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Abstract

Image diffusion models, trained on massive image col-
lections, have emerged as the most versatile image genera-
tor model in terms of quality and diversity. They support
inverting real images and conditional (e.g., text) genera-
tion, making them attractive for high-quality image editing
applications. We investigate how to use such pre-trained
image models for text-guided video editing. The critical
challenge is to achieve the target edits while still preserving
the content of the source video. Our method works in two
simple steps: first, we use a pre-trained structure-guided
(e.g., depth) image diffusion model to perform text-guided
edits on an anchor frame; then, in the key step, we pro-
gressively propagate the changes to the future frames via
self-attention feature injection to adapt the core denoising
step of the diffusion model. We then consolidate the changes
by adjusting the latent code for the frame before continuing
the process. Our approach is training-free and generalizes
to a wide range of edits. We demonstrate the effectiveness of
the approach by extensive experimentation and compare it
against four different prior and parallel efforts (on ArXiv).
We demonstrate that realistic text-guided video edits are
possible, without any compute-intensive preprocessing or
video-specific finetuning. https://duyguceylan.
github.io/pix2video.github.io/.

1. Introduction
Diffusion-based algorithms [8, 18, 48] have emerged as

the generative model of choice for image creation. They are
stable to train (even over huge image collections), produce
high-quality results, and support conditional sampling. Ad-
ditionally, one can invert [31, 48] a given image into a pre-
trained diffusion model and subsequently edit using only
textual guidance [15]. Such a generic workflow, to handle
real images and interact using semantic text prompts, is an
exciting development and opens the door for many down-
stream content creation tasks.

However, the same workflow is barely available for
videos where the development of video diffusion models
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Figure 1: There has been exciting advancements in large
scale image generation models [41]. When applied inde-
pendently to a sequence of images (‘per-frame’), however,
such methods produce inconsistent results across frames.
Our method uses a pre-trained and fixed image generation
model to consistently edit a video clip based on a target text
prompt. We show examples of two different edits (‘ours’).

is still in its infancy [32, 46, 61]. Not surprisingly, naively
applying an image-based workflow to each video frame pro-
duces inconsistent results (see Figure 1). Alternately, while
it is possible to use a single frame for style guidance and
employ video stylization propagation [20], the challenge
lies in stylizing new content revealed under changing oc-
clusions across frames.

In this paper, we explore the feasibility of editing a video
clip using a pre-trained image diffusion model and text in-
structions with no additional training. We start by inverting
the input video clip and expecting the user to edit, using tex-
tual prompts, one of the video frames. The goal is then to
consistently propagate the edit across the rest of the video.
The challenge is to balance between respecting the user edit
and maintaining the plausibility and temporal coherency of
the output video. Image generation models already gener-
ate images faithful to the edit prompt. Hence, what remains
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challenging is to propagate the edit in a temporally coherent
manner.

Temporal coherency requires preserving the appearance
across neighboring frames while respecting the motion dy-
namics. Leveraging the fact that the spatial features of
the self attention layers are influential in determining both
the structure and the appearance of the generated images,
we propose to inject features obtained from the previously
edited frames into the self attention layer of the current
frame. This feature injection notably adapts the self atten-
tion layers to perform cross-frame attention and enables the
generation of images with coherent appearance character-
istics. To further improve consistency, we adopt a guided
diffusion strategy in which we update the intermediate la-
tent codes to enforce similarity to the previous frame before
we continue the diffusion process. While the image gener-
ation model cannot reason about motion dynamics explic-
itly, recent work has shown that generation can be condi-
tioned on static structural cues such as depth or segmenta-
tion maps [63]. Being disentangled from the appearance,
such structural cues provide a path to reason about the mo-
tion dynamics. Hence, we utilize a depth-conditioned im-
age generation model and use the predicted depth from each
frame as additional input.

We term our method Pix2Video and evaluate it on various
real video clips demonstrating both local (e.g., changing the
attribute of a foreground object) and global (e.g., changing
the style) edits. We compare with several state-of-the-art
approaches including diffusion-based image editing meth-
ods applied per frame [30], patch-based video based styliza-
tion methods [20], neural layered representations that facil-
itate consistent video editing [3], and concurrent diffusion
based video editing methods [58]. We show that Pix2Video
is on par with or better than the baselines without requir-
ing any compute-intensive preprocessing [3] or any video-
specific finetuning [58]. This can be seen in Figure 1 “ours”
columns where the appearance of the foreground objects are
more consistent across frames than per-frame editing.

In summary, we present a training free approach that uti-
lizes pre-trained large scale image generation models for
video editing. Our method does not require pre-processing
and does not incur any additional overhead during infer-
ence stage. This ability to use an existing image genera-
tion model paves the way to bring exciting advancements in
controlled image editing to videos at no cost. Source code
is available at the project page.

2. Related Work

2.1. Image generation and editing

While many deep generative models, e.g., GAN [12],
have demonstrated the ability to generate realistic images
[4, 22], recently, diffusion models have become the choice

of models due to the high quality output they achieve on
large scale datasets [9]. Denoising Diffusion Probabilis-
tic Model (DDPM) [18] and its variant Denoising Diffu-
sion Implicit Model (DDIM) [48] have been widely used for
unconditional text-to-image generation. Several large scale
text-to-image generation models [34, 39, 44], which operate
on the pixel space have been presented, achieving very high
quality results. Rombach et al. [41] have proposed to work
in a latent space which has lead to the widely adopted open
source Stable Diffusion model. We refer the readers to a
recent survey [8] and the extensive study [21] for a detailed
discussion on diffusion models.

In the presence of high quality text conditioned image
generation models, several recent works have focused on
utilizing additional control signals for generation or editing
existing images. Palette [43] has shown various image-to-
image translation applications using a diffusion model in-
cluding colorization, inpainting, and uncropping. Several
methods have focused on providing additional control sig-
nals such as sketches, segmentation maps, lines, or depth
maps by adapting a pretrained image generation model.
These methods work by either finetuning [55] an existing
model, introducing adapter layers [33] or other trainable
modules [54, 63], or utilizing an ensemble of denoising net-
works [2]. Since our model uses a pretrained image diffu-
sion model, it can potentially use any model that accepts
such additional control signals. In another line of work,
methods have focused on editing images while preserving
structures via attention layer manipulation [15, 52], spatial
guidance [7], or per-instance finetuning [24]. Our method
also performs attention layer manipulation, specifically in
the self attention layers, along with a latent update at each
diffusion step. Unlike single image based editing work,
however, we utilize previous frames when performing these
steps. We would also like to emphasize that the edit of the
anchor frame for our method can potentially be performed
with any such method that utilize the same underlying im-
age generation model.

2.2. Video generation and editing

Until recently, GANs have been the method of choice
for video generation, with many works designed towards
unconditional generation [5, 13, 45, 47, 51, 62, 64]. In
terms of conditional generation, several methods have uti-
lized guidance channels such as segmentation masks or key-
points [56, 57]. However, most of these methods are trained
on specific domains. One particular domain where very
powerful image generators such as StyleGAN [22] exist
is faces. Hence, several works have explored generating
videos by exploring the latent space of such an image based
generator [37, 59]. While we also exploit an image genera-
tion model, we are not focused on a specific domain.

With the success of text-to-image generation models,
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there has been recent attempts in text-to-video generation
models using architectures such as transformers [19, 53, 60]
or diffusion models [14, 17, 46, 61]. However, such mod-
els are still in their infancy compared to images, both due
to the complexity of temporal generation as well as large
scale annotated video datasets not being comparable in size
to images. Concurrent works [10, 32] explore mixed im-
age and video based training to address this limitation. In
another concurrent work, Wu et al. [58] inflate an image dif-
fusion model and finetune on a specific input video to en-
able editing tasks. In our work, we use the pretrained image
diffusion model as it is with no additional training.

Layered neural representations [29] have recently been
introduced, providing another direction for editing videos.
Layered neural atlases [23] are such representations that
map the foreground and background of a video to a canon-
ical space. Text2Live [3] combines such a representation
with text guidance to show compelling video editing results.
While impressive, the computation of such neural represen-
tations includes extensive per-video training (7-10 hours),
which limits their applicability in practice. Loeschcke et
al. [28] also utilizes layered neural atlases with a CLIP
based optimization to stylize a foreground object in a video.

Finally, video stylization is a specific type of editing task
where the style of an example frame is propagated to the
video. While some methods utilize neural feature repre-
sentations to perform this task [42], Jamriska et al. [20]
consider a patch-based synthesis approach using optical
flow. In a follow-up work [50], they provide a per-video
fast patch-based training setup to replace traditional opti-
cal flow. Both methods achieve high quality results but are
limited when the input video shows regions that are not vis-
ible in the provided style keyframes. They rely on having
access to multiple stylized keyframes in such cases. How-
ever, generating consistent multiple keyframes itself is a
challenge. Our method can also be perceived as orthogonal
since the (subset of) frames generated by our method can
subsequently be used as keyframe inputs to these models.

3. Method
Given a sequence of frames of a video clip, I :=

{I1, . . . , In}, we would like to generate a new set of images
I ′ := {I ′1, . . . , I ′n} that reflects an edit denoted by a target
text prompt P ′. For example, given a video of a car, the
user may want to generate an edited video where attributes
of the car, such as its color, are edited. We aim to exploit the
power of a pretrained and fixed large-scale image diffusion
model to perform such manipulations as coherently as pos-
sible, without the need for any example-specific finetuning
or extensive training. We achieve this goal by manipulat-
ing the internal features of the diffusion model (Section 3.1)
along with additional guidance constraints (Section 3.2).

Given that the fixed image generation model is trained

with only single images, it cannot reason about dynamics
and geometric changes that happen in an input video. In
light of the recent progress in conditioning image gener-
ation models with various structure cues [2, 11, 54], we
observe that this additional structure channel is effective
in capturing the motion dynamics. Hence, we build our
method on a depth-conditioned Stable Diffusion model [1].
Given I, we perform per-frame depth prediction [40] and
utilize it as additional input to the model.

3.1. Self-attention Feature Injection

In the context of static images, a large-scale image gen-
eration diffusion model typically consists of a U-Net ar-
chitecture composed of residual, self-attention, and cross-
attention blocks. While the cross-attention blocks are effec-
tive in terms of achieving faithfulness to the text prompt,
self-attention layers are effective in determining the overall
structure and the appearance of the image. At each diffusion
step t, the input features f l

t to the self-attention module at
layer l, are projected into queries, keys, and values by matri-
ces WQ, WK , and WV , respectively to obtain queries Ql,
keys Kl, and values V l. The output of the attention block
is then computed as:

Ql = WQf l
t ;K

l = WKf l
t ;V

l = W vf l
t

f̂ l
t = softmax(Ql(Kl)⊤)(V l),

where dk denotes the dimension of Q and K. In other
words, for each location in the current spatial feature map
f l
t , a weighted summation of every other spatial features

is computed to capture global information. Extending to
the context of videos, our method captures the interaction
across the input image sequence by manipulating the input
features to the self-attention module. Specifically, we inject
the features obtained from the previous frames. A straight-
forward approach is to attend to the features f j,l

t of an ear-
lier frame j while generating the features f i,l

t for frame i as,

Qi,l = WQf i,l
t ;Ki,l = WKf j,l

t ;V i,l = W vf j,l
t .

With such feature injection, the current frame is able to uti-
lize the context of the previous frames and hence preserve
the appearance changes. A natural question is whether an
explicit, potentially recurrent, module can be employed to
fuse and represent the state of the previous frame features
without explicitly attending to a specific frame. However,
the design and training of such a module is not trivial. In-
stead, we rely on the pre-trained image generation model to
perform such fusion implicitly. For each frame i, we inject
the features obtained from frame i − 1. Since the editing
is performed in a frame-by-frame manner, the features of
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(Section 3.2)
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...
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Figure 2: Method pipeline. Pix2Video first inverts each frame with DDIM-inversion and consider it as the initial noise
xT for the denoising process. To edit each frame i > 1 (lower row), we select a reference frame (upper row), inject its
self-attention features to the UNet. At each diffusion step, we also update the latent of the current frame guided by the latent
of the reference frame. In practice, we consider both i − 1 (previous) and i = 1 (anchor) frames as reference for feature
injection, while we use only the previous frame for the guided latent update.

i − 1 are computed by attending to frame i − 2. Conse-
quently, we have an implicit way of aggregating the feature
states. In Section 4, we demonstrate that while attending
to the previous frame helps to preserve the appearance, in
longer sequences it shows the limitation of diminishing the
edit. Attending to an additional anchor frame avoids this
forgetful behavior by providing a global constraint on the
appearance. Hence, in each self-attention block, we con-
catenate features from frames a and i − 1 to compute the
key and value pairs. In our experiments, we set a = 1, i.e.,
the first frame.

Qi,l = WQf i,l
t ;

Ki,l = WK [fa,l
t , f i−1,l

t ];V i,l = W v[fa,l
t , f i−1,l

t ].

We perform the above feature injection in the decoder
layers of the UNet, which we find effective in maintaining
appearance consistency. As shown in the ablation study,
and also reported by the concurrent work of Tumanyan et
al. [52], the deeper layers of the decoder capture high res-
olution and appearance-related information and already re-
sult in generated frames with similar appearance but small
structural changes. Performing the feature injection in ear-
lier layers of the decoder enables us to avoid such high-
frequency structural changes. We do not observe further
significant benefit when injecting features in the encoder of
the UNet and observe slight artifacts in some examples.

3.2. Guided Latent Update

While self-attention feature injection effectively gener-
ates frames that have coherent appearance, it can still suffer

from temporal flickering. In order to improve the temporal
stability, we exploit additional guidance to update the latent
variable at each diffusion step along the lines of classifier
guidance [34]. To perform such an update, we first formu-
late an energy function that enforces consistency.

Stable Diffusion [1, 14], like many other large-scale
image diffusion models, is a denoising diffusion implicit
model (DDIM) where at each diffusion step, given a noisy
sample xt, a prediction of the noise-free sample x̂0, along
with a direction that points to xt, is computed. Formally,
the final prediction of xt−1 is obtained by:

xt−1 =
√
αt−1 x̂t

0︸︷︷︸
predicted ‘x0’

+

√
1− αt−1 − σ2

t ϵθ(xt, t)︸ ︷︷ ︸
direction pointing to xt

+ σtϵt︸︷︷︸
random noise

,

x̂t
0 =

xt −
√
1− αtϵ

t
θ(xt)√

αt
,

where αt and σt are the parameters of the scheduler and
ϵθ is the noise predicted by the UNet at the current step t.
The estimate x̂t

0 is computed as a function of xt and indi-
cates the final generated image. Since our goal is to generate
similar consecutive frames eventually, we define an L2 loss
function g(x̂i,t

0 , x̂i−1,t
0 ) = ∥x̂i,t

0 − x̂i−1,t
0 ∥22 that compares

the predicted clean images at each diffusion step t between
frames i− 1 and i. We update xi

t−1, the current noise sam-
ple of a frame i at diffusion step t, along the direction that
minimizes g:

xi
t−1 ← xi

t−1 − δt−1∇xi
t
g(x̂t,i−1

0 , x̂t,i
0 ), (1)
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Algorithm 1
Input I = {I1, . . . In}, text prompt P ′, T = 50 diffu-

sion steps, a pretrained diffusion model SD
Output I ′ = {I ′1, . . . I ′n}

1: X T ← {x1
T , ..., x

n
T } by DDIM inversion

2: I ′ = ∅,Fanchor = ∅,Fprev = ∅, X̂ prev
0 = ∅

3: for f ∈ [1,n]: do
4: X̂ tmp

0 = [], F̂ tmp = []

5: xt = xf
T

6: δt−1 = 100 if t− 1 < 25 else δt−1 = 0
7: for t ∈ [1,T ]: do
8: if f = 1 then
9: fanchor = ∅, fprev = ∅, x̂prev

0 = ∅
10: else
11: fanchor = Fanchor[t]
12: fprev = Fprev[t]
13: x̂prev

0 = X̂ prev
0 [t]

14: end if
15: xt−1, x̂

t
0, f

t = SD(xt, t,P, fanchor, fprev)
16: if f = 1 then
17: Fanchor ← Fanchor ∪ {f t}
18: else
19: xt−1 ← xt−1 − δt−1∇xt∥x̂

prev
0 − x̂t

0∥22
20: end if
21: F tmp ← F tmp ∪ {f t}
22: X̂ tmp

0 ← X̂ tmp
0 ∪ {x̂t

0}
23: end for
24: X̂ prev

0 = X̂ tmp
0

25: Fprev = F tmp

26: I ′ ← I ′ ∪ {I ′f}
27: end for

where δt−1 is a scalar that determines the step size of the
update. We empirically observe that performing one gra-
dient update at each diffusion step is sufficient and we set
δt−1 = 100 in our experiments. We perform this update
process for the early denoising steps, namely the first 25
steps among the total number of 50 steps, as the overall
structure of the generated image is already determined in
the earlier diffusion steps [25]. Performing the latent update
in the remaining steps often results in lower-quality images.

Finally, the initial noise used to edit each frame also
significantly affects the temporal coherency of the gener-
ated results. We use an inversion mechanism, DDIM inver-
sion [48], while other inversion methods aiming to preserve
the editability of an image can be used [31] as well. To get
a source prompt for inversion, we generate a caption for the
first frame of the video using a captioning model [26]. We
provide the overall steps of our method in Algorithm 1.

Text2Live Tune-a-VideoJamriska et al.

Figure 3: Comparisons. Top: results from baselines; bot-
tom: our results. The method of Jamriska et al. relies on op-
tical flow to propagate edits in a temporally coherent man-
ner but fails as new content becomes visible. Text2Live
suffers when multiple foreground objects are present and
a neural atlas cannot be computed robustly. Without an ex-
plicit notion of structure, Tune-a-Video is not able to pre-
serve the structure in the input video for some edits.

4. Evaluation
Dataset. Following [3, 10, 58], we evaluate Pix2Video

on videos obtained from the DAVIS dataset [36]. For videos
that have been used in previous or concurrent work, we use
editing prompts provided by such work. For other videos,
we generate editing prompts by consulting a few users. The
length of these videos ranges from 50 to 82 frames.

Baselines. We compare Pix2Video with both state-of-
the-art image and video editing approaches. (i) The method
of Jamriska et al. [20] propagates the style of a set of given
frames to the input video clip. We use the edited anchor
frame as a keyframe. (ii) We compare to a recent text-
guided video-editing method, Text2Live [3]. We note that
this method first requires the computation of a neural at-
las [23] for the foreground and background layers of a video
which takes approximately 7-8 hours per video. Given
the neural atlas, the method further finetunes the text-to-

Table 1: Compared to other video-based baselines, our
method does not require a heavy pre-processing stage nor
a per-video or per-edit finetuning strategy.

pre-
processing

finetuning layering

Jamriska et al. [20] no no no
Text2Live [3] 7-8 hours 30 min yes
Tune-a-Video [58] 75sec 10 min no
ours 125sec no no
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“a grizzly bear 
walking around 

the lake, 
foggy day”

“a group of 
rainbow fish 

swimming in an 
aquarium”

“a kite-surfer in 
the magical starry 
ocean with aurora 

borealis in the 
background”

“a crochet swan 
on the lake”

input
video

input
video

input
video

input
video

Figure 4: Text-guided video edits. For each example, we show frames from the input video at the top and the corresponding
edited frames, and the edit prompt at the bottom. Please refer to the project webpage for the videos.
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image generation model which takes another 30 minutes.
(iii) We also compare against SDEdit [30] where we add
noise to each input frame and denoise conditioned on the
edit prompt. We experiment with different strengths of
noise added and use the depth-conditioned Stable Diffusion
[1] as in our backbone diffusion model. (iv) Finally, we also
consider the concurrent Tune-a-Video [58] method, which
performs a video-specific finetuning of a pretrained image
model. Since this method generates only a limited number
of frames, we generate 24 frames by sampling every other
frame in the input video following the setup provided by
the authors. Note that this method is not conditioned on any
structure cues like depth. We summarize the characteristics
of each baseline in Table 1.

Metrics. We expect a successful video edit to faithfully
reflect the edited prompt and be temporally coherent. To
capture the faithfulness, we follow [17, 58] and report CLIP
score [16, 35], which is the cosine similarity between the
CLIP embedding [38] of the edit prompt and the embed-
ding of each frame in the edited video. We refer to this met-
ric as “CLIP-Text”. To measure the temporal coherency, we
measure the average CLIP similarity between the image em-
beddings of consecutive frames in the edited video (“CLIP-
Image”). We observe that CLIP image embeddings encode
more global appearance than local details. Hence, we also
compute the optical flow between consecutive frames [49],
and warp each frame in the edited video to the next using
the flow. We compute the average mean-squared pixel er-
ror between each warped frame and its corresponding target
frame as “Pixel-MSE”. We note that this metric is favorable
for Text2Live [3] and the method of Jamriska et al. [20],
which explicitly utilize optical flow information. Since our
method also uses the coarse depth structure guidance, we
have included it in our evaluations.

4.1. Results

Qualitative results. We provide a set of example ed-
its our method achieves in Figure 4. For each example, we
show several randomly sampled frames both from the input
and edited video, along with the edit prompts. As seen in
the figure, Pix2Video can handle videos with a clear fore-
ground object (e.g., bear) as well as multiple foreground
objects (e.g., fish). We can perform localized edits where
a prompt specifies the attribute of an object (e.g., swan) as
well as global edits which change the overall style (e.g.,
kite surfer). Please note that, unlike Text2Live, we do not
use any explicit mask information to specify which regions
should be edited. This enables us to handle reflections au-
tomatically, as in the swan example. Since our method uti-
lizes the depth information as a coarse structure guidance,
it is more effective for video stylization tasks. Since the
depth information is coarse, especially for the background,
we observe that edits can also make structural changes in

Table 2: Quantitative comparison. Our method attains
the highest CLIP-Text score (faithfulness) and fairly good
CLIP-Image and Pixel-MSE (temporal coherency).

CLIP-Text ↑ CLIP-Image ↑ Pixel-MSE ↓

Jamriska et al. [20] 0.2684 0.9838 44.62
Text2Live [3] 0.2679 0.9806 72.57

Tune-a-Video [58] 0.2691 0.9674 1190.62
SDEdit [30] 0.2775 0.8731 2324.29

img2img, null inv. [31] 0.2802 0.8882 1261.60
prompt2prompt [15] 0.2618 0.9243 296.51

ours w/o update 0.2893 0.9740 371.18
ours (warped x̂i−1,t

0 ) 0.2892 0.9760 216.60
ours 0.2891 0.9767 228.62

these regions. We refer to the supplementary material for
more examples.

Quantitative results and comparisons. We provide
quantitative comparisons to the baseline methods in Table 2
and also refer to Figure 3. Among the baseline methods,
we observe that Jamriska et al. [20] achieve good temporal
coherency as it explicitly utilizes flow information to warp
and propagate edits from the provided keyframes. However,
as new content appears in the video or when flow informa-
tion is unreliable, it fails to hallucinate details resulting in
less faithful edits (Fig. 3 top left). Tex2Live [3] constructs
a neural atlas for the input video, which by construction
ensures temporal consistency by mapping edits in the atlas
to each frame. It performs well when a clear foreground
and background separation exists, and an accurate neural
atlas can be synthesized. Since this method edits the atlas
itself it is temporally coherent by construction. However,
when there are multiple foreground objects, e.g., Fig. 3 top
middle, a reliable neural atlas cannot be computed, and the
method fails. The edited results have “ghost shadow” that
consequently deteriorates CLIP-Text scores.

We also observe that, unlike our method, it is not
straightforward to perform global style edits on both the
foreground and background consistently with Text2Live.
While attaining high CLIP-Text scores, i.e., generating
frames faithful to the edit prompt, SDEdit [30] results in
worst temporal coherency as it generates each frame inde-
pendently. This is confirmed by the lowest CLIP-Image
score and highest Pixel-MSE in Table 2. The concurrent
Tune-a-Video method [58] achieves a nice balance between
edit propagation and temporal coherency. However, sub-
sampling a fixed number of frames in the video inevitably
hurts the temporal scores. We also observe that for some
edits it cannot preserve the structure of the objects in the in-
put video (Fig. 3 top right). Some edits result in very similar
outputs, which could be attributed to per-example finetun-
ing that might cause overfitting (see the pig and fish exam-
ples in the project webpage). In contrast, by using the ad-
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(a) Faithfulness (b) Preference

Figure 5: User evaluation. Our user study shows that
Pix2Video not only better reflects the edits but is also per-
ceptually preferred over other methods.

ditional depth conditioning, Pix2Video better preserves the
structure of the input video and strikes a good balance be-
tween respecting the edit as well as keeping temporal con-
sistency without requiring any training.

User study. We further evaluate Pix2Video against the
baselines with a user study. Given 10 videos with 2 different
edits each, we ask 37 participants to compare our result with
one of the baselines shown in random order. Each edited
video is ranked, by pairwise comparison, by 11 users on av-
erage. We ask two questions to the user: (i) Which video
better represents the provided editing caption? (ii) Which
edited video do you prefer? The first question evaluates
“faithfulness” while the second indicates overall video qual-
ity via “preference”. Please see supplemental matetrial for
more details on our perceptual study.

We plot the results of user voting in Fig. 5, where the
error bars represent 99% confidence intervals. In Fig. 5a,
the majority of the participants agreed that our results reflect
the edits more faithfully than others, in accordance with the
higher CLIP-Text score in Table 2. Fig. 5b shows that our
results are also preferred over other baselines when viewed
side-by-side. Note that temporal smoothness plays a crucial
role in the perceptual quality of a video. Despite Jamriska
et al. [20] losing edits as pointed out in Fig. 3, it is on par
with our method in terms of overall preference which we
attribute to high temporal coherency (see CLIP-Image and
Pixel-MSE in Table 2). In summary, the user study confirms
that we achieve a good balance between ensuring edits and
maintaining temporal consistency.

Comparison to controllable text based image editing
methods. We are witnessing a growing interest in adapt-
ing large scale text to image generation methods for con-
trollable image editing applications. Hence, we also make
comparisons to such methods applied in a per-frame man-
ner. Specifically, we compare to null text inversion [31] and
Prompt-to-Prompt [15]. As show in Table 2, these meth-
ods are inferior especially with respect to temporal scores
(CLIP-Image and Pixel-MSE). Prompt-to-Prompt supports
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Figure 6: Comparison to Prompt-to-Prompt. While
Prompt-to-Prompt can achieve localized edits based on
the original and target prompts a black swan on the
lake → a Swarovski blue crystal swan on
the lake respectively, applying it on a per-frame basis
results in more temporal flickering compared to our method.

localized edits by cross frame attention control and per-
forms better in such cases as opposed to more global ed-
its. However, even in such cases, in terms of temporal
consistency it is not on par with our method (see Fig-
ure 6). We note that our method is orthogonal and can adapt
the Prompt-to-Prompt framework as the underlying text-to-
image model as shown by the concurrent work [27].

Ablations. We perform ablation studies to validate sev-
eral design choices. First, we evaluate different choices of
previous frames to use for self attention feature injection.
In Figure 8, we compare scenarios where we always attend
to (i) a fixed anchor frame (first frame in our experiments),
(ii) the previous frame only, (iii) an anchor frame and a ran-
domly selected previous frame, and (iv) an anchor frame
and a previous frame as in our method. In cases where
no previous frame information is used or a random previ-
ous frame is chosen, we observe artifacts, especially for
sequences that contain more rotational motion, e.g., struc-
ture of the car not being preserved as the car rotates. This
confirms our intuition that attending to the previous frame
implicitly represents the state of the edit in a recurrent man-
ner. Without an anchor frame, we observe more temporal

Figure 7: Visual comparison of different guided latent
update strategies. See text for more discussion.
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Figure 8: Different self-attention feature injection
schemes. Using a fixed anchor frame results in structural
artifacts as the distance between the anchor and the edited
frame increases. Attending only to the previous frame or
a randomly selected previous frame results in temporal and
structural artifacts. We obtain the best results by using a
fixed anchor and the previous frame.

flickering and the edit diminishes as the video progresses.
By combining the previous frame with an anchor frame we
strike a good balance.

Pix2Video consists of two main steps of feature injection
and guided latent update. In Table 2, we report the results
without the latent update step. As shown in the metrics,
this results in worse CLIP-Image scores and Pixel-MSE er-
rors confirming that this guidance is effective in enforcing
temporal coherency and preserving the edit. We also exper-
imented with warping x̂i−1,t

0 in Equation 1 to the current
frame using optical flow (RAFT). Table 2 shows that this
leads to on-par results. We hypothesize that this is due to
the low resolution of the latent images. We expect the ben-
efit of warping targets to more pronounced when operating
at higher resolution. Fig. 7 provides visual comparison with
the two aforementioned baselines. We refer to the supple-
mentary material for more ablation studies.

Implementation details. We use the publicly available
Stable Diffusion depth conditioned model [1] as our image
generation model. We obtain depth estimates for the input
videos using the MIDAS depth estimator [40]. For each
video, we perform the inversion once save it. Each edit-
ing operation then amounts to generating each frame given
the target prompt. We use 50 DDIM steps both for inversion
and editing. We have experimented with per-frame null-text
inverted noise [31] and observed similar quality. Hence, we
decided to use DDIM inversion due to efficiency (2.5 sec-
onds vs 40-60 seconds per frame). We generate results at
512 × 512 resolution. The temporal error Pixel-MSE in

Table 2 is therefore computed on a 512 × 512 image do-
main. Our method does not incur any additional significant
cost on the image inference step. Without any optimiza-
tion and frame-by-frame processing, we invert and edit each
frame in 2.5 and 5 seconds respectively using a batch size
of 1 on an A100 GPU. When implemented with batching
and AITemplate framework*, the time complexity reduces
to∼0.5 seconds/frame for inversion and 1 second/frame for
editing.

5. Conclusion and Future Work
We present Pix2Video, a method that utilizes a pre-

trained and fixed text-to-image generation model for editing
video clips. We demonstrate the power of our method on
various inputs and editing tasks. We provide detailed com-
parisons to baselines along with an extensive user study. We
show that Pix2Video is on par or superior to baselines while
not requiring additional pre-processing or finetuning.

However, our method also has limitations that we would
like to address in future work. We believe that there is still
room for improvement in terms of temporal coherency. Ex-
ploiting other energy terms, e.g., patch-based similarity [20]
and CLIP similarity, during the latent update stage, is a
promising direction. As we utilize an anchor frame for fea-
ture injection, handling longer videos where the distance
from the anchor increases can cause quality degradation.
Additional conditioning (e.g., image embedding condition-
ing [6]) and a smart anchor update mechanism is a potential
direction. Our method aims to make the diffusion network
more temporally aware. It is a promising future direction to
empower the decoder (or the upsampler) to more faithfully
capture high frequency details and further enforce consis-
tency. We use a per-frame depth prediction method which
lacks full temporal coherency. Our method can benefit from
advances in temporally coherent depth estimation. We also
believe that how strongly the diffusion model adheres to the
input depth conditioning is worth investigating.

Finally, given that our method does not require any fine-
tuning, it has the advantage of being applied to parallel ef-
forts that aim to introduce additional control to the image
generation model, which we would like to exploit.

Acknowledgments.

We would like to thank the users who have participated
in our user study. We also thank Jakub Fiser for helping to
run the comparisons to the work Stylizing Video by Exam-
ple [20].

References
[1] Stable Diffusion v2, 2022. https://huggingface.

co/stabilityai/stable-diffusion-2-depth.

*https://github.com/facebookincubator/AITemplate

23214



3, 4, 7, 9
[2] Yogesh Balaji, Seungjun Nah, Xun Huang, Arash Vahdat,

Jiaming Song, Karsten Kreis, Miika Aittala, Timo Aila,
Samuli Laine, Bryan Catanzaro, Tero Karras, and Ming-Yu
Liu. eDiff-I: Text-to-image diffusion models with an ensem-
ble of expert denoisers. arXiv preprint arXiv:2211.01324,
2022. 2, 3

[3] Omer Bar-Tal, Dolev Ofri-Amar, Rafail Fridman, Yoni Kas-
ten, and Tali Dekel. Text2Live: Text-driven layered image
and video editing. In European Conference on Computer
Vision (ECCV), pages 707–723. Springer, 2022. 2, 3, 5, 7

[4] Andrew Brock, Jeff Donahue, and Karen Simonyan. Large
scale GAN training for high fidelity natural image synthe-
sis. In International Conference on Learning Representa-
tions (ICLR), 2019. 2

[5] Tim Brooks, Janne Hellsten, Miika Aittala, Ting-Chun
Wang, Timo Aila, Jaakko Lehtinen, Ming-Yu Liu, Alexei A
Efros, and Tero Karras. Generating long videos of dynamic
scenes. In Conference on Neural Information Processing
Systems (NeurIPS), 2022. 2

[6] Tim Brooks, Aleksander Holynski, and Alexei A Efros. In-
structpix2pix: Learning to follow image editing instructions.
arXiv preprint arXiv:2211.09800, 2022. 9

[7] Jooyoung Choi, Sungwon Kim, Yonghyun Jeong, Youngjune
Gwon, and Sungroh Yoon. ILVR: Conditioning method for
denoising diffusion probabilistic models. In International
Conference on Computer Vision (ICCV), pages 14367–
14376, October 2021. 2

[8] Florinel-Alin Croitoru, Vlad Hondru, Radu Tudor Ionescu,
and Mubarak Shah. Diffusion models in vision: A survey.
arXiv preprint arXiv:2209.04747, 2022. 1, 2

[9] Prafulla Dhariwal and Alexander Nichol. Diffusion models
beat gans on image synthesis. In M. Ranzato, A. Beygelz-
imer, Y. Dauphin, P.S. Liang, and J. Wortman Vaughan, edi-
tors, Conference on Neural Information Processing Systems
(NeurIPS), volume 34, pages 8780–8794, 2021. 2

[10] Patrick Esser, Johnathan Chiu, Parmida Atighehchian,
Jonathan Granskog, and Anastasis Germanidis. Structure
and content-guided video synthesis with diffusion models.
arXiv preprint arXiv:2302.03011, 2023. 3, 5

[11] Oran Gafni, Adam Polyak, Oron Ashual, Shelly Sheynin,
Devi Parikh, and Yaniv Taigman. Make-A-Scene: Scene-
based text-to-image generation with human priors. arXiv,
2022. 3

[12] Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing
Xu, David Warde-Farley, Sherjil Ozair, Aaron Courville, and
Yoshua Bengio. Generative adversarial nets. In Conference
on Neural Information Processing Systems (NeurIPS), vol-
ume 27, 2014. 2

[13] Sonam Gupta, Arti Keshari, and Sukhendu Das. RV-GAN:
Recurrent gan for unconditional video generation. In Pro-
ceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition (CVPR) Workshops, pages 2024–
2033, June 2022. 2

[14] Yingqing He, Tianyu Yang, Yong Zhang, Ying Shan, and
Qifeng Chen. Latent video diffusion models for high-fidelity
video generation with arbitrary lengths. arXiv preprint
arXiv:2211.13221, 2022. 3, 4

[15] Amir Hertz, Ron Mokady, Jay Tenenbaum, Kfir Aberman,

Yael Pritch, and Daniel Cohen-Or. Prompt-to-prompt image
editing with cross attention control. In International Con-
ference on Learning Representations (ICLR), 2023. 1, 2, 7,
8

[16] Jack Hessel, Ari Holtzman, Maxwell Forbes, Ronan Le Bras,
and Yejin Choi. Clipscore: A reference-free evaluation met-
ric for image captioning. arXiv preprint arXiv:2104.08718,
2021. 7

[17] Jonathan Ho, William Chan, Chitwan Saharia, Jay Whang,
Ruiqi Gao, Alexey Gritsenko, Diederik P. Kingma, Ben
Poole, Mohammad Norouzi, David J. Fleet, and Tim Sali-
mans. Imagen video: High definition video generation with
diffusion models. arXiv, 2022. 3, 7

[18] Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising dif-
fusion probabilistic models. In Conference on Neural In-
formation Processing Systems (NeurIPS), volume 33, pages
6840–6851, 2020. 1, 2

[19] Wenyi Hong, Ming Ding, Wendi Zheng, Xinghan Liu,
and Jie Tang. CogVideo: Large-scale pretraining for
text-to-video generation via transformers. arXiv preprint
arXiv:2205.15868, 2022. 3
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