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Figure 1: Integration of layer-based video editing and spatiotemporal lighting rendering. Our approach decomposes an
input video into layers with multiplicative residuals that characterize complex spatiotemporal lighting variations. Our method
efficiently fuses the user-edited components with the expected lighting conditions to produce high-quality video output.

Abstract

We present a video decomposition method that facilitates
layer-based editing of videos with spatiotemporally varying
lighting and motion effects. Our neural model decomposes
an input video into multiple layered representations, each
comprising a 2D texture map, a mask for the original video,
and a multiplicative residual characterizing the spatiotempo-
ral variations in lighting conditions. A single edit on the tex-
ture maps can be propagated to the corresponding locations
in the entire video frames while preserving other contents’
consistencies. Our method efficiently learns the layer-based
neural representations of a 1080p video in 25s per frame via
coordinate hashing and allows real-time rendering of the
edited result at 71 fps on a single GPU. Qualitatively, we
run our method on various videos to show its effectiveness
in generating high-quality editing effects. Quantitatively, we
propose to adopt feature-tracking evaluation metrics for ob-
jectively assessing the consistency of video editing. Project
page: https:// lightbulb12294.github.io/hashing-nvd/

1. Introduction

Unlike image editing, video editing involves modeling
the frame-to-frame relationships and addressing temporal

variations such as motion and illumination changes. The
task of video editing becomes challenging with the added
dimension of time for a user who attempts to apply edits to a
video while ensuring consistency across all frames. It is more
convenient if we can handle the spatiotemporally varying
components and reduce video editing to image editing—The
user thus only needs to do edits on images with ease, and the
editing results can seamlessly propagate to the entire video.

To achieve this goal, we may consider incorporating ef-
fective representations that can model and reconstruct the
static and dynamic information in videos. Furthermore, for
practical concerns, the algorithm must be efficient enough in
modeling and rendering to support interactive editing. Re-
cent work on video decomposition has proposed to employ
neural-based representations, such as layered neural atlases
[16] and deformable sprites [39], to enable the conversion
between the space-time video domain and 2D texture do-
main for editing. Despite their successes in showcasing
impressive video editing effects, we notice that they often
require longer training time or restrict to limited frame res-
olution. For example, it takes more than ten hours to de-
rive the layered neural atlases [16] from a 100-frame 480p
video. Deformable sprites [39] are relatively fast to derive
but require more computation resources (over 24GB of GPU
memory for a 480p video) and thus are unsuitable for editing
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Figure 2: The procedure of layer-based video editing. Our model allows users to apply edits to the extracted texture for
rendering the edited video.

high-resolution videos. We address the computation issue by
incorporating hash grid encoding [24] into our framework
and achieve fast training and rendering for high-resolution
videos. Moreover, we introduce the multiplicative resid-
ual estimator to model the lighting variations across video
frames, which can improve the reconstruction quality and
allow illumination-aware editing unachievable by prior work,
as shown in Fig. 1.

We summarize the contributions of this work as follows:
1. This work is the first to consider spatiotemporally vary-

ing lighting effects for layered-based video editing. The
proposed multiplicative-residual estimator effectively
decomposes the lighting conditions from the video with-
out supervision. Our method can produce better-quality
videos by fusing the edits with expected illuminations.

2. Our approach is efficient in both training and rendering.
Compared with prior work, the proposed method im-
proves the training time with fewer resources and thus
enables training on higher-resolution or longer videos.
The trained model can achieve fast video rendering via
hashing-based coordinate inference. It takes about 40
minutes to train with a 1080p video of 100 frames on a
single 3090 Ti GPU. The inference speed for rendering
an edited video is 71 fps for 1080p resolution, allowing
real-time video editing.

3. The experimental results demonstrate appealing video
edits in various challenging contexts, such as modifying
the texture of moving objects, handling occlusion, and
manipulating camera motion, where all can be fused
with vivid lighting and shading for better effects that
are not easy to achieve by prior work.

2. Related Work

Video decomposition. Decomposing a video into layered
representations is a long-standing video analysis approach in
computer vision since the seminal work by Wang & Adelson
[33]. Similar ideas have been continually revisited under
different contexts with the development of new techniques.
A typical formulation is motion segmentation that decom-
poses the video by motion [6, 15, 17, 35]. Video matting, on
the other hand, focuses more on separating the alpha matte
of the foreground object from the background for blend-
ing [9, 22, 30, 36]. Recently, neural-based methods have

shown to be effective in estimating layered representations
for video segmentation and video editing [3, 14, 16, 38, 39].
In this work, we also adopt neural networks to derive lay-
ered representations from videos. Further, inspired by the
pioneering work in visual tracking for handling illumina-
tion changes [10], we incorporate a new multiplicative
residual representation to model the lighting variations for
illumination-aware video editing.

Video editing. Layered representations can benefit video
editing in various ways. For example, the layered repre-
sentations can serve as a visual proxy for intuitive video
editing [16] or can be used to create the retiming effects [21].
Editing can be more easily done on a unified texture map
built from the video’s background, such as background mo-
saics [7], tapestries [4], and layered neural atlases [16].
Building a unified texture map for the foreground object is
also useful, e.g., flexible sprites [15], unwrap mosaics [28],
and deformable sprites [39]. Another type of decomposi-
tion is to derive temporally-consistent intrinsic components
from videos [27, 20] so that the edits can be performed on
the reflectance for recoloring or texture transfer. Recent
deep-learning-based methods mainly address a single task of
video editing, e.g., video style transfer [34, 19, 18, 12, 29].
or category-specific GAN-based video editing [2, 25, 32, 37].
Regarding achieving consistent video editing, it is crucial
to know the temporal correspondences [13, 5] so typical
animation techniques like Rotoscoping [1] can be applied.

3. Approach

We formulate the problem of consistent video decomposi-
tion and editing as follows: The goal is to decompose an in-
put video into multiple layers, where one layer comprises the
background, and each of the remaining layers represents a
foreground object. We aim to facilitate user-friendly and intu-
itive editing of video components on time-independent static
texture maps while ensuring the quality and consistency of
the edited results in the output video. Fig. 2 illustrates an
editing procedure. The model may rely on additional infor-
mation obtained during pre-processing, such as backward
and forward optical flow and rough object masks, to improve
the training efficiency and consistency.
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3.1. Layer-Based Video Decomposition

A video of a scene typically contains multiple objects
with distinct motions, appearances, shapes, and other at-
tributes. Achieving consistent editing on the video scene
and objects can be challenging. An efficient way to group
objects is by decomposing the video into different motion
layers. Static objects can be considered part of the scene’s
background, while only a few foreground objects move dif-
ferently. Editing the objects on decomposed layers becomes
more intuitive and straightforward since we can modify each
object separately without touching the others. We decom-
pose videos into layers using backward and forward optical
flow and coarse object masks, resulting in N + 1 layers
where layer N represents the background, and the rest is
for foreground objects. Each layer n comprises a predicted
mask ↵n across different frames, a time-independent texture
map Mn, and the multiplicative residual `n,t characterizing
the illumination for each frame t built on the texture map.
Fig. 3 shows an overview of our model.

Layer hierarchy. Our alpha network A predicts the object
mask probability for every layer. Rather than simply nor-
malizing the layer probabilities of each pixel and directly
using them as layer masks, we build a front-to-back hierar-
chy. That is, for layer n, its probability of object mask is
computed by

↵n = an ·
NY

i=n+1

(1� ai) , (1)

where a 2 [0, 1] is the raw output of A with aN fixed and
equal to 1. This hierarchy assumes that objects follow a
strict front-to-back ordering, which also implies that layer
N represents the background. Here, we specifically focus
on scenes with only one foreground object. That is, N = 1.
We show an example of decomposing multiple foreground
objects in the supplementary material.

3.2. Texture Mapping

We associate each object with its own texture, such that
modifying a single pixel in the texture will impact the ob-
ject’s appearance in the rendered video scene. We translate
the spatiotemporal locations in the video into 2D UV coor-
dinates for different layers by a mapping network M. This
allows us to sample colors on a texture with the translated
coordinates. We follow the approach of coordinate-based
neural rendering [16, 23] and use the multi-layer perceptrons
as our coordinate translator instead of a textured grid.

Note that the appearance of an object in the scene may
change throughout the video due to camera motion and il-
lumination variations. We will explain how we address this
issue with the proposed multiplicative residual in Sec. 3.3.

The textures can be further obtained by grid-sampling the
texture network T . Once the texture is extracted, the texture
network can be replaced by the extracted texture using UV
coordinates from the mapping network, achieving the same
effect via bilinear interpolation. This process enables users
to modify and apply the extracted texture to the entire video.

3.3. Multiplicative-Residual Estimator

In order to apply a single modification to all video frames,
the texture must remain constant throughout the entire video.
However, the color at the same location on an object may
change over time due to variations in lighting conditions,
resulting in low reconstruction quality or noisy textures. To
address this issue and ensure high-quality reconstruction,
we have developed a new method, multiplicative-residual
estimator, to achieve constant texture across all frames while
preserving illumination variations.

With this design, we can also synthesize illumination
coefficients not present in the original video at specific time
points, allowing us to manipulate camera motion. Note that
the prediction of the residual estimator is sharp. Therefore,
we have designed losses to constrain the seen and unseen
areas, as will be described in Sec. 3.5. The multiplicative-
residual estimator predicts the illumination coefficient of
each color channel on the texture map, which is multiplied
by each channel to obtain the shaded color.

To provide more insight into our decision to use a multi-
plicative residual instead of an additive residual, we examine
the process of diffuse shading:

C = ⇢L , (2)

where ⇢ is the diffuse albedo term determined by surface
material and L is the lighting term determined by the envi-
ronment. When the lighting condition changes or a shadow
is cast onto the surface, the new shaded color then becomes
C 0 = ⇢ · L0. With multiplicative residual, we can reproduce
C 0 by scaling C with L0

L . In contrast, we have to add C
by ⇢(L0 � L) if we use additive residual. One can observe
that the additive residual is more difficult to model as it also
depends on the diffuse albedo term. We detail the practical
result of the two choices in Sec. 4.6.

3.4. Network Architecture

We design our model as an end-to-end framework trained
via self-supervision. We take a spatiotemporal coordinate
p = (x, y, t) in the video as the model input and predict
the reconstructed color of the corresponding pixel. Fig. 3
shows the pipeline of our model, which includes a mapping
network, a texture network, and a multiplicative-residual
estimator for each layered representation, with a shared alpha
network generating the soft masks for different layers.
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Figure 3: Model pipeline. Our model takes a video coordinate p = (x, y, t) as input and decomposes the video into multiple
layers. A representation for layer n is modeled by a mapping network M, a texture network T , and a multiplicative-residual
estimator R; the three modules jointly convert a video coordinate p into layered color c(p)n and lighting coefficient l(p)n . An
alpha network A also takes p as input and predicts soft object masks ↵(p) for each layer. The final video color is reconstructed
by the bottom-right equation. The multiplicative residuals are critical to our model for handling illumination variations.

Mapping network. Following the design choice of re-
cent coordinate-based approaches [16, 23], we build our
network architecture with multi-layer perceptrons. For each
layer n, we pass a spatiotemporal coordinate p through a
mapping network to translate the video coordinate into a
time-independent 2D texture-map coordinate (u, v) by

(u, v)(p)n = Mn (p) , (u, v)(p)n 2 [�1, 1]2 , (3)

where Mn is the mapping network of layer n.

Texture network and multiplicative-residual estimator.

After obtaining the UV coordinates, the texture network
takes the UV coordinates (u, v)(p)n and produces the corre-
sponding color at each position, while the multiplicative-
residual estimator uses both the UV coordinates and the
time t as inputs to predict the corresponding illumination
coefficients at each position:

c(p)n = Tn
⇣
(u, v)(p)n

⌘
, c(p)n 2 [0, 1]3 ,

`(p)n,t = Rn

⇣
(u, v)(p)n , t

⌘
, `(p)n 2 R3

+ ,
(4)

where T is the texture network and R is the multiplicative-
residual estimator.

Alpha network. We also predict an object mask for each
layer to indicate the layer to which each pixel belongs:

↵(p) = A(p), ↵(p) 2 [0, 1]N+1 , (5)

where ↵(p)
n is the probability that pixel p belongs to layer n,

i.e.,
PN

n=0 ↵
(p)
n = 1. The derivation of the object mask is

detailed in Sec. 3.1.

Pixel color reconstruction. After obtaining the informa-
tion described above, we can reconstruct the pixel color at
position p as

ĉ(p) =
NX

n=0

c(p)n · `(p)n · ↵(p)
n . (6)

Inspired by [24], we use hash grid encoding for all networks
except for the mapping network, as texture coordinates are
expected to be smooth. This approach is adopted to facilitate
better convergence during training.

3.5. Loss Terms

Losses inherited from previous work. We incorporate
several losses from Layered Neural Atlases [16] to facili-
tate the training process. These losses include 1) optical
flow loss, which provides the model with the supervision of
optical flow, and 2) alpha bootstrapping loss, which offers
supervision of initial coarse masks; additionally, we use 3)
reconstruction loss to stabilize the training and improve re-
construction quality, and 4) sparsity loss to avoid duplicate
foreground objects in the texture area. Further details can be
found in the supplementary material.

Residual consistency loss. In order to produce significant
yet smooth lighting conditions, the multiplicative residuals of
different times t1 and t2 of the same position on the texture
coordinate (u, v), where (u, v, t1) corresponds to a visible
area and (u, v, t2) corresponds to an invisible area, should
be close in distribution and can have different intensities
of illumination. Formally, we have a small k ⇥ k patch P
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at time t1 on the video centered at (x, y). We then sample
their texture coordinates (u, v)(P ) = M(P ). The texture
coordinates are then combined with different times t1 and t2
to get the corresponding multiplicative residuals:

`(P ) = R
⇣
(u, v)(P ), t1

⌘
,

`0(P ) = R
⇣
(u, v)(P ), t2

⌘
.

(7)

To this end, we encourage multiplicative residuals of the
same position on texture coordinate should be positively
correlated. Therefore, we define the residual consistency
loss through normalized cross-correlation by

 (P, t2) =

�
`(P ) � µ`(P )

� �
`0(P ) � µ`0(P )

�

�`(P ) �`0(P )

. (8)

We further introduce a variance-smoothness term that
smooths the changes in lighting conditions as

E(P, t2) = �2
`0(P ) . (9)

We apply the above terms to all layers and get the overall
loss as

LRcon = �Rcon( + �E) , (10)

where we choose k = 3 since our patch size is 3 ⇥ 3 and
� = 16.

Residual regularization. Minimizing the current losses
can collapse to a trivial solution because the multiplicative-
residual estimator absorbs all colors. We regularize the
residuals equal to 1 since “true color” of an object in the
video depends on the overall light conditions. That is, if the
light source is a pure blue light in the entire video shining
on a white wall, we can only say that the steady color of
the wall is “blue”, as we do not have enough information to
determine the true color of the wall.

LRreg = �Rreg||R(·)� 1||22 . (11)

Alpha regularization. We introduce an additional regu-
larization term to address potential issues with the alpha
network. Specifically, the sparsity loss used in the alpha
network tends to assign a value of zero (i.e., black) to re-
gions that are not visible in the input video, which can result
in noisy masks and incorrect shadow embedding. To miti-
gate this problem, we enforced a constraint that each pixel
should contribute to at most one layer. This ensures that the
mask for each layer is clean and reliable and that the lighting
conditions are properly embedded in each layer.

L↵reg = �↵regBCE
✓

max
n2{0,··· ,N}

↵n

◆
, (12)

where BCE is binary cross entropy.

3.6. Hash Grid Encoding

Like [16, 23], we have considered employing positional
encoding as the input encoding for the multi-layer percep-
trons. The purpose of including the positional encoding is
to enrich the discriminative power of the coordinates and
ensure that high-frequency details can be adequately rep-
resented. Inspired by [24], we choose to adopt hash grid
encoding as the input encoding method for our model. By
leveraging this technique, the input features are encoded
into a set of intermediate representations that span a broad
spectrum of spatiotemporal resolutions, ranging from coarse-
to fine-grained, and can flexibly adjust to distinct regions
while maintaining high levels of accuracy and consistency.
Formally, the 2D or 3D input feature is treated as a coordi-
nate of multi-resolution grids and then used to sample data
from the grids using interpolation techniques. The resulting
sampled data are concatenated and passed into multi-layer
perceptrons to obtain the final output.

4. Experiments

We conduct our experiments on the DAVIS dataset [26]
and various internet videos to demonstrate the effectiveness
of our approach in video reconstruction and consistent video
editing. We also design an evaluation metric of edit consis-
tency on the TAP-Vid-DAVIS dataset [8]. In addition, we use
our method to generate videos with different camera motions
from those in the original input video. Furthermore, we con-
duct ablation studies on the multiplicative-residual estimator
and encoding type to assess the impact on the performance
of different architecture choices.

4.1. Qualitative Results

Fig. 4 shows four qualitative results of our work on the
DAVIS dataset [26]. For each video frame, we show the
predicted masks (second and third columns), the m-residuals
(fourth column), the corresponding layered textures (fifth and
sixth columns), and the reconstruction result (last column).
Please also refer to Fig. 1 for an example result highlighting
the robustness of our m-residual estimation. More results
and higher resolution reconstruction can be found in the
supplementary material.

With merely the guidance from the coarse object mask
provided by Mask R-CNN [11], our model successfully sep-
arates the object from the background yielding a clean and
precise mask. In the second video in Fig. 4, we showcase
an example of a video occluded by complex water splashes.
Our model can accurately reconstruct the video without in-
troducing noticeable texture distortions. We superimpose
a rainbow checkerboard on the mask to visualize the trans-
formation of each layer. It is evident that each coordinate’s
component remains at the same position in the texture.

Since the multiplicative residual may brighten or darken
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Figure 4: Qualitative results on the DAVIS dataset. We show our predicted masks, textures, m-residuals, reconstructed results,
and PSNR of different videos. We overlay a color checkerboard on the masked areas to visualize the texture transformations.

the texture, we display the m-residual output on a gray canvas
to visualize its effect. In the first video, our m-residual
estimator successfully models the shadow of the hiker while
the background texture retains its original color. The m-
residual estimator takes both the texture coordinate and time
as the input, allowing it to learn how to model the changes
in lighting conditions through space-time and adjust the
color accordingly. Such a mechanism enables our model to
generate realistic and consistent shading effects for different
objects in the video, such as the shading on the bear’s fur or
the reflection on the hiker’s hat. We also report the PSNR of
each video as evidence of high-quality reconstruction.

4.2. Comparison with Previous Work

We report the PSNR values and various settings for ev-
ery approach in Table 1. We also provide more quantitative
comparisons with Deformable Sprites (DS) [39] and Lay-
ered Neural Atlases (LNA) [16] under multiple metrics in
Table 2. Our method demonstrates superior performance
of PSNR, rendering speed, and GPU memory consumption
compared to previous methods on all three videos while
maintaining the same or better resolution. Note that we
could not run Deformable Sprites for the 768⇥ 432 resolu-
tion, as Deformable Sprites failed to finish due to their GPU
memory usage exceeding the limit of a single GPU with

24 GB memory. In contrast, our method can efficiently de-
compose higher-resolution videos into full-HD layers using
affordable computation resources while maintaining compa-
rable reconstruction results. To compute the PSNR, we scale
the input video up to the reconstructed resolution. Therefore,
the PSNR of our 1080p model might be slightly lower than
that of the 768⇥432 model, as the PSNR of the 1080p model
is calculated at the corresponding resolution and considered
harder due to having more details to reconstruct than the
low-resolution counterpart.

4.3. Consistent Video Editing

For editing purposes, we use a 1000 ⇥ 1000 grid sam-
pling to render the texture networks. We then modify the
rendered texture and sample color via bilinear interpolation.
As our key advantage lies in the m-residual representation
of illumination, we have focused our editing on videos or
components that exhibit changes in lighting.

We show our editing results in Fig. 5. We choose three
videos to present the rendering quality. The first video is
sourced from internet videos, while the other two are taken
from the DAVIS dataset [26]. For evaluating the editing
quality, we modify the background texture of the first two
videos by adding handwritten characters of “ICCV”. We also
adjust the color of the shirt of the hiker in the second video.

7748



(a) Input frames (d) Reconstruction (edited)(c) Texture editing(b) Reconstruction

Figure 5: Edits on videos with varying lighting conditions. We apply various editing techniques on different components of
the videos to observe the corresponding changes in the lighting conditions. The textures with edits are shown in (c), while the
editing results are enlarged in the right column of (d). The lighting and shading fuse with the edits flawlessly.

Finally, we perform style transfer on the third video on both
background and object textures. In the first video, despite the
complexity of the lighting conditions caused by the Disco
ball, our approach can successfully handle and diffuse the
light onto the edited region, resulting in high-quality output.
Previous approaches fail to achieve such a representation of
complex lighting conditions. In the second video, the color
of the shirt changes convincingly according to the different
lighting conditions in two different frames, while our edit
on the background is successfully occluded by the shadow.
We can see that in the third video, our edited reconstruction
follows the textures and the modified lighting conditions fit
seamlessly with our modifications, as shown in (d) of the
fifth and sixth rows. In the supplementary material, we also
provide additional editing results of various types to further
demonstrate the versatility and effectiveness of our method.

4.4. Quantitative Results for Editing Consistency

Our work mainly focuses on consistent video editing.
However, famous metrics such as PSNR (as we show in
Fig. 4) or other reconstruction quality measures do not nec-
essarily reflect the quality of consistent video editing. We

take advantage of TAP-Vid [8], which provides several eval-
uation metrics and the ground-truth feature tracking on the
foreground object. We use the feature points of the first un-
obstructed frame (f0,x, f0,y) as our base point and convert it
into texture coordinate (u0, v0). For all other frames t, we
select the video coordinate whose mapped texture coordinate
is closest to (u0, v0) as our prediction for frame t. Therefore,
the feature points on the same track should be mapped to
the same coordinate on the foreground texture for an ideal
rendering result.

We report our results in Table 3. We select a subset of the
TAP-Vid DAVIS dataset for our quantitative analysis. For
reference, we also report the results of RAFT [31], as a base-
line, on the same videos since our optical flow supervision
comes from it. In general, the correspondences obtained
by our method are more consistent than those by RAFT, as
RAFT considers only neighboring frames while ours works
on a unified foreground representation. Specifically, our
method achieves higher scores than RAFT on the “black
swan” and “kite-surf” videos and comparable results on the
other two videos. The low score on the “parkour” video is
due to the complex geometric changes in the video, which
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Training Rendering GPU PSNR
Method Resolution time speed (fps) memory bear disco ball hike

Deformable Sprites [39] 213⇥ 120 10 minutes 5 5 GB 22.7 26.2 21.5
Deformable Sprites [39] 427⇥ 240 20 minutes 1.6 12 GB 23.6 26.4 22.0

Layered Neural Atlases [16] 768⇥ 432 5.5 hours 0.5 3 GB 27.3 29.0 25.2
Ours 768⇥ 432 40 minutes 787 3 GB 27.5 37.7 25.6
Ours 1920⇥ 1080 40 minutes 71 5 GB 26.9 35.6 25.4

Table 1: Comparison results. We report the PSNR for each video, along with the corresponding training time, rendering
speed (frames per second), and GPU memory usage under different resolutions. Our work achieves better results than prior
work on the three videos, achieving faster rendering, lower GPU memory consumption, and higher resolution. Note that we
measure the PSNR at the corresponding reconstructed resolution. Therefore the PSNR tends to favor the evaluation at low
resolution, explaining why our 1080 reconstructions have slightly lower PSNR than our 480p reconstructions.

bear disco ball hike
Method PSNR LPIPS SSIM PSNR LPIPS SSIM PSNR LPIPS SSIM

DS 23.6 0.23 0.78 26.4 0.21 0.89 22.0 0.29 0.68
LNA 27.3 0.19 0.85 29.0 0.11 0.95 25.2 0.19 0.80
Ours 27.5 0.16 0.87 37.7 0.04 0.97 25.6 0.16 0.82

kite-surf car-turn libby
DS 21.2 0.34 0.62 22.2 0.32 0.65 21.6 0.41 0.57

LNA 28.2 0.30 0.76 27.5 0.30 0.88 29.4 0.31 0.91
Ours 29.2 0.26 0.78 29.5 0.23 0.91 29.6 0.26 0.92

Table 2: More comparison results. Our model outperforms
previous methods in all videos and achieves better scores in
all evaluation metrics.

ours RAFT
AJ < �xavg OA AJ < �xavg OA

black swan 0.81 0.87 1.00 0.39 0.52 1.00
parkour 0.04 0.10 0.48 0.07 0.17 0.48
kite-surf 0.48 0.58 0.99 0.25 0.35 0.86

cows 0.51 0.61 0.99 0.55 0.65 0.99

Table 3: Quantitative results on TAP-Vid. We test the
editing consistency on a subset of TAP-Vid DAVIS and show
the result for each video. The reported metrics, the higher the
better, are average Jaccard (AJ), average position accuracy
(< �xavg), and binary occlusion accuracy (OA). Compared to
RAFT [31], our method performs better or reaches compara-
ble results on all videos.

our current architecture can reconstruct well but edit poorly
on the foreground parkour runner. Nevertheless, the editing
on the background still exhibits comparable quality.

4.5. Manipulating Camera Motion

With our multiplicative residual estimator, we are able
to synthesize realistic views that are not shown in the in-
put video. A different camera view can be synthesized by
scaling, shifting, or rotating the original video coordinates
(x, y) to get (x0, y0) and concatenating it with the tempo-
ral information t. Once the new set of video coordinates
p0 = (x0, y0, t) is obtained, we can use the mapping net-
work M to obtain the texture coordinate (u, v)(p

0) for each
layer. The color c(p

0) and the lighting `(p
0) of all layers can

be obtained based on these texture coordinates. For each
non-background layer n, we use the alpha network A to

camera view synthesized view

Figure 6: Camera motion manipulation. The multiplica-
tive residual serves as a smooth representation that effec-
tively adjusts the lighting conditions with a fixed camera.

obtain the original soft mask ↵(p) for each p = (x, y, t) and
establish a relation as (u, v)0 ! ↵(p)

n if (u, v)0 = M0(p).
Then, we linearly interpolate the value of the mask at each
location p0 by triangulating the input data. That is, we estab-
lish a correspondence between the coordinates of the object
textures and the background texture and then transfer the
mask values from the object onto the background texture.

We set up a virtual camera in the background to capture
the entire video scene from a fixed position. Fig. 6 shows
our result. The camera is fixed (i.e., the background remains
static) while the object keeps moving in the scene. In the
fourth video, the car is partially visible in the beginning
frames and fully visible later, with its side facing the camera.
The third video demonstrates that the splashes consistently
follow the entire path of the original camera view. With
our multiplicative-residual estimator, we can successfully
reconstruct the surfing scene while accurately representing
the water splashes. We show more results with varying
camera motions in the supplementary material.
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input frame reconstruction
additive residual multiplicative residual

Figure 7: Choice of the residual estimator architecture.

Using an additive residual estimator architecture may in-
troduce artifacts or degrade the quality of textures, while a
multiplicative one works correctly.

(a) (b)

Figure 8: Quantitative ablation studies. (a) The recon-
struction PSNR degradation of the additive residual is sig-
nificantly higher than that of the multiplicative residual. (b)
Hash grid encoding can achieve better PSNR in fewer itera-
tions.

4.6. Ablations

Residual type. We present an ablation study to verify the
choice of the architecture of our residual estimator. As men-
tioned in Sec. 3.3, we adopt the multiplicative residual in-
stead of the additive residual. We show the comparisons of
the two designs in Fig. 7 and Fig. 8a. The additive resid-
ual estimator is conducted, and the output is normalized to
[�1, 1] to ensure they have the same representation capa-
bility. In Fig. 7, both additive and multiplicative residuals
provide promising reconstruction results for the first video.
However, when it comes to the complex texture, like the
background of the second video, the additive residual fails to
represent it and compensates for the wrong illuminations. In
the third video, the additive residual fails to represent precise

background texture, and the dog vanishes from the texture.
Fig. 8a demonstrates a significant drop in PSNR when ablat-
ing the residual module. This finding reflects that additive
residual is prone to overfit the color that should be attributed
to the editable texture. In contrast, the multiplicative residual
provides complete background and object textures.

Hash grid encoding. We evaluate the effectiveness of hash
grid encoding in Fig. 8b. Positional encoding needs more
MLP layers to achieve good quality, which takes 1.5⇥ pro-
cessing time per iteration compared to hash encoding. How-
ever, hash grid encoding still achieves better PSNR in fewer
iterations.

5. Discussion

We have observed several interesting points that are worth
discussing. Our method relies on Mask-RCNN and RAFT to
provide the foreground mask and optical flow as external pri-
ors. As a result, our method may be biased by the inaccurate
learning-based priors on some difficult cases like the spin-
ning lighting in disco ball or the object boundary in bear.
The reconstructed objects in the video may exhibit edge ar-
tifacts due to referencing the incorrect texture layer. Our
method with reconstruction loss could improve the initial
external prior but is still not perfect to solve all the artifacts.
Adopting better external priors or designing strong internal
priors are both good future improvements. The problem of
object edge artifacts is similar to the seam artifact in mesh
uv-parameterization from which future exploration may take
inspiration.

6. Conclusion

We have presented a neural layer decomposition method
to facilitate illumination-aware video editing. The proposed
multiplicative-residual estimator can effectively derive the
layered representation that characterizes the spatiotempo-
rally varying lighting effects. We have also implemented
hash grid encoding for fast coordinate inference. Our model,
therefore, significantly reduces the training time and achieves
real-time rendering speed with a low requirement of com-
putation resources, enabling interactive editing on high-
resolution videos. We use our model to generate high-quality
video editing results, where, in particular, the varying illu-
mination effect can only be achieved by ours rather than the
previous methods.
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