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Abstract

3D Morphable Models (3DMMs) demonstrate great po-
tential for reconstructing faithful and animatable 3D fa-
cial surfaces from a single image. The facial surface is
influenced by the coarse shape, as well as the static de-
tail (e.g., person-specific appearance) and dynamic detail
(e.g., expression-driven wrinkles). Previous work struggles
to decouple the static and dynamic details through image-
level supervision, leading to reconstructions that are not
realistic. In this paper, we aim at high-fidelity 3D face
reconstruction and propose HiFace to explicitly model the
static and dynamic details. Specifically, the static detail is
modeled as the linear combination of a displacement ba-
sis, while the dynamic detail is modeled as the linear in-
terpolation of two displacement maps with polarized ex-
pressions. We exploit several loss functions to jointly learn
the coarse shape and fine details with both synthetic and
real-world datasets, which enable HiFace to reconstruct
high-fidelity 3D shapes with animatable details. Extensive
quantitative and qualitative experiments demonstrate that
HiFace presents state-of-the-art reconstruction quality and
faithfully recovers both the static and dynamic details. Our
project page: https://project-hiface.github.io.

1. Introduction
The reconstruction of a 3D face from a single image

has drawn much attention recently [67, 21, 41, 81]. It
has tremendous potential applications like face recogni-
tion [11, 63, 4, 59], face animation [16, 75], virtual real-
ity [7, 58, 31], etc. For example, the reconstructed 3D face
representation can be driven by an audio [16], or a video
from another person [38].

*Work done when the author was an intern at MSRA.
†Corresponding author: Xu Tan (xuta@microsoft.com).

Figure 1. We propose HiFace to reconstruct high-fidelity 3D face
with realistic and animatable details. Reconstruction: given a sin-
gle image (1st-row), HiFace faithfully reconstructs a coarse shape
(2nd-row) with vivid details (3rd-row). Animation: given a source
face (yellow box), HiFace can animate the static (4th-row), dy-
namic (5th-row), or both (6th-row) details of the driving images
(green box). Images are taken from FFHQ [37] and CelebA [40].

To build a flexible and animatable facial representa-
tion, a popular way is to leverage the success of 3D Mor-
phable Models (3DMMs) [5, 6, 10, 45, 65], which decou-
ple the influence of shape, expression, albedo, and oth-
ers by modeling them in separate coefficients. Typically
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in literature, one can achieve coarse shape reconstruction
in coefficients-fitting optimization [27, 73, 3, 77, 2], or an
analysis-by-synthesis pipeline [67, 21, 81, 50]. As 3DMMs
typically capture only the coarse facial geometry and are
not capable of representing fine details (e.g., wrinkles),
recent advances model such details with a displacement
map [15, 77, 13, 9, 76]. However, previous work fails to
model the distinction between static and dynamic factors of
fine detail, leading to errors in reconstructions. For exam-
ple, given that one may drive the expression of a young man
from an old man, trivially transferring all wrinkles from the
old man to the young man could make the young man look
unnatural. In this sense, Feng et al. [24] implicitly lever-
ages the person-specific identity and expression as condi-
tions to generate the details. Although effective, they op-
timize the model in an analysis-by-synthesis pipeline with
only the image-level supervision, leading to insufficient de-
coupling of static and dynamic details and inconsistent ani-
mation results (see Fig. 7).

Therefore, we propose HiFace to explicitly model the
static and dynamic details for high-fidelity 3D face recon-
struction, by designing SD-DeTail module to decouple the
static and dynamic factors. More specifically, for person-
specific static detail, instead of directly predicting the dis-
placement map that may increase the difficulty of detail pre-
diction [24, 19], we follow the spirit of 3DMMs to build a
displacement basis from the captured facial scans with age
diversity [57, 72]. In this way, the model is trained to pre-
dict the coefficients of the displacement basis, and make
the detail prediction easier. For dynamic detail, since it is
highly expression-dependent, directly modeling it with one
displacement basis is quite difficult. Therefore, based on the
fact that the expression can be interpolated by a compressed
and a stretched expressions [57], we build two displacement
bases for the compressed and stretched expressions from
the captured scans respectively, and learn to regress the dis-
placement coefficients with the ground-truth labels. There-
fore, we can obtain the dynamic detail by linearly inter-
polating the compressed and stretched displacement maps,
which are derived from the displacement bases and the pre-
dicted coefficients. Finally, the predicted static and dynamic
details are merged with the coarse shape to formulate the fi-
nal output.

Since we would like the final output to contain both the
coarse shape and high-frequency detail, we propose several
novel loss functions to learn coarse shape and details simul-
taneously from both the synthetic and real-world datasets.
For details, we leverage the ground-truth static and dynamic
displacement maps of the synthetic dataset [72, 57] as su-
pervision. While for the coarse shape, we leverage the
ground-truth vertex of the synthetic dataset as supervision.
We also follow the previous methods [24, 21, 73] to lever-
age self-supervised losses for all training images.

Overall, with the above insights and techniques, HiFace
enables the reconstruction of high-fidelity 3D faces from
a single image, and decouples static and dynamic details
that are naturally animatable (see Fig. 1). We demonstrate
that the proposed HiFace reconstructs realistic and faithful
3D faces, reaching state-of-the-art performance both quan-
titatively and qualitatively. In addition, HiFace is compat-
ible with optimization-based methods [73], and is flexible
to transfer vivid expressions and details from one person to
another. In summary, our contributions are:
• We propose HiFace to model the static and dynamic de-

tails explicitly, and demonstrate the benefits of synthetic
data in decoupling the static and dynamic factors for de-
tailed 3D face reconstruction.

• We propose novel loss functions in HiFace to learn 3D
representations of coarse shape and fine details simulta-
neously from both the synthetic and real-world images.

• We achieve state-of-the-art reconstruction quality both
quantitatively and qualitatively, with over 15% perfor-
mance gains in the region-aware benchmark [12].

• We show that our SD-DeTail is easy to plug-and-play into
optimization-based methods and can transfer expressions
and details from one to another for face animation.

2. Related Work
3D face reconstruction from monocular images has re-

ceived much attention in the past decades. Among them,
3D Morphable Models (3DMMs) are widely used to build
3D representations. Below we review the works that are re-
lated to them, and a full in-depth review can be found in
recent surveys [82, 53, 23].

3D Morphable Model (3DMMs) [23] are statistical mod-
els widely used to constrain the distribution of 3D faces.
The seminal work [5] presents 200 scans to generate
shape and texture bases with Principal Component Analysis
(PCA) [1], and formulate 3DMMs as linear models by the
generated bases. After that, expression models [69, 45, 10]
are proposed to support face manipulation. Recent ad-
vances [12, 55, 65, 18, 44] are proposed to expand the ex-
pressiveness of 3DMMs and play a crucial role in 3D face
reconstruction. 3DMMs make it possible to simplify the
2D-to-3D problem into a regression task, which typically
presents an analysis-by-synthesis fashion to estimate the co-
efficients of 3DMMs. In this paper, we follow the spirit of
the 3DMMs family to present the decoupled static and dy-
namic details for 3D face reconstruction.

Coarse Shape Reconstruction. Traditional optimization-
based methods [27, 73, 3, 77, 2] directly optimize the
3DMM coefficients of given 2D images. While such meth-
ods work well in controlled settings (e.g., frontal view,
no occlusion), they heavily rely on high-quality annota-
tions. Learning-based methods leverage the advances of
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(a). Overview of HiFace (b). Overview of SD-DeTail
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Figure 2. Illustration of HiFace. (a). Learning framework of HiFace. Given a monocular image, we regress its shape and detail coefficients
to synthesize a realistic 3D face, and leverage a differentiable renderer [28] to train the whole model end-to-end from synthetic [72, 57] and
real-world [40, 52] images. (b). The pipeline of Static and Dynamic Decoupling for DeTail Reconstruction (SD-DeTail). We explicitly
decouple the static and dynamic factors to synthesize realistic and animatable details. Given the shape and static coefficients, we regress
the static and dynamic details through displacement bases and interpolate them into the final details through vertex tension [57].

CNNs [67, 21, 19, 62] and GCNs [47, 41, 25] to learn
high-level representations from large-scale images in the
wild. These methods show plausible generalization over
diverse environments. To train the network end-to-end, re-
cent methods leverage the differentiable renderers [28, 22,
80, 49], along with the photo loss, perceptual loss, and land-
mark loss [21, 19, 28, 67, 71] to optimize the network in a
self-supervised manner. Different from these coarse shape
reconstruction methods, we aim at high-fidelity 3D face re-
construction with both coarse shape and fine details.

Detail Reconstruction. While 3DMMs can reconstruct
coarse 3D face shapes from 2D images, they struggle with
reconstructing fine-level details, such as forehead wrin-
kles and crows-feet. To fill this gap, shape by shading
(SfS) [34, 46, 26, 66] methods reconstruct the facial details
from monocular images or videos. However, these meth-
ods are sensitive to occlusions and large poses. Recent ad-
vances [24, 48, 15, 13, 42] leverage displacement maps to
present details. These methods explicitly re-topologize the
coarse shape and present residual bias to generate geomet-
ric details. The main challenge of detail reconstruction is
the difficulty in learning the nuances and disentangling the
static and dynamic details from only self-supervised learn-
ing. Ground-truth labels of the details are helpful to guide
the learning process. However, it is difficult to obtain such
fine-grained labels on real data.

Synthetic Dataset. Several methods [81, 77, 33, 68, 51]
utilize rendered faces or fitted coefficients to synthesize 3D-
2D pairs. These ground-truth pairs lack diversity over back-
ground, illumination, and assets, making them hard to gen-
eralize well to real-world images. Recent advances in syn-
thetic data generation [72, 57] demonstrate its ability to gen-
eralize to real-world settings, and diverse to compensate for
the domain gap to real-world images. In this paper, we

leverage high-quality data with ground-truth labels to ex-
plore the detailed 3D face reconstruction.

3. Methodology
3.1. Preliminary

We adopt a common practice [21, 24] to represent a tex-
tured coarse shape with a 3D face model, an illumination
model, and a camera model.

3D Face Model. The 3D shape S and albedo A are repre-
sented by:

S = S̄+ βBid + ξBexp

A = Ā+αBalb
, (1)

where S̄ and Ā are the mean shape and albedo. Bid, Bexp,
and Balb are bases [73] of 256-dim identity, 233-dim ex-
pression, and 300-dim albedo, respectively. The coarse
shape S in the bind pose is deformed from a neutral shape
Sneu = S̄ + αBid with expression component ξBexp. β,
ξ, and α are the corresponding identity, expression, and
albedo coefficients for generating a coarse shape. In this
paper, the coarse shape S contains nv = 7, 667 vertices and
nf = 14, 832 triangles with 512× 512× 3 albedo.

Pose & Camera Model. To estimate the face pose, we
follow [72, 73] to predict skeletal pose p = [θ|t], where
θ ∈ R3j and t ∈ R3 are the local joint rotations and root
joint translation, respectively. j = 4 indicates 4 skeletal
joints w.r.t. the head, neck, and two eyes. We perform a
standard linear blend skinning (LBS) function [43] (with
per-vertex weights W ∈ Rj×nv ) to rotate S about joint lo-
cations J ∈ R3j by p to obtain Sp:

Sp = LBS(S,p,J;W), (2)

where J is the joint locations in the bind pose determined
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by J = J (β) : R|β| → R3j . Then we use an orthographic
camera model to project 3D vertices in Sp to the 2D plane.

Illumination Model. We follow previous work [21] to use
Spherical Harmonics (SH) [56] to estimate the illumination
of a given image. The shaded texture T is computed as:

T = A⊙
∑9

k=1
γkΨk(N), (3)

where ⊙ denotes the Hadamard product, N is the surface
normal of S in UV coordinates, Ψ : R3 → R are SH basis
function and γ ∈ R9 is the corresponding SH coefficient.

3.2. Overview of HiFace

Key Idea. The key idea of HiFace is to explicitly model the
static (e.g., person-specific properties) and dynamic (e.g.,
expression-driven wrinkles) details, allowing the model to
reconstruct a high-fidelity 3D face from a single image with
realistic and animatable details.

Overview. The goal of HiFace is to reconstruct 3D shapes
with realistic details from a single image. The overview
of HiFace is illustrated in Fig. 2(a). We leverage a fea-
ture extractor (i.e., ResNet-50 [30]) to regress correspond-
ing coefficients from an input image. Our model jointly
predicts both the coarse-level shapes and the fine-level de-
tails. For coarse-level shapes, we regress shape parameters
(i.e., identity, expression, albedo, illumination, and pose)
of a parametric face model. For the fine-level details, we
propose a novel way to model it through the separation of
static and dynamic factors and formulate the generation of
details into the problems of 3DMM coefficients regression
and displacement maps interpolation.

Note that the facial details are based on the coarse shape,
we thereby exploit novel loss functions to learn 3D repre-
sentations of coarse shape and details simultaneously from
the synthetic dataset with ground-truth labels. To general-
ize our model to real-world images, we also present several
self-supervised losses to train the model with both synthetic
data and real-world images coherently. As a result, HiFace
can faithfully reconstruct the facial details of a given image,
or animate a face by combining the decoupled static and dy-
namic coefficients that come from different individuals.

3.3. Decoupling Static and Dynamic Details

We propose Static and Dynamic Decoupling for DeTail
Reconstruction (SD-DeTail). The facial details are basically
composed of a static factor and a dynamic factor:

D = Dsta +Ddyn, (4)

where Dsta and Ddyn indicate details from static and dy-
namic factors, respectively.

Concretely, the static factor is the inherent property of
the identity (i.e., the given 2D face), and originates from the

appearance and age attributes. As for the dynamic factor,
it is typically driven by the expression and influenced by
person-specific properties.

Static Detail Generation. To simplify the problem, we
are inspired by 3DMMs, which parameterize the statisti-
cal models to simplify the 2D-to-3D problem. We build
a 300-dim displacement basis Bsta from the captured 332
scans [57] by PCA [1]. The scans contain diverse age
groups in a neutral expression. Then we regress the coef-
ficient φ to synthesize the static detail Dsta from the image:

Dsta = D̄sta +φBsta, (5)

where D̄sta and Bsta are the mean displacement map and
displacement basis for static details, respectively.

Dynamic Detail Generation. Due to the high diversity
and complexity of expression representation, directly gen-
erating dynamic details from expression is quite difficult.
Therefore we simplify the expression representation by us-
ing an interpolation between two displacement maps: com-
pressed and stretched [57]. For example, the compressed
expression may indicate a state of frowning to the extreme,
while the stretched expression may indicate a state of com-
plete relaxation between the eyebrows. Other states of this
area can be interpolated by these two polarized states.

Consequently, we generate the dynamic details through
compressed and stretched displacement maps. Again, we
build 26-dim compressed Bcom and stretched Bstr displace-
ment bases by PCA [1] to simplify the generation of dis-
placement maps. To generate the dynamic coefficients
ϕ = {ϕcom,ϕstr}, we apply the expression coefficient ξ
into the static coefficient φ through AdaIN [32], followed
by the MLP transformation Φ to obtain ϕ:

ϕ = Φ

(
σ
(
ξ̃
)(φ− µ(φ)

σ(φ)
+ µ

(
ξ̃
)))

, (6)

where ξ̃ is the affined vector from ξ via MLP transforma-
tion. µ and σ indicate the mean and standard deviation.
ϕcom and ϕstr are coefficients for compressed and stretched
displacement maps respectively.

Similar to Eq. 5, the compressed and stretched displace-
ment maps are formulated as:

Dcom = D̄com + ϕcomBcom

Dstr = D̄str + ϕstrBstr
, (7)

where D̄com and Bcom are the mean displacement map and
26-dim displacement basis for compressed detail, and D̄str
and Bstr are the mean displacement map and 26-dim dis-
placement basis for stretched detail, respectively.

Considering the coarse shape S can be obtained by de-
forming the neutral shape Sneu with the expression compo-
nent ξBexp, such expression-driven deformation over face
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(a) (b) (c) (d)

Figure 3. Illustration of displacement map composition in SD-
DeTail. Given (a). an image (top) to reconstruct its coarse shape
(bottom), we formulate the detail as (b). a static factor and (c). a
dynamic factor interpolated by polarized states w.r.t. compressed
(top) and stretched (bottom). (d). the output displacement map is
linearly combined by (b) and (c) to present vivid details.

shape yields the “tension” over each vertex [57], which in-
fluences facial details from expression. Since Sneu and S
posses the same topology, for each vertex vi ∈ S with
K-edges Ei = {e1, · · · , eK} connected with vi, E′

i =
{e′1, · · · , e′K} are the corresponding edges in Sneu that are
connected to v′

i. Then the tension at vi is:

tvi
= 1− 1

K

∑K

k=1

∥ek∥
∥e′k∥

, (8)

where ∥ ·∥ represents the edge length. Positive values of tvi

indicate compression, negative values indicate stretch, and
0-value indicates no change, respectively.

The vertex tension tvi in S composes the tension map
Muv in UV coordinates. Then, the displacement map of the
dynamic detail is the linear interpolation of Dcom and Dstr:

Ddyn = M+
uv ⊙Dcom +M−

uv ⊙Dstr, (9)

where M+
uv and M−

uv indicate the positive and negative value
of Muv, respectively. Fig. 3 shows the effectiveness of SD-
DeTail. The dynamic factor interpolated by two polarized
states introduces expression-related details and further dec-
orates the static detail, yielding the final vivid output.

3.4. Overall Loss Functions

We propose several loss functions to train HiFace end-to-
end. Specifically, we use static and dynamic detail losses to
supervise the synthesized displacement maps from φ and
ϕ. In addition, we leverage the coarse shape loss to su-
pervise the reconstructed shape from β and ξ. Finally, we
follow previous methods [21, 24, 73] to leverage the differ-
entiable renderer [28] to map the generated 3D shape into
2D images, by combining α, β, ξ, γ, p, φ, ϕ. Then, we
perform self-supervised losses to train in both synthetic and
real-world images. See more details in the supplementary.

Static and Dynamic Detail Losses. To explicitly train the
details of each component, we leverage the ground-truth an-
notations from the synthetic dataset [57, 72] as supervision
to assist the training process of our model. Specifically,
we calculate the detail losses by estimating the l2 distance
between the reconstructed displacement maps and ground-
truth w.r.t. static, compressed, and stretched components,
and summarize them as Ldetail:

Lsta =
∥∥Mdetail ⊙ (Dsta − D̂sta)

∥∥
2

Lcom =
∥∥Mdetail ⊙ (Dcom − D̂com)

∥∥
2

Lstr =
∥∥Mdetail ⊙ (Dstr − D̂str)

∥∥
2

Ldetail = Lsta + Lcom + Lstr

, (10)

where Mdetail is the facial mask in the UV coordinates, and
D̂sta/D̂com/D̂str and Dsta/Dcom/Dstr are the reconstructed
and ground-truth displacement maps, respectively.

Coarse Shape Losses. Since the details should be based on
realistic coarse shapes, we train the coarse shape to help the
learning of details by leveraging the ground-truth vertex as
supervision:

Lver =
∥∥Mver ⊙ (S− Ŝ)

∥∥
2
, (11)

where Mver is frontal face area of the coarse shape. Ŝ and
S are the reconstructed and ground-truth face by Eq. 1.

In addition, we make constraints on shape coefficients
to prevent overfitting. We enforce the predicted coefficients
have a similar distribution to the ground-truth coefficients:

Lkl = ρ(β)
(
log ρ(β)− log ρ(β̂)

)
, (12)

where ρ denotes softmax function to map the predicted co-
efficients β̂ and ground-truth β into probability distribution.

Finally, the shape loss is Lshp = Lver + Lkl.

Self-supervised Losses. To encourage the generalization
of our models in real-world images [40, 52], we follow pre-
vious methods [24, 21, 73] to leverage self-supervised loss
Lself for all training images, including photo loss Lpho, per-
ceptual loss Lid, and dense landmark loss Llmk:

Lself = Lpho + λidLid + λlmkLlmk, (13)

where λid and λlmk are weights to balance the self-
supervised losses term.

In addition, considering the static detail heavily corre-
lates to person-specific age attribute, inspired by [19], we
leverage the pre-trained age prediction network [36] to learn
high-level representations of static details through knowl-
edge distillation, such that the learned coefficients exhibit
expressive results. To achieve this, we use several MLP
layers on the static coefficient φ, and map it into age clas-
sification probabilities p̂age. Then we use the pre-trained
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Table 1. Quantitative comparison of 3D face reconstruction methods on REALY benchmark. “-c” and “-d” indicate coarse and
detail shape, respectively. @RN /@RM /@RF /@RC /all indicate errors in nose/mouth/forehead/cheek/all regions. We highlight the best
method for the two groups respectively. HiFace achieves the best reconstruction performance in the overall error by a large margin. Each
component in HiFace contributes to a better reconstruction quality. The reconstructed details of HiFace further boost the quality while
previous methods [24, 19] modeling details with only image-level supervision even deteriorate the reconstruction accuracy.

Group Methods /
e (mm)

frontal-view side-view
@RN @RM @RF @RC all @RN @RM @RF @RC all

Coarse

Deep3D [21] 1.719±0.354 1.368±0.439 2.015±0.449 1.528±0.501 1.657 1.749±0.343 1.411±0.395 2.074±0.486 1.528±0.517 1.691
MGCNet [64] 1.771±0.380 1.417±0.409 2.268±0.503 1.639±0.650 1.774 1.827±0.383 1.409±0.418 2.248±0.508 1.665±0.644 1.787

3DDFA-v2 [29] 1.903±0.517 1.597±0.478 2.447±0.647 1.757±0.642 1.926 1.883±0.499 1.642±0.501 2.465±0.622 1.781±0.636 1.943
DECA-c [24] 1.694±0.355 2.516±0.839 2.394±0.576 1.479±0.535 2.010 1.903±1.050 2.472±1.079 2.423±0.720 1.630±1.135 2.107

SADRNet [61] 1.791±0.542 1.591±0.488 2.413±0.537 1.856±0.701 1.913 1.771±0.521 1.560±0.462 2.490±0.566 2.010±0.715 1.958
EMOCA-c [19] 1.868±0.387 2.679±1.112 2.426±0.641 1.438±0.501 2.103 1.867±0.554 2.636±1.284 2.448±0.708 1.548±0.590 2.125

MICA [81] 1.585±0.325 3.478±1.204 2.374±0.683 1.099±0.324 2.134 1.525±0.322 3.567±1.212 2.379±0.675 1.109±0.325 2.145
Ours-c (w/o Syn. Data)† 1.227±0.407 1.787±0.439 1.454±0.382 1.762±0.436 1.558 1.187±0.379 1.826±0.490 1.470±0.426 1.653±0.450 1.534

Ours-c 1.054±0.317 1.461±0.430 1.331±0.347 1.342±0.384 1.297 0.992±0.246 1.505±0.454 1.427±0.400 1.439±0.429 1.341

Detail

DECA-d [24] 2.138±0.461 2.802±0.868 2.457±0.559 1.443±0.498 2.210 2.286±1.103 2.684±1.041 2.519±0.718 1.555±0.822 2.261
EMOCA-d [19] 2.532±0.539 2.929±1.106 2.595±0.631 1.495±0.469 2.388 2.455±0.636 2.948±1.292 2.606±0.686 1.599±0.563 2.402

HRN [42] 1.722±0.330 1.357±0.523 1.995±0.476 1.072±0.333 1.537 1.642±0.310 1.285±0.528 1.906±0.479 1.038±0.322 1.468
Ours-d (w/o Syn. Data)† 1.465±0.557 1.790±0.425 1.528±0.373 1.618±0.362 1.600 1.422±0.537 1.849±0.473 1.530±0.414 1.572±0.399 1.594

Ours-d (w/o static)∗ 1.055±0.290 1.469±0.415 1.336±0.337 1.319±0.374 1.295 1.004±0.233 1.491±0.437 1.418±0.392 1.418±0.415 1.332
Ours-d (w/o dynamic)∗ 1.069±0.318 1.469±0.414 1.358±0.336 1.270±0.344 1.292 0.991±0.239 1.496±0.437 1.411±0.393 1.375±0.402 1.318

Ours-d 1.036±0.280 1.450±0.413 1.324±0.334 1.291±0.362 1.275 0.985±0.237 1.489±0.436 1.399±0.388 1.360±0.395 1.308
† To align the dataset scale, w/o Syn. Data indicates we train the model without using the ground-truth labels from the synthetic dataset.
∗ To eliminate the bias of coarse shape in estimating the reconstruction error, we fix the coarse shape and train the details with/without static and dynamic factors for comparisons.

age recognition model Γage to obtain the probabilities of the
given input image I. The distillation loss Lkd enforces the
probabilities between p̂age and Γage(I) be similar:

Lkd = Γage(I)
(
logΓage(I)− log p̂age

)
. (14)

Regularization. Lreg regularizes coefficients of each sub-

module, by minimizing the l2 loss of α, β, ξ, φ, ϕ.

Overall Loss Function. We train the coarse shape and fine
details simultaneously, such that each component can col-
laborate to reconstruct high-fidelity 3D faces with realistic
details. Formally, we minimize the total loss function:

L = λdetailLdetail + λshpLshp

+ λselfLself + λkdLkd + λregLreg,
(15)

where λ is the weight for each component.

4. Experiments
4.1. Implementation Details

Dataset. We use a hybrid dataset made up from both syn-
thetic [72, 57] and real data [40, 52]. We use the synthetic
data pipeline [72, 57] to generate a diverse dataset of 200k
faces with ground-truth vertex, landmark, albedo, and dis-
placement map annotations. The real-world datasets con-
tain 400k images in total from diverse age, gender, and eth-
nicity groups. For the real-world dataset, we use the pre-
trained dense landmark detector [72] to detect 669 land-
marks for training. We use face parsing [79] to generate
and select region-of-interest as facial masks, providing ro-
bustness to common occlusions by hair or other accessories.
We follow [19, 73, 21] to split the dataset into training

and validation sets. The test images are from CelebA [40],
FFHQ [37], LS3D-W [8], and AFLW2000 [78].

Implementation Details. We implement HiFace in Py-
Torch [54] and leverage the PyTorch3D differentiable ras-
terizer [35] for rendering. We train our model for 35 epochs
on 8× NVIDIA Tesla V100 GPUs with a mini-batch of 320.
We use the pre-trained ResNet-50 on ImageNet [20] as ini-
tialization, and use Adam [39] as optimizer with an initial
learning rate of 1e − 4. The input image is cropped and
aligned by [14], and resized into 224×224. We empirically
set λdetail = 10, λshp = 1, λself = 1, λid = 0.1, λlmk = 0.5,
λkd = 1, λreg = 1e− 3 throughout the experiments.

4.2. Comparisons to State-of-the-art

Quantitative Comparison. We perform the quantitative
evaluation on the REALY benchmark [12], which con-
tains 100 frontal-view and 400 side-view images from 100
textured-scans [17]. The REALY benchmark presents a
region-aware evaluation pipeline to separately evaluate the
metric error (in mm) of the nose, mouth, forehead, and
cheek regions. Such an evaluation pipeline is demonstrated
to better estimate the actual similarity of the 3D faces and
align with human perception. We compare HiFace to previ-
ous state-of-the-art methods and report the region-wise and
average normalized mean square error (NMSE) in Tab. 1.

As Tab. 1 illustrates, HiFace outperforms prior arts in the
overall error by a large margin. HiFace balances the recon-
struction quality on each region, compared to those opti-
mum region methods that may fail in specific regions (e.g.,
MICA [81] fails in mouth region while HRN [42] fails in
forehead region). Note that HiFace faithfully recovers the
facial details, thus making the reconstruction error smaller
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Input OursDeep3D 3DDFA-v2 SynergyNet MICA Dense

Figure 4. Comparison on coarse shape reconstruction. From
left to right: Input image, Deep3D [21], 3DDFA-v2 [29], Synerg-
yNet [74], MICA [81], Dense [73], and HiFace (Ours).

Input OursFaceScape Unsup DECA EMOCA FaceVerse

Figure 5. Comparison on detail shape reconstruction. From left
to right: Input image, FaceScape [77], Unsup [15], DECA [24],
EMOCA [19], FaceVerse [70], and HiFace (Ours).

Input Dense [73] + Our Detail Input Dense [73] + Our Detail

Figure 6. Illustration on the flexibility of SD-DeTail. Given the
identity and expression coefficients (β, ξ) from the optimization-
based method [73], SD-DeTail can generate realistic details based
on the coarse shape and further improve the visual quality.

than using the coarse shape alone. As a comparison, al-
though DECA [24] and EMOCA [19] can reconstruct de-
tails of given images, they turn out to be noisy, leading to
the deterioration of reconstruction quality.

In addition, Tab. 1 also demonstrates the necessity of
each component in contributing to a better quality. It can be
observed that the synthetic data with ground-truth labels not
only improve the coarse shape reconstruction quality but is
also crucial for detailed reconstruction. With the synthetic
data, the proposed SD-DeTail further boosts the overall re-
construction quality. Both the static and dynamic factors
are essential to capture fine-grained details, and the final
SD-DeTail achieves the most accurate details in expression-
related regions such as the mouth and forehead, which con-
tributes to the overall gains.

Qualitative Comparison. Given a single face image, Hi-
Face reconstructs a high-fidelity 3D shape with details. We
present comparisons with previous methods on 1). coarse
shape reconstruction [21, 29, 74, 81, 73] in Fig. 4 and 2).
detail reconstruction [77, 15, 24, 19, 70] in Fig. 5. See more
examples and comparisons in the supplementary.

For coarse shape in Fig. 4, our HiFace faithfully re-
covers the coarse shape of the given identity and outper-
forms the previous learning-based methods, and is on par

Ours

Figure 7. Comparison on face animation. Given a source image
(yellow box), we use the driving images (green box) to drive its
expressions. DECA [24] (2nd-row) and EMOCA [19] (3rd-row)
can animate the expression-driven details but lack realistic. As a
comparison, HiFace is flexible to animate details from static (4th-
row), dynamic (5th-row), or both (6th-row) factors, and presents
vivid animation quality with realistic shapes.

with Dense [73], which is the state-of-the-art optimization-
based method. For detailed reconstruction in Fig. 5, previ-
ous methods [24, 19] fail to reconstruct satisfactory details.
Several methods [15, 77, 70] are sensitive to occlusions and
large poses. As a comparison, HiFace achieves the most re-
alistic reconstruction quality, and faithfully recovers facial
details of a given image, which significantly outperforms
previous methods by a large margin.

In addition, given an image and the fitted coefficients β,
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Input w/o real image w/o Lshp w/o Lkl Ours Input w/o real image w/o Ldetail w/o Lkd Ours

Figure 8. Ablation studies on loss functions and training data. The coarse shape losses Lshp/Lkl (left), detail losses Ldetail/Lkd (right),
and hybrid datasets coherently contribute to the reconstruction quality of coarse shapes and details.

ξ from the optimization-based methods such as Dense [73],
SD-DeTail synthesizes the details and further strengthens
the quality compared to the coarse shape (see Fig. 6). It
shows SD-DeTail is flexible and can be easily plugged-and-
play into other methods. See more in the supplementary.

Application of HiFace. The HiFace explicitly decouples
the static and dynamic details through the proposed SD-
DeTail. Therefore, we can animate the facial attributes by
simply assigning the expression coefficient ξ and/or static
coefficient φ of the driving images to the source images.

In Fig. 7, we demonstrate the animation quality of Hi-
Face outperforms the previous state-of-the-art detail anima-
tion methods [24, 19]. It shows that while DECA [24] and
EMOCA [19] can animate the expression-driven details but
lack realistic, the proposed HiFace is flexible to manipulate
the static, dynamic, or both details. When animating the
static detail, the person-specific details can be well trans-
ferred into the source shape. When animating the dynamic
detail, only expression-dependent details are presented. Fi-
nally, we can also animate the static and dynamic details
simultaneously and achieve satisfactory results.

5. Ablation Studies

Ablation Studies on Loss Functions and Datasets. We
present ablation studies on the proposed loss functions and
training strategy with hybrid datasets. We train HiFace with
synthetic data alone and compare it to the one trained with
hybrid datasets. For coarse shape reconstruction, we inves-
tigate the contribution of Lshp and its sub-term Lkl. For de-
tail reconstruction, we compare HiFace without Ldetail and
Lkd, respectively. The results are presented in Fig. 8.

Fig. 8 demonstrates that the proposed loss functions and
training strategy from hybrid datasets contribute to satis-
factory coarse shape and details. First, the model trained
with synthetic data alone cannot generalize well to real-
world images, which indicates the necessity to train with
real-world data. Second, Lshp improves the coarse shape
reconstruction quality. Lshp is effective in tackling chal-
lenging poses and improving alignment. Lkl can relieve the
overfitting risk on the synthetic data and improve the gener-

Input SD-1 SD-2 SD-3 Ours

Figure 9. Ablation studies on SD-DeTail. Results show that di-
rectly synthesizing the static or dynamic details is rather challeng-
ing, leading to unreasonable coarse shapes and details (SD-1, SD-
2, and SD-3). As a comparison, we leverage the statistical bases
with SD-DeTail and regard the detail generation problem as a co-
efficients regression and interpolation problem, leading to more
realistic details.

alization to real-world images. Third, without Ldetail or Lkd,
the reconstructed details exhibit random noise and cannot
faithfully reflect person-specific details. Such noise misses
the correspondence to the person-specific identity.

Ablation Studies on SD-DeTail. To verify the effective-
ness of building bases for static and dynamic details, we
present detailed ablation studies on SD-DeTail, by replac-
ing the bases (i.e., Bsta and Bcom/Bstr) reconstruction with
a U-Net decoder [60] (same as DECA [24]). Therefore, the
model learns to directly synthesize displacement maps in-
stead of predicting corresponding coefficients like ours. In
Fig. 9, we make comparisons on: 1). directly synthesizing
Ddyn (SD-1), 2). directly synthesizing Dcom/Dstr and in-
terpolating via Eq. 9 (SD-2), 3). directly synthesizing Dsta
(SD-3), 4). SD-DeTail (Ours). It can be seen that, due to the
high diversity and complexity of expression representation,
it is hard to directly learn realistic details even with ground-
truth labels of Ddyn from synthetic data (see SD-1, SD-2
and SD-3 in Fig. 9). More specifically, for the static details,
directly synthesizing displacement maps bring much noise
(SD-3). For example, the hollow eyebrow is demonstrated
in the second row. For the dynamic details, directly syn-
thesizing displacement maps even leads to unnatural results
(SD-1 and SD-2). For example, the reconstructed 3D faces
are distorted especially in the second row. We also notice
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that, directly synthesizing Ddyn (SD-1) achieves inferior re-
sults than directly synthesizing Dcom/Dstr and interpolating
via Eq. 9 (SD-2). This demonstrates that it is beneficial to
simplify the expression representation by using interpola-
tion between two displacement maps (i.e., compressed and
stretched). In conclusion, these observations further ver-
ify our insight on relaxing the challenging detail generation
problem into a feasible coefficients regression problem.

6. Conclusion
We propose HiFace to reconstruct high-fidelity 3D faces

with realistic and animatable details from a single image.
Our motivation and insights stand on the spirit of 3DMMs
to simplify the challenging detail generation into more ac-
cessible regression and interpolation tasks. To achieve this,
we elaborately design SD-DeTail to decouple the static and
dynamic factors explicitly, and interpolate the dynamic de-
tails through vertex tension. We succeed in learning the
coarse shape and details jointly by proposing several novel
loss functions to train on synthetic and real-world data. Ex-
tensive experiments demonstrate that HiFace achieves state-
of-the-art face reconstruction both quantitatively and quali-
tatively in the coarse shape and detail shape, and the details
are well decoupled and naturally animatable.
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