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Abstract

Meta-learning holds the potential to provide a gen-
eral and explicit solution to tackle interference and forget-
ting in continual learning. However, many popular algo-
rithms introduce expensive and unstable optimization pro-
cesses with new key hyper-parameters and requirements,
hindering their applicability. We propose a new, general,
and simple meta-learning algorithm for continual learning
(SiM4C) that explicitly optimizes to minimize forgetting and
facilitate forward transfer. We show our method is stable,
introduces only minimal computational overhead, and can
be integrated with any memory-based continual learning al-
gorithm in only a few lines of code. SiM4C meta-learns
how to effectively continually learn even on very long task
sequences, largely outperforming prior meta-approaches.
Naively integrating with existing memory-based algorithms,
we also record universal performance benefits and state-of-
the-art results across different visual classification bench-
marks without introducing new hyper-parameters.

1. Introduction
Continual learning considers the problem of appropri-

ately updating and consolidating knowledge when learning
from data with a continual distribution shift. This problem
setting is extremely relevant to achieving lifelong learning
systems where an agent is expected to encounter drifts both
across and within learning environments, due to the non-
stationary nature of the real-world [31]. An ideal continual
learning system would re-use prior knowledge to facilitate
learning new problems (forward transfer), and new data to
refine its prior predictions (backward transfer). However,
deep supervised learning algorithms struggle to even retain
learned information when trained with non-stationary se-
quences of data, a problem known as catastrophic forget-
ting [14, 15, 36]. In classical computer vision applications,
prior work is still far from addressing this issue [11], which
would be crucial to bringing the generality and applicability
of deep learning closer to its natural analogue [18, 27].

Traditional algorithms for continual learning can be gen-
erally classified into (i) replay methods, (ii) regularization-
based methods, and (iii) parameter isolation methods [11].
These approaches entail hand-designed strategies involving
(i) storing a small buffer of samples from all prior tasks,
(ii) introducing auxiliary regularization terms to consoli-
date knowledge, and (iii) defining modular architectures to
separate task-specific knowledge into independent modules.
Given its relevance, most methods only optimize to mitigate
forgetting, ignoring other potentially desirable properties of
continual learning [12]. Furthermore, they rely on heuristics
and strong assumptions about the types of drifts, limiting
their applicability to specific settings [48]. A fourth cate-
gory of methods has recently found success, based on utiliz-
ing meta-learning to emergently recover many of the wanted
properties of an effective continual learning agent [7].

The general principle behind these prior meta-learning
approaches has been to emulate the non i.i.d. continual
learning optimization within an outer meta-optimization
to improve the agent’s stability (knowledge retention) and
plasticity (knowledge acquisition) [16]. However, optimiz-
ing these meta-objectives often requires high computational
cost [41] and even access to a separate meta pre-training
phase where the constraints of continual learning are es-
sentially lifted [23]. Furthermore, different recent advances
have focused on aligning the meta and continual optimiza-
tions by increasing the number of steps, adding new models,
and introducing new parameters to meta-train [4, 17]. The
underlying complexity of this line of work comes with non-
trivial implications hindering applicability, efficiency, and
also introducing the need of heuristic approximations to the
meta-objectives for tractability [3, 38].

In this work, we propose a new simple meta-learner for
continual learning (SiM4C) that takes a different approach
than prior work. In particular, we propose to purpose-
fully use a lightweight single-step inner-loop in the meta-
optimization and preserve large amounts of ‘unseen’ data
for each task which can be interpreted as potential future
data. Then, using both this future data and past stored ex-
periences in the outer meta-loss, we explicitly optimize the
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Figure 1. Schematic depiction of SiM4C, after a single inner optimization step the proposed meta-objective optimizes for forward and
backward transfer by utilizing seen past data from previous tasks and unseen future data of the current task.

model to tackle challenging future and past transfer objec-
tives, across and within tasks (as depicted in Figure 1). In
practice, our formulation results in SiM4C avoiding harm-
ful meta-overfitting phenomena, providing minimal compu-
tational overheads even without approximations, and allow-
ing integrations in just a few lines of code.

Empirically, we thoroughly evaluate and analyze SiM4C
for image classification problems, comparing it with differ-
ent state-of-the-art algorithms. When given access to a meta
pre-training phase, SiM4C greatly outperforms other meta-
learning work evaluated and designed for tackling long se-
quences of hundreds of consecutive tasks [4, 23]. Further-
more, even without any pre-training, using SiM4C as a sim-
ple auxiliary meta-objective provides near-universal perfor-
mance benefits to different memory-based algorithms [6,
41]. Our results validate SiM4C’s effectiveness, achieving
state-of-the-art results across five different continual learn-
ing benchmarks, and highlight its improved efficiency and
stability as compared to prior meta-learning approaches.
We provide additional resources and our full implemen-
tation1 to facilitate future extensions and promote further
work towards more scalable and applicable meta-learning
for continual learning.

2. Background
2.1. Continual learning

The problem of continual learning is to learn from a
stream of T consecutive tasks sampled from a task set T .
In supervised continual classification problems, each task is
represented by a different distribution Dt, t = 1, 2, . . . , T
over exemplars and their respective target labels (x, y) ⇠
Dt. At any given timestep t, a continual learning model
f✓ has only access to a limited number (nt) of samples
Dtrain

t = {(xi, yi)}nt

i=1 from the current task Dt while losing
access to all previous tasks. However, after experiencing t

1https://sites.google.com/view/sim4c/

tasks, its objective LCL
t is then to minimize a cross-entropy

loss with respect to the distribution of all seen tasks:

LCL
t (✓) =

tX

i=1

(x,y)⇠Dt
[Lce(f✓(x), y)] , (1)

where the continual learning model f✓ is assumed to output
a set of C total class logits for all tasks and Lce is defined
as a standard softmax cross-entropy classification loss:

Lce(f✓(x), y) = log

 
exp f✓(x)yPC
j=1 exp f✓(x)j

!
.

Based on how different classes are partitioned and the in-
formation contained in the samples x, we can further di-
vide continual learning into different sub-settings [48]. In
particular, (i) task-incremental learning (Task-IL) and
(ii) class-incremental learning (Class-IL) assume differ-
ent tasks comprise different subsets of the classes, such that
y 6= y0 if y ⇠ Di, y0 ⇠ Dj , and i 6= j. However, Task-IL
further assumes that task information is provided as part of
the input features x, allowing the classifier to ignore all non-
relevant class logits at training and test time. (iii) Domain-
incremental learning (Domain-IL) assumes some inher-
ent unknown distribution shift tied to the data points from
different classes but no mutual exclusivity of the respective
labels. Finally, (iv) online continual learning does not as-
sume access to task information and further introduces the
constraint that the agent can only see once each example
provided from the training set of each task. The online con-
tinual learning setting is similar to the general continual
learning setting described by Buzzega et al. [6].

In practice, replay-based continual learning methods re-
lax the constraint of access to previous task data by keeping
a memory buffer M of stored samples from past tasks with
some constant memory cost. To populate and choose which
samples to evict from M, reservoir sampling [50] is typi-
cally employed, ensuring that the state of the memory buffer
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after each task Mt contains i.i.d. samples from all seen
data points. To mitigate catastrophic forgetting, these meth-
ods then train f✓ with a weighted combination of the cross-
entropy loss using available training data from the current
task Dtrain

t and an auxiliary loss Laux using Mt:

LMB
t (✓) =E(x,y)⇠Dtrain

t
[Lce(f✓(x), y)]

+↵E(x,y)⇠Mt
[Laux(x, y|✓)] . (2)

For instance, an effective baseline is to simply employ an
additional softmax cross-entropy loss for Laux. Dark Ex-
perience Replay (DER) [6] is a recent extension using dark
knowledge [21] and data augmentation to distill past infor-
mation into the current model. In particular, DER stores the
set of past model logits z = f✓(x) in M and uses them
to minimize mean-squared error with the current model’s
predictions, either to substitute (LDER) or complement the
standard cross-entropy auxiliary objective (LDER++):

LDER
t (✓) = E(x,y)⇠Dtrain

t
[Lce(f✓(x), y)]

+ ↵E(x,y,z)⇠Mt

⇥
||f✓(x)� z||22

⇤
, (3)

LDER++
t (✓) = LDER

t + �E(x,y,z)⇠Mt
[Lce(f✓(x), y)] . (4)

2.2. Meta-learning
The goal of meta-learning [45] is to explicitly learn com-

ponents influencing the learning process itself to be more
effective. The popular MAML [13] algorithm entails fixing
the optimization procedure and learning a set of initial pa-
rameters ✓ that perform well across the task set T . In partic-
ular, MAML updates ✓ based on a meta outer loss Lout after
performing gradient descent for a sequence of inner steps to
optimize a local inner loss Linn starting from ✓0 = ✓:

LMAML(✓) = E(D,Dtrain)⇠T
⇥
Lout(✓k|D)

⇤
, (5)

where ✓k = ✓k�1 � ⌘
@Linn(✓k�1|Dtrain)

@✓k�1
. (6)

In Equation 5, Linn can be any differentiable objective
computed from sampled sequences (xi, yi)ki=1 from the
training data in Dtrain2. MAML was designed to solve
multi-task few-shot classification problems where Linn and
Lout are cross-entropy losses and Dtrain is a very small
buffer of samples. However, computational costs and gradi-
ent instabilities become significantly more relevant with in-
creasing k, as meta-optimization requires backpropagating
through the whole computation graph performing the inner
optimization steps [3]. Hence, k is usually set to some par-
ticularly low value, which is not an issue in few-shot learn-
ing scenarios since performing a larger number of i.i.d. gra-
dient steps should not expectedly hurt performance.

2This dependency was omitted in Eqn. 5 to avoid clutter in the notation.

2.3. Meta-learning for continual learning overview
Meta-learning approaches for continual learning can be

divided into two categories based on their relative problem
settings and assumptions [7]. In what we will refer to as
meta pre-trained continual learning the model has access
to a separate meta pre-training phase (meta-training) that
happens before deployment to a continual learning problem
(meta-testing). During meta pre-training, we assume the
model has full access to a large number of meta-training
tasks, sampled from the same task distribution we expect to
encounter during meta-testing. Hence, the model can meta-
learn how to effectively continually learn with optimiza-
tion procedures very much analogous to the ones employed
in traditional meta-learning designed for the i.i.d. setting
[4, 23]. Instead, the second category of methods tackles the
more general continual learning with meta-learning prob-
lem setting, without assuming access to an auxiliary set of
meta-training tasks. These methods optimize an outer meta-
loss to replace or complement traditional continual learning
objectives, making use of memory buffer strategies to ob-
tain i.i.d. distribution of samples [17, 41]. SiM4C can be ef-
fectively implemented in both problem settings, as we will
describe in greater detail throughout the next sections.

3. SiM4C design and motivation
3.1. Meta pre-trained continual learning

Online-aware meta-learning (OML) [23] and neuromod-
ulated meta-learning (ANML) [4] are popular approaches
tackling the aforementioned meta pre-trained continual
learning setting for image classification. They consider per-
forming k fine-tuning steps on a subset of the network’s
weights ✓p (prediction weights) using the non-stationary
continual learning online data stream as the inner steps in
Equation 5, while the rest of the weights ✓r (representation
weights) are kept fixed. Their proposed meta-optimization
procedure then maximizes performance with respect to the
whole set of the classifier’s parameters ✓ = ✓r [ ✓p using
a mini-batch estimate of the continual learning objective in
Equation 7 as the outer loss. This estimate is made by a
combination of the correlated online samples used during
the inner steps and an additional set of i.i.d. data from all
tasks called the remember set DREM. The purpose of this
objective is to find initial weights ✓ that incentivize plas-
ticity on the inner task data and also alleviate catastrophic
forgetting on the i.i.d. distribution of samples from DREM.

Online meta continual learning with Omniglot. OML
and ANML perform the described meta-optimization as
part of their meta pre-training phase. During meta-testing,
the prediction weights ✓p are then continually finetuned
with a standard cross-entropy objective on a sequence of test
tasks while the rest of the weights of f✓ are instead frozen.
The main benchmark considered in both works is based
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on the Omniglot dataset [28], consisting of 1,623 classes,
each treated as a separate task. The classes are split into
963 meta-training tasks T train and 660 meta-testing classes
T test. During meta-testing, this benchmark follows the on-
line continual learning problem statement with the train-
ing data for the tth task in T test, denoted Dtrain

t , consisting
of nt = 15 training samples from its corresponding class.
Hence, f✓ can access each data point only a single time be-
fore moving to the next task. Continual learning perfor-
mance is then evaluated on 5 held-out samples from each
distribution of the previously seen classes D1:t in T test. To
tackle this problem setting, OML and ANML meta pre-train
by performing k  20 online inner updates with data from a
randomly sampled task from T train, producing ✓k = ✓r[✓kp .
Then, they compute an estimate of the outer meta-loss by
additionally sampling a remember set DREM from all sam-
ples in the 963 T train tasks:

LOML(✓) = EDtrain,DREM

2

4
X

(x,y)2Dtrain[DREM

Lce(f✓k (x), y)

3

5 .

(7)
Limitations and approximations. OML and ANML

have been solely designed for the meta pre-trained contin-
ual learning setting which assumes unrestricted access to a
large number of meta-training tasks. Hence, they cannot be
directly applied to problem settings that always impose the
canonical restrictions of continual learning. Furthermore, at
meta-testing time, their meta pre-trained classifiers need to
retain the knowledge of each task Dt after observing its nt

samples for all subsequent T � t tasks. To optimally opti-
mize for retention and plasticity for the tth task, we would
ideally embed the full

PT
t nt steps in the meta inner loop.

However, even just using as many as 15/20 steps (the num-
ber of steps in OML/ANML) can lead to great computa-
tional costs and optimization issues. These practical issues
are caused by the repeated forward and backward passes
through the same layers of a neural network, requiring to
store all intermediate activations at each step [3, 13, 39]. In
fact, by inspecting all the shared repositories of the afore-
mentioned algorithms, we see they do not actually compute
the exact second-order meta gradients but rather a first-order
approximation known as first-order MAML (FOMAML).
However, Antoniou et al. [3] showed that while utilizing
FOMAML leads to lower instabilities and slightly faster
computation, it comes at the cost of model performance due
to introducing further considerable approximation errors.

3.2. A very simple yet challenging meta-objective
In our work, we do not try to align the inner and contin-

ual objectives by increasing k or by meta-optimizing addi-
tional models and parameters. While these directions lead
to performance gains in previous work trying to improve
OML [4, 17], the costs and instabilities of current meta-

Algorithm 1 Meta Pre-Trained Online Continual Learning
Prior meta-learners (orange) compared to SiM4C (green)

input: ⌘, learning rate; S, pre-training steps; k, inner steps
META (PRE-)TRAINING PHASE
Initialize ✓  ✓r [ ✓p
for s 1, 2, . . . S do

Sample remember set DREM from all tasks in T train

Sample task Dtrain 2 T train

Sample (x1:k, y1:k) ⇢ Dtrain

✓0  ✓
for i 1, 2, . . . k do

✓ir  ✓i�1
r � ⌘

@Lce(f✓i�1 (xi), yi)

@✓i�1
p

✓i  ✓r [ ✓ir
DOUT  (x1:k, y1:k) [DREM

✓  ✓ � ⌘
P

(x,y)2DOUT
@Lce(f✓k (x), y)

@✓k
. first-order approx.

Sample (x, y) 2 Dtrain

✓0r  ✓ � ⌘ ⇥
@Lce(f✓(x), y)

@✓p
✓0  ✓r [ ✓0r
DOUT  Dtrain [DREM

✓  ✓ � ⌘
P

(x,y)2DOUT
@Lce(f✓0 (x), y)

@✓
. exact gradient

META-TESTING TRAINING PHASE
for t 1, 2, . . . T do

Retrieve Dtrain
t 2 T test

for i 1, 2, . . . n do
Retrieve (xi, yi) 2 Dtrain

t

✓p  ✓p � ⌘
@Lce(f✓(xi), yi)

@✓p

output: f✓ . return final model

learning approaches constrain their actual scalability and
introduce the need for limiting approximations (such as FO-
MAML). Furthermore, we argue that increasing complexity
often confounds actual algorithmic improvements, making
adoption harder for practitioners and the rest of the research
community. Instead, our technical contribution goes in the
opposite direction as we focus on designing a minimal, ef-
ficient, and practical objective to meta-learn how to effec-
tively tackle arbitrary continual learning problems. Our de-
signed simplification entails emphasizing forward transfer
and generalization in the meta-objective and allows forego-
ing hindering approximations to the meta-gradient.

A principle guiding our design motivation comes from
noting that optimizing for a lower number of inner opti-
mization steps k does not necessarily entail an easier con-
tinual optimization problem. Most prior algorithms focused
on explicitly reducing catastrophic forgetting (performance
from past tasks in DREM) and incentivizing plasticity (per-
formance on training data Dtrain) for each task indepen-
dently. However, they do not consider the effects of k on the
difficulty of mitigating forgetting the current task across fu-
ture tasks and its implications to incentivize forward trans-
fer. In addition to minimizing costs and allowing tractable
second-order optimization, minimizing the number of inner
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optimization steps will maximize the generalization chal-
lenge of the outer meta-loss with respect to the remaining
unseen data. We hypothesize this harder objective might
force the model to also effectively re-use old task informa-
tion when optimizing the new task, promoting cross-task
forward transfer. Moreover, it might help meta-learn mod-
els that generalize to test-time tasks that could also provide
lower information content, counteracting overfitting to the
meta-pre-training tasks. Minimizing k also allows to utilize
all the larger set of remaining unseen data in Dtrain to in-
crease diversity and reduce variance in the meta-objective,
which might further assist with training stability.

Based on our observations about the limitations of prior
work and the role of k, we propose a new meta learning
optimization strategy with three key properties: (i) Fixing
the number of inner steps to k = 1, the minimum possi-
ble value. (ii) Using exact second-order meta-gradients,
which can now be tractably computed due to the shallower
computation graph. (iii) Having numerous unseen task
samples in the meta-loss, significantly incentivizing for-
ward transfer, together with plasticity and backward trans-
fer. We remark that these changes minimize the amount of
available unseen data per task and should make the over-
all meta-optimization process very fast and stable to exe-
cute, even when computing the exact second-order gradi-
ents. We note that placing emphasis on forward transfer
brings our objective significantly closer to the original few-
shot generalization objective that motivated the design de-
cisions of MAML. We provide a summary highlighting the
differences of our simple meta-learner for continual learn-
ing (SiM4C) in Algorithm 1. In Section 4, we empirically
evaluate our algorithm’s performance and theorized proper-
ties on the Omniglot benchmark against the aforementioned
meta pre-trained online continual learning methods. Then,
in Section 5, we propose to utilize the SiM4C meta-loss
with memory buffer data as an auxiliary objective for con-
tinual learning without any meta pre-training, evaluate on
a wide range of benchmarks that include Class-IL, Task-
IL, and Domain-IL problems. In both settings, SiM4C at-
tains near-universal improvements and state-of-the-art per-
formance without any ad hoc hyper-parameter tuning.

4. Meta-pretrained continual evaluation
We evaluate SiM4C on the meta pre-trained online con-

tinual learning setting using the Omniglot dataset [28]. As
described in Section 3.1, we meta pre-train on the first 963
classes and meta-test on sampled sequences of 600 tasks.
Each class corresponds to a separate task where the model
has access to each datapoint only once, following the main
experimental setup from the considered baselines. We com-
pare the performance of SiM4C against OML [23] and
ANML [4]. For OML, we consider two versions utiliz-
ing the authors’ shared best meta pre-trained models, where

the second improved model was uploaded long after their
publication, employing additional optimization tricks and a
similar network architecture to ANML. We keep SiM4C’s
main network architecture and hyper-parameters consistent
with ANML to ensure a fair comparison. However, ANML
still uses an auxiliary neuromodulation network, effectively
doubling its total weights. The Omniglot benchmark greatly
emphasizes the ability of meta pre-training to recover ef-
fective models that defy forgetting, as simple finetuning
approaches do not exceed random accuracy when learning
from even just 5 consecutive tasks. In the reported perfor-
mance curves we average over five distinct models and five
evaluation runs, each obtained with different random seeds.
Shaded regions and error bars correspond to standard devia-
tions. We refer to Appendix B for all further details regard-
ing our baselines, training procedure, and models.

Performance analysis. As shown in Figure 2A, SiM4C
greatly outperforms all other considered algorithms, setting
new state-of-the-art results on the Omniglot benchmark.
After observing 600 meta-testing tasks, SiM4C achieves a
final mean accuracy on unseen samples exceeding 71%. In
contrast, the best collected mean final accuracies of ANML
(62%) and OML (56%) closely match (and even surpass)
the ones reported in the respective paper, lagging behind
SiM4C by a considerable margin. Remarkably, SiM4C
achieves these results with a much simpler and more ef-
ficient implementation, removing unnecessary complexity,
computation, and hyper-parameters. These advantages are
reflected in Figure 3A, showing the recorded time taken and
GPU memory allocation from running the respective meta-
optimization loops. In particular, we find that SiM4C trains
around four times faster than ANML (five times for OML),
while having also the lowest GPU memory requirements.

Understanding the performance gap. We analyze
the key factors making SiM4C’s simpler and lighter meta-
optimization considerably more effective than prior work.
By comparing Figure 2A and Figure 2B, we observe that
SiM4C displays a much stronger generalization ability as
compared to ANML, attaining a lower gap between its test
and training accuracy throughout meta-testing. This im-
proved generalization appears to validate the effectiveness
of SiM4C’s meta pre-training objective, emphasizing for-
ward transfer to unseen task data. In comparison, ANML’s
meta-objective solely focuses on plasticity (on the k inner
examples) and backward transfer (on the remember set), re-
flecting its high knowledge retention ability.

However, we note that despite its objective’s focus on
maximizing performance retention on seen data, ANML’s
training accuracy ultimately still lags behind SiM4C’s. To
understand the reasons causing this, we record and an-
alyze the final meta-testing performances of SiM4C and
ANML from frequently saving and evaluating all meta pre-
trained models stored every 5000 meta pre-training steps.
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Figure 2. Performance on the online meta continual Omniglot benchmark after meta pre-training. We compare classification accuracy on
(A) unseen test data and (B) seen training data of all experienced tasks from T test as we perform meta-testing.

Figure 3. Comparison of the properties between SiM4C and prior methods: (A) Average time taken and GPU memory required to
perform meta-optimization. (B) final meta-testing performance as a function of the number of meta pre-training steps.

As shown in Figure 3B, with pre-training progressing we
observe a stark contrast between how the meta-testing per-
formance evolves. In particular, SiM4C’s final accuracy
rises and stably settles close to its apex while ANML’s
performance starts visibly deteriorating after the first 20K
pre-training steps. We compare these results with the final
accuracies collected by emulating meta-testing using tasks
already seen during pre-training, displayed by the dotted
curves. In this alternative scenario, ANML’s final accu-
racy grows monotonically as we increase the length of the
meta pre-training phase, even surpassing SiM4C’s. These
findings are a clear indication of meta-overfitting, which
suggests that ANML’s meta pre-training procedure strug-
gles to defy forgetting beyond the precise distribution of
meta-training tasks. In contrast, they highlight how utiliz-
ing SiM4C’s purposefully regularized objective that min-
imizes the ratio between seen and unseen task samples,
and computing the exact second-order gradients allows to
meta-learn a more general strategy to continually learn.
They also show that SiM4C is more robust to the meta pre-

training procedure, as evidenced by its lower performance
dependence on appropriate early stopping. We refer to Ap-
pendix D for ablation studies and additional results analyz-
ing the contributions of SiM4C’s individual components.

5. SiM4C without meta pre-training
Integration with memory-based algorithms. We port

SiM4C to more canonical continual learning settings, lift-
ing the assumptions of having access to a meta pre-training
phase. Here, we propose to employ SiM4C as an auxil-
iary objective during each continual learning step, integrat-
ing it with existing memory-based algorithms. Our imple-
mentation tries to make minimal changes from its base ap-
proach, such that it can be included as a simple plug-in ad-
dition and extended to future continual learning algorithms.
As detailed in Section 2.1, memory-based continual learn-
ing approaches follow a general structure of optimizing a
weighted sum between a main cross-entropy loss Lce using
a batch of data from the current task Dcurr ⇢ Dtrain

t and
an auxiliary loss Laux using a batch of past data from the
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Algorithm 2 Continual Learning with SiM4C (green)
input: ⌘, learning rate; S, task training steps; ↵, memory coefficient
Initialize ✓
for t 1, 2, . . . T do

Retrieve Dtrain
t 2 T

for i 1, 2, . . . S do
Sample batches Dcurr, Dfut ⇠ Dtrain

t
Sample batch Dpast ⇠M
lce✓  

P
(x,y)2Dcurr Lce(f✓(x), y) . memory-based losses

laux✓  ↵⇥
P

(x,y)2Dpast Laux(f✓(x), y)

✓0  ✓ � ⌘
@lce✓
@✓

. SiM4C inner step

lce✓0  
P

(x,y)2Dfut Lce(f✓0 (x), y) . meta losses
laux✓0  ↵⇥

P
(x,y)2Dpast Laux(f✓0 (x), y)

✓  ✓ � ⌘
@
�
lce✓ + laux✓ + lce✓0 + laux✓0

�

@✓
. update model

M reservoir(M, Dcurr) . update memory
output: f✓ . return final model

memory buffer Dpast ⇢ M. Together with the current and
past data batches (Dcurr, Dpast), the SiM4C auxiliary loss re-
lies on what we refer to as a future batch Dfut and involves
two simple steps based on SiM4C’s optimization procedure:

1. Performing a single inner optimization step on Dcurr.

2. Calculating the learner’s new loss on Dfut and Dpast.

We find several different choices for obtaining Dfut work
well in practice. For instance, a natural choice is to tem-
porarily store each sampled batch data of the current task for
two optimization steps rather than one. Hence, we can use
the earlier collected batch as Dcurr and the later collected
batch as Dfut. However, we note this change introduces
minimal constant memory costs from storing the extra batch
that could make evaluation unfair with the other memory-
based algorithms. Therefore, we resort to an even simpler
solution that we find works almost as well. Given that mod-
ern implementation of all the considered continual learning
baselines entail some form of data augmentation that tries
to capture within-task variations, we augment the sampled
batch from the current task an additional time to act as Dfut.
We refer to our Appendix E for additional discussion and
empirical comparisons of different viable approaches to ob-
tain Dfut. We add the SiM4C auxiliary loss without any
tuned scaling coefficient to avoid introducing any additional
hyper-parameter. Due to its simplicity, integrating SiM4C
requires very few additional lines of code as exemplified in
Algorithm 2, where we highlight the changes from a general
memory-based continual learning implementation.

Class-, Task-, and Domain-IL settings. We integrate
SiM4C with the state-of-the-art DER and DER++ algo-
rithms [6] introduced in Section 2.1, together with a more
traditional memory-based baseline from Riemer et al. [41]
(ER) using a simple cross-entropy loss as its auxiliary loss
for the memory data. We compare final test accuracy

also with additional memory-based continual learning algo-
rithms [2, 5, 8, 9, 35, 40]. We consider several established
continual learning benchmarks for image classification. For
Class-IL and Task-IL, S-CIFAR-10 and S-Tiny-ImageNet
are constructed by splitting the classes of CIFAR-10 [26]
and of Tiny-ImageNet [29] in 5 and 10 mutually-exclusive
classification tasks, following [6, 11, 55]. On these bench-
marks, all methods employ a ResNet18 architecture [19]
and train for 50 and 100 epochs, respectively. For Domain-
IL, Permuted MNIST [25] and Rotated MNIST [35] in-
volve 20 total tasks, each applying a different random per-
mutation or rotation in [0,⇡) to the images from MNIST
[30]. On these benchmarks, all methods employ a simple
2-layer fully-connected network with 100 hidden units and
train for a single epoch. We provide the baseline perfor-
mances reported by Buzzega et al. [6], obtained after tuning
hyper-parameters for each different continual dataset and
memory buffer size. However, we do not re-tune any hyper-
parameter of the SiM4C integrations to evaluate its general
applicability. We refer to Appendix B for all further details.

Performance analysis. As shown in Table 1, integrat-
ing SiM4C leads to near-universal benefits and state-of-
the-art performance, with recorded final accuracy gains
in 35/36 experiments. Remarkably, using SiM4C appears
to make even a simple memory-based baseline (ER) com-
petitive with the much more complex DER++ algorithm,
outperforming it in multiple settings. SiM4C’s benefits
are particularly evident for the more challenging problem
settings that preclude task information (Class-IL) or in-
volve an increased number of complex samples (S-Tiny-
ImageNet). Intuitively, for these continual learning prob-
lems, interference is more likely to occur, validating the im-
pact of SiM4C’s explicit meta-optimization objective. For
the comparatively easier Domain-IL settings on the low-
dimensional MNIST dataset, we still recorded performance
benefits in 11/12 experiments, however, their magnitude
was more limited. We believe this contrast is also due to
the fact that continual learning performance on these bench-
marks is already quite close to joint training, leaving less
overall room for improvement. In Appendix C, we also
show that SiM4C adds only minimal computational over-
heads and we provide additional detailed results recording
additional metrics and considering additional buffer sizes
and baselines.

Considerations. Since, most of the prior memory-based
continual learning methods make use of some fixed heuris-
tic procedure to approximate the true i.i.d. data loss us-
ing the memory buffer data, we believe they inevitably re-
quire some level of hyper-parameter tuning to account for
problem-specific levels of non-stationarity and other factors
affecting their training dynamics. In principle, by adding
SiM4C as an auxiliary step, we synergistically make the
relative continual learning algorithm explicitly aware of the
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Buffer Method S-CIFAR-10 S-Tiny-ImageNet P-MNIST R-MNIST
Class-IL Task-IL Class-IL Task-IL Domain-IL Domain-IL

7
JOINT 92.20 98.31 59.99 82.04 94.33 95.76
SGD 19.62 61.02 7.92 18.31 40.70 67.66

ER [41] 44.79 91.19 8.49 38.17 72.37 85.01
(Ours) ER with SiM4C 54.77 +22.3% 92.41 +1.3% 8.88 +4.5% 41.76 +9.4% 72.56 +0.3% 85.95 +1.1%

GEM [35] 25.54 90.44 - - 66.93 80.80
A-GEM [8] 20.04 83.88 8.07 22.77 66.42 81.91
iCaRL [40] 49.02 88.99 7.53 28.19 - -
FDR [5] 30.91 91.01 8.70 40.36 74.77 85.22

200 GSS [2] 39.07 88.80 - - 63.72 79.50
HAL [9] 32.36 82.51 - - 74.15 84.02
DER [6] 61.93 91.40 11.87 40.22 81.74 90.04

(Ours) DER with SiM4C 63.81 +3.0% 91.86 +0.5% 13.27 +11.8% 42.53 +5.8% 81.83 +0.1% 90.64 +0.7%

DER++ [6] 64.88 91.92 10.96 40.87 83.58 90.43
(Ours) DER++ with SiM4C 65.93 +1.6% 92.22 +0.3% 13.31 +21.5% 43.43 +6.3% 82.96 �0.7% 91.57 +1.3%

ER [41] 57.74 93.61 9.99 48.64 80.60 88.91
(Ours) ER with SiM4C 66.05 +14.4% 94.37 +0.8% 10.83 +8.4% 52.10 +7.1% 80.65 +0.1% 89.39 +0.5%

GEM [35] 26.20 92.16 - - 76.88 81.15
A-GEM [8] 22.67 89.48 8.06 25.33 67.56 80.31
iCaRL [40] 47.55 88.22 9.38 31.55 - -
FDR [5] 28.71 93.29 10.54 49.88 83.18 89.67

500 GSS [2] 49.73 91.02 - - 76.00 81.58
HAL [9] 41.79 84.54 - - 80.13 85.00
DER [6] 70.51 93.40 17.75 51.78 87.29 92.24

(Ours) DER with SiM4C 72.62 +3.0% 93.94 +0.6% 18.57 +4.6% 53.68 +3.7% 87.41 +0.1% 92.63 +0.4%

DER++ [6] 72.70 93.88 19.38 51.91 88.21 92.77
(Ours) DER++ with SiM4C 74.77 +2.8% 94.43 +0.6% 20.61 +6.3% 52.37 +0.9% 88.23 +0.0% 92.99 +0.2%

Table 1. Mean final classification accuracy and relative improvements (green) from using SiM4C with different memory-based algorithms,
as evaluated on popular continual learning benchmarks. We provide the baseline results reported in prior work. Empty entries indicate
either incompatibility with the relative problem setting (iCaRL in Domain-IL) or intractable training times [6].

problem-specific training dynamics (within SiM4C’s inner
loop), enabling meta-learning to affect them (in SiM4C
outer optimization). This intuitive property is reflected by
how SiM4C with a single set of hyper-parameters. ap-
pears to consistently outperform all DER-based methods
using task-specific tuned hyper-parameters. Overall, we be-
lieve our experiments strongly validate SiM4C’s effective-
ness beyond the meta pre-trained setting, which we hope
will have implications for the future design and adoption of
lighter and more general meta-learning methods for contin-
ual learning.

6. Related work

The canonical objective of continual learning has been to
mitigate catastrophic forgetting [12, 14, 15, 31]. Currently,
the more general and best-performing methods are replay-
based, in line with recent results showing that it is hard
to avoid forgetting in class-incremental settings without a
memory buffer [32, 49]. However, consistently with our
motivation, several other properties have been recognized

as desirable for a continual learning system, such as forward
and backward transfer, fast adaptation, and computational
efficiency [12]. Furthermore, while several recent methods
have been proposed for online continual learning [1, 6, 10],
scaling to large numbers of tasks in this setting currently
appears infeasible without some form of pre-training [23].

Most meta-learning methods for continual learning op-
timize for fast remembering [20] or slow forgetting [23].
Variations of these approaches include methods that ex-
plicitly incentivize sparsity to minimize interference. For
instance, ANML [4] meta-learns a separate Neuromodu-
latory network, gating the forward and backward passes,
while sparse-MAML [51] focuses on meta-learning where
to learn, inducing sparse learning updates. MER [41]
proposed an algorithm to specifically incentivize gradient
alignment based on Reptile [37] and is compatible with con-
tinual meta-learning without pre-training by using an expe-
rience replay, like SiM4C. Gupta et al. [17] extended this
work by partially addressing MER’s high compute costs and
extending the meta-learned parameters to include a set of
per-parameter learning rates [17]. In contrast to SiM4C,
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all this work entailed optimizing small variations on OML’s
objective, mostly focusing on plasticity and knowledge re-
tention rather than forward transfer. Finally, another related
class of meta-learning methods is instead based on dataset
distillation [52, 54], with the goal of optimizing the mem-
ory buffer content to increase the number of samples stored
while keeping a low memory footprint [42, 44, 53, 56].

7. Conclusion
This work introduced SiM4C: a novel, simple, and gen-

erally applicable meta-learning algorithm to tackle contin-
ual learning. Unlike prior related approaches, SiM4C pur-
posefully minimizes the number of inner optimization up-
dates to allow for practically specifying challenging for-
ward and backward transfer objectives in its outer meta-
loss by making use of larger amounts of unseen task data.
Even without first-order gradient approximations, we show
our design leads to better stability, computational efficiency,
and robustness to meta-overfitting. Furthermore, SiM4C
can both make use of a meta pre-training phase or be in-
tegrated out-of-the-box with any memory-based continual
learning method in a few lines of code. Empirically, its
application produces near-universal performance gains and
achieves state-of-the-art results across five different contin-
ual image classification benchmarks. In the spirit of our
work, we hope that future meta-learning methods will also
be designed for applicability and efficiency, to have con-
crete implications for general continual learning challenges.
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