cost
of slightly reducing the quality of generated images. De-
vising a better inference strategy to combine multi-grained
attention can be interesting future work.
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