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Abstract

Incremental Learning (IL) aims to develop Machine
Learning (ML) models that can learn from continuous
streams of data and mitigate catastrophic forgetting. We
analyse the current state-of-the-art Class-IL implementa-
tions and demonstrate why the current body of research
tends to be one-dimensional, with an excessive focus on ac-
curacy metrics. A realistic evaluation of Continual Learn-
ing methods should also emphasise energy consumption
and overall computational load for a comprehensive un-
derstanding. This paper addresses research gaps between
current IL research and industrial project environments,
including varying incremental tasks and the introduction
of Joint Training in tandem with IL. We introduce InVar-
100 (Industrial Objects in Varied Contexts), a novel dataset
meant to simulate the visual environments in industrial se-
tups and perform various experiments for IL. Additionally,
we incorporate explainability (using class activations) to
interpret the model predictions. Our approach, RECIL
(Real-World Scenarios and Energy Efficiency Considera-
tions for Class Incremental Learning) provides meaningful
insights about the applicability of IL approaches in practi-
cal use cases. The overarching aim is to bring the Incre-
mental Learning and Green AI fields together and encour-
age the application of CIL methods in real-world scenarios.
Code and dataset are available.

1 Introduction
Advances in Machine Learning (ML) and Computer

Vision have demonstrated the capabilities of deep neural
network-based (NN) models to learn from diverse data and
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Figure 1: Top-1 Accuracy and Task-wise Energy Consump-
tion for ImageNet-Subset for different CIL approaches.
Task 0 introduces 10 classes, and all subsequent tasks add
5 classes. The total energy consumption of an approach is
given by the area under the curve. Comparing the methods
using only accuracy provides an incomplete understanding;
computational footprint consideration is also important.

perform a multitude of tasks with high accuracy [15,30,41].
The utilisation of ML in industrial applications is expected
to increase substantially [6, 48, 52, 54]. A gradual ramp-
up of raw materials, components, and related data occurs
in industrial projects with long timelines (e.g. manufactur-
ing [17, 29], reverse logistics [2, 57]). This necessitates the
retraining of the ML model by sequentially learning from
new data streams (tasks). It is established that NN mod-
els tend to forget the information learned from older data
as they are retrained on new information; this phenomenon
is known as Catastrophic forgetting [21, 27]. Iteratively
retraining the model from scratch on the entire appended
dataset is not a viable long-term solution, since it would re-
sult in a compounding of training times and computational
load. Such industrial applications present an opportunity
for widespread adoption and implementation of Continual
Learning.

This ICCV paper is the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it is identical to the accepted version;

the final published version of the proceedings is available on IEEE Xplore.
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Metric POD DER FOS P-AA CJT
#Param(M) ↓ 11.7 213.1 22.14 13.1 11.2
#PFLOPs ↓ 0.55 5.39 1.06 1.97 31.81
Time (h) ↓ 54.9 119.5 73.5 179.5 261.3
E (kWh) ↓ 6.86 15.08 6.12 21.25 33.29
Accavg (%) ↑ 68.6 72.4 69.8 71.1 83.7

Table 1: Incremental Learning Results on ImageNet Subset
with energy consumption and computational footprint. ↑
indicates higher value is better, ↓ indicates lower value is
better.

Developing ML systems that can continuously learn
and adapt to new data has been a broad topic of research
in Artificial Intelligence (AI) for numerous applications
[10, 25, 26]. In recent years, several implementations have
been proposed for combating catastrophic forgetting and
incrementally training ML models on new tasks. Van de
ven and Tolias [60] identified three scenarios for Incremen-
tal Learning, viz. Task-, Domain- and Class-Incremental
Learning (CIL), the last being the most challenging of the
three.

CIL can be generalised as an ML problem with a contin-
uously growing dataset D, where new classes are introduced
sequentially over training tasks 0, 1,...T, each containing
new classes C0, C1...CT. The model must be able to classify
the test images from all available classes

∑t
i=0 Ci at a given

phase t of the project life cycle. CIL implementations gener-
ally focus heavily on the Top-1 and Top-5 accuracy in stan-
dardised benchmarking settings [5,47,60,73]. While this al-
lows direct comparison between different implementations,
it leads to an overemphasis on the established benchmarks,
while neglecting diverse scenarios and other metrics. After
a production ML model is trained (Task 0), the subsequent
incoming data is likely to contain a significant variation in
the number of object classes, amount of data and feature
complexities from one task to the next [1, 2, 9, 57].

Additionally, original research works and review papers
on IL generally do not expound on the training times, en-
ergy consumption or computational complexity. Reduc-
tion in training time and lower energy consumption are the
key reasons for adopting a continual learning-based frame-
work in practice. Theoretically, if the accuracy of predic-
tion were the only metric of significance, then retraining
the model on the whole dataset (Cumulative Joint Training:
CJT) would be preferred over incremental learning imple-
mentations [5, 47, 72]. Thus, the current body of research
in this field is lacking and one-dimensional. As shown in
Figure 1 and Table 1, comparing IL approaches only using
accuracy metrics is not sufficient.

This study focuses on the gap between current AI re-
search and its practical implementation in industry projects.
We advocate for IL research to be extended to practical

scenarios with an emphasis on energy consumption and
computational footprint. We look at performance metrics
and considerations for comparing IL methods comprehen-
sively. Industrial ML projects also require maintaining per-
formance above a certain threshold, which depends on the
requirements, complexity of the problem and available data
[6, 8, 54]. In a continual learning framework, this means in-
troducing periodic Joint Training updates (JTupdate) in tan-
dem with incremental training. We study the impact of such
updates on different state-of-the-art CIL approaches. We
also introduce a novel dataset of industrial objects in var-
ied contexts, spanning different levels of intra-class visual
complexities w.r.t. classification. We study Class Activation
Maps (CAMs) [50, 70] to interpret and understand the pre-
diction patterns for the approaches. Our overarching aim is
to bring the domains of Green AI and Incremental Learning
together and provide the AI community with useful tools
for the same. This work also aims to propose methodolo-
gies for researchers and AI adopters to assess the suitability
of continual learning frameworks for their own use cases.

2 Related work
Incremental Learning. Tackling catastrophic forgetting
and the plasticity-rigidity dilemma in a continual learning
framework is an active area of research [10, 45, 66]. Ap-
proaches such as packNet [46] and EWC [36] perform well
on task and domain-IL problems respectively, but suffer se-
vere catastrophic forgetting in CIL settings with a growing
number of object classes. Several approaches have been
proposed to address the CIL-specific challenges, includ-
ing iCARL [55], UCLR [33], IL2M [3], Weight Aligning
(WA) [69], PODNet [19], CCIL [49], Few-Shot Learning
[12, 59, 71], DER [64], AANet [42], FOSTER [62], among
others. Recently, Transformer-based [18, 61] based IL ap-
proaches have also been suggested [16, 20]. Generally, CIL
implementations involve regularisation-based intervention,
model augmentation, and rehearsal memory among other
techniques to mitigate catastrophic forgetting and maintain
model plasticity [5, 47]. A majority of approaches employ
Herding [55] for selecting memory exemplars. Alternative
solutions have also been proposed, including kNN search
[34], Mnemonics [44] and RMM [43]. Other works pro-
pose CIL implementations without rehearsal memory stor-
age [4, 51, 74].

Green AI. In the context of broader AI research, an em-
phasis on efficiency and energy consumption is still lack-
ing [39,40,58]. Improvement in state-of-the-art often corre-
sponds with an increase in model size, training data size and
computational complexity [7, 13, 14], and the development
of compute-optimal models is infrequent [32, 67]. W.r.t. IL
research, we observe a similar trend. Comparison of IL ap-
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proaches w.r.t. model size and computational complexity is
not widely reported [20, 42, 64]. Based on our estimation,
approx. 120 papers were published at top-tier ML Confer-
ences within the last year on the theme of Continual Learn-
ing, the majority of which focus on accuracy as the sole
metric for comparison with other works of research, with
no consideration of the computational load.

Research Gaps. While, IL research aims to resolve sev-
eral practical issues, such as catastrophic forgetting, data
privacy [11, 28, 51, 75] and data imbalance [3, 33, 63], the
lack of focus and transparency w.r.t. computational foot-
print is one of the general research gaps in IL. We also
address research questions specific to industrial implemen-
tations. This includes analysing the performance of CIL
implementations on tasks of varying class sizes, varying re-
hearsal memory limits, and their applicability for projects
with long timelines with JTupdate. In that regard, a change
of perspective is seen for practical implementation. Instead
of the question: Which IL implementation yields the high-
est incremental accuracy on the dataset?, the focus is likely
to be on: What is the optimal configuration of tasks T that
can be performed using IL, in tandem with periodic JTupdate

that yields acceptable performance based on accuracy and
computational requirements for the application?

Most IL implementations use CIFAR-100 [38] and Ima-
geNet [15] datasets, which do not reflect the controlled vi-
sual environments in industrial setups. Data collected in
nascent industrial production environments tend to be un-
curated and heterogeneous, and issues such as cropping,
blur, occlusion, and clutter may be present. Addition-
ally, the classification between objects may be fine-grained.
We study the effects of such visual intricacies on IL-based
frameworks using data collected by our team.

3 Methods

Setup. We use FACIL [47] and PyCIL [72] toolboxes
along with the open-source implementations from the orig-
inal works for our research. We chose PODNet (POD) [19],
DER [64], FOSTER (FOS) [62] and POD+AANet with
RMM (P-AA) [43] for an in-depth analysis. ResNet-18 [30]
with He initialisation is used as the base network across all
implementations. A dedicated, low-performance worksta-
tion (16GB System Memory, 8 Cores with 1 GPU-NVIDIA
GeForce GTX 1070) is used during the investigation to al-
low for an impartial comparison between the implementa-
tions. From our observations, the impact of excessive heat-
ing on energy consumption results was more pronounced in
the case of larger workstations. However, this had a com-
paratively minor effect on the chosen system.

Incremental Learning only
Incremental Learning with Joint Training Update

Cumulative Joint Training (CJT)

0 5 10 15
60

70

80

90

Top-1 Acc. (%) vs Task

0 5 10 15
0

1

2

3

Energy (kWh) vs Task

Figure 2: Accuracy and Energy Curves for practical incre-
mental learning use case with the DER Implementation

3.1 Computational Footprint Considerations

Previous works discuss several approaches for tracking
energy consumption and carbon footprint for ML training,
including electricity usage, elapsed time and model parame-
ter size [22,23,58,65]. In particular, measuring the compu-
tational complexity in terms of Floating Point Operations
(FLOPs) or Multiply–Accumulate Operations (MACs) is
a hardware-agnostic approach. It should be noted, how-
ever, that these values do not directly correlate with the ac-
tual energy consumption and run time [58]. This is espe-
cially significant when comparing IL implementations due
to the supplementary processes, such as feature-boosting
[62], finetuning [19,43] and exemplar selection. We use the
Shelly smart power plug [56] to monitor and log the real-
time task-wise energy consumption for the experiments.
This allows a comparison of the overall energy consump-
tion as well as the general trend over the project duration.

The ImageNet-Subset (comprising 100 randomly chosen
classes from the larger dataset [15]) is used as a starting
point for the study. 10 classes are introduced during the ini-
tial training, and 5 new classes are introduced during each
new increment (18 incremental tasks, initial training is Task
0). The pre-established rehearsal memory of 2000 exem-
plars was used for all tasks. Figure 1 and Table 1 give the
results of this setup for the selected CIL methods and the
equivalent joint training. Cumulative Joint Training (CJT)
represents a naive approach in which the model is retrained
from scratch during each new task on the entire dataset.
This approach represents the upper bound in terms of ac-
curacy. The cumulative energy consumption of the imple-
mentation up until a given task (T) is given by the area un-
der the curve or sum of the task-wise consumption values
ECIL =

∑T
i Ei.

We measure the cumulative FLOP count for the IL
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project #FLOPs, by adding the computational complexity
of each individual task i, which, in turn, is given by the
complexity due to ni total training samples (exemplars and
new data) in that task with an input size of s = (3,224,224).
In this paper, we report results in Petaflops (#PFLOPs).

#FLOPs =
∑
i

FLOPi =
∑
i

∑
ni

FLOPs (1)

Figure 2 shows the modified results for the DER imple-
mentation, where JTupdate is introduced midway through in-
cremental training. In such cases, we introduce a weighing
factor Wi, which is proportional to the deployment period of
an incrementally trained model prior to the next incremen-
tal training. We introduce Area Under the Curve ratio for
accuracy (AUCacc), that can visually be represented by the
ratio of two areas under the curve in Figure 2.

AUCacc =

∑T
i=0 acci × wi∑T
i=0 acc

joint
i

=
AUCacc(CIL)

AUCacc(CJT )
(2)

Similarly, we propose AUC energy ratio (AUCe), which
gives the energy consumption of CIL to that of CJT.

AUCe =
ECIL

ECJT
=

AUCe(CIL)

AUCe(CJT )
(3)

These metrics have the added benefit of applicability
in broad-term continual learning frameworks, where the
model is periodically reset (w.r.t. model size and archi-
tecture) via JTupdate. In the case of incremental training
at constant intervals, wi = 1 and AUCacc equals the aver-
age accuracy. It is evident from Figure 2 that implemen-
tations such as DER would perform better during long se-
quences on large datasets when a joint training update is
made, which reduces the model size and complexity.

3.2 InVar-100 Dataset
The Industrial Objects in Varied Contexts (InVar)

Dataset was internally produced by our team and contains
100 objects in 20800 total images (208 images per class).
The objects consist of common automotive, machine and
robotics lab parts. Each class contains 4 sub-categories (52
images each) with different attributes and visual complex-
ities. White background (Dwh): The object is against a
clean white background and the object is clear, centred and
in focus. Stationary Setup (Dst): These images are also
taken against a clean background using a stationary camera
setup, with uncentered objects at a constant distance. The
images have lower DPI resolution with occasional crop-
ping. Handheld (Dha): These images are taken with the
user holding the objects, with occasional occluding. Clut-
tered background (Dcl): These images are taken with the

(a) White (b) Stationary (c) Handheld (d) Cluttered

Figure 3: Example of images from the InVar-100 dataset
with the subcategories. Further details on the objects, the vi-
sual contexts, related metadata (weight, length, breadth, and
height of objects, along with the superclass, material, shape,
colour and additional descriptors) and a datasheet [24] are
available on the online repository.

object placed along with other objects from the lab in the
background and no occlusion. Table 2 gives details on the
subcategories and their visual attributes.

There are other larger datasets on industrial objects, such
as the ABC dataset [37], MECCANO [53] and the MCB
project [35]. While other datasets contain a higher number
of classes and images, the four subcategories in our dataset
simulate the different visual contexts in which industrial ob-
jects are generally digitised during inference time. The con-
text of the images changes, but the underlying features of
the target object remain constant, making it ideal for our
investigation. Datasets such as NICO [31] and NICO++
[68] also present object classes in different visual contexts.
However, the industrial objects in our dataset are unlikely to
be present in general large pretraining datasets such as Im-
ageNet [15]. The dataset can, thus, serve as a useful down-
stream dataset for research investigations. Figure 3 shows
sample images for the four subcategories.

3.3 Proposed Approach

We address the research gaps (discussed in §2) by per-
forming analyses on the InVar-100 dataset using the RECIL
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Figure 4: A summary of the RECIL approach. The application-specific data (InVar-100) is used to assess the CIL implemen-
tations for different incremental learning scenarios. Task-wise model energy consumption (Ei) and model performance are
reported (New classes: Acci, Old classes: Acc0..(i-1)) for each task i. For long project timelines, AUC metrics are reported.
CAMs are studied to understand model plasticity, rigidity and contextual performance.

Attribute Dwh Dst Dha Dcl

Object is centered ✓ ✓* ✗ ✗
Object in focus ✓ ✓ ✗ ✗
High Resolution ✓ ✗ ✓ ✓

Cropping ✓* ✓* ✗ ✗
Occlusion ✗ ✗ ✓* ✗
Clutter ✗ ✗ ✓* ✓
Blur ✗ ✗ ✓* ✓*

Table 2: Details on the subcategories of the InVar-100
dataset(* means only a fraction of images have the at-
tribute).

(Real-World Scenarios and Energy Efficiency Considera-
tions for Class Incremental Learning) framework, as shown
in Figure 4. In order to comprehensively understand a given
CIL method (CILa), it is tested with varying task incre-
ment sizes and sequences (0..T). The subsets of data are
tested individually for each scenario with differing rehearsal
memory buffer (Mi) restrictions. The energy consumption
(Ei), training times (Timei), and computational complexity
(FLOPi) of the models are monitored for each task i, along
with accuracies of old and new classes. Depending on the
use case, retraining (JTupdate) may be introduced after a pre-
planned duration or may be triggered when the model per-
formance falls below an established threshold. The context-
wise performance of the IL implementations is studied and
CAMs are used to interpret the incorrect predictions.

4 Experiments
All the following experiments are conducted on the

InVar-100 dataset with different increment sequences and
rehearsal memory budgets.

Experiment 1: Constant Increments, 18 IL Tasks, Mi =

POD DER FOS P-AA
CJT
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Figure 5: Accuracy and Computational Footprint for Ex-
periment 1 (Constant Increments). The size of the circle is
proportional to the model size at the end of the training. The
results follow a similar trend as those for ImageNet-Subset
shown in Figure 1.

2000. We implement the same conditions as those intro-
duced (Figure 1) for ImageNet-Subset (10 classes at Task
0, 5 new classes during each task, 2000 total exemplars as
memory Mi for each task) on the InVar-100 dataset. Figure
5 shows the Top-1 accuracy curves as well as average in-
cremental accuracies against the computational complexity
and model size. A similar trend to Figure 1 and Table 1 is
seen. Figure 6 show a comparison of performance on old
and new class data for POD and DER implementations.

Experiment 2: Comparison of performance for differ-
ent task sequences, 12 IL Tasks, Mi = 5 per class. We as-
sess the performance of the implementations on the individ-
ual subcategories of the InVar-100 dataset on two different
randomised task sequences (12 tasks). The overall compu-
tational footprint of the sequences remains the same. Each
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Method #Params ↓ #PFLOPs ↓ Sequence 1 Sequence 2
Dwh Dst Dha Dcl Dwh Dst Dha Dcl

Finetuning 11.2M 0.070 22.1% 23.1% 22.9% 21.6% 29.7% 23.2% 25.2% 22.5%
iCARL [55] 11.2M 0.071 49.9% 76.1% 55.9% 50.9% 66.2% 68.1% 54.0% 43.7%
WA [69] 11.2M 0.072 72.1% 51.8% 58.8% 54.4% 67.6% 66.2% 56.4% 47.7%
PODNet [19] 11.7M 0.072 84.9% 70.6% 57.1% 49.7% 90.4% 67.6% 61.4% 44.8%
DER [64] 145.7M 0.49 90.3% 81.4% 67.5% 58.6% 83.9% 77.8% 61.7% 61.5%
FOSTER [62] 22.6M 0.14 75.2% 54.2% 45.8% 39.7% 74.1% 51.8% 41.3% 35.4%
POD-AANet [43] 13.1M 0.26 82.8% 56.7% 61.1% 52.9% 86.0% 51.8% 35.4% 52.9%
CJT 11.2M 2.41 98.6% 93.1% 89.4% 88.1% 98.6% 93.1% 89.4% 88.1%

Table 3: Average Incremental Accuracy Results for Experiment 2 comparing the different task sequences. A clear difference
in the performance between the two sequences can be observed, even though they have the same number of total tasks and
class shuffling order.
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Figure 6: Old vs new class performance with PODNet and
DER for Experiment 1 with constant task sizes. This pro-
vides a clearer understanding of the plasticity and rigidity
of the method.
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Figure 7: Results for the two task sequences in Experiment
2, averaged across the four subcategories for each method.
Sudden drop and rise in the accuracy can be seen, which
was not encountered during Experiment 1.

subcategory is trained individually with a rehearsal memory
limit of 5 exemplars per class for each class. The results
are summarised in Table 3 for different CIL implementa-

Metric POD DER FOS P-AA CJT
#PFLOPs ↓ 0.39 2.81 0.76 1.44 2.87
Time (h) ↓ 96.9 110.1 111.4 188.6 138.2
E (kWh) ↓ 11.7 15.0 13.4 23.2 17.5
Acclast (%) ↑ 82.89 80.29 84.04 81.37 90.87
Accavg (%) ↑ 88.65 86.65 90.45 87.06 93.94

Table 4: Results for Experiment 3 (varying task sequence
and increased rehearsal memory) w.r.t. accuracy, energy
consumption and computational footprint. ↑ indicates
higher value is better, ↓ indicates lower value is better.

tions. The averaged results across the four subcategories
are shown in Figure 7. A performance shift can be seen for
FOS and P-AA, which was not previously observed with
constant task sizes and higher per-class rehearsal memory
for the earlier tasks. Moreover, a clear striation can be seen
w.r.t. the accuracies on the different subcategories.

Experiment 3: Comparison of different subcategories
with varying task sequences, 13 IL Tasks, Mi = 2000 per
subcategory for all tasks. A different variable increment
sequence (20 classes at Task 0 and 13 new tasks) is intro-
duced. The rehearsal memory limit is increased to 2000 per
subcategory (8000 for the entire dataset), implying that the
initial increments (shaded regions in Figures 8, 9 and 10)
have access to all old data as exemplars. The performance
is significantly better and the results on Dwh and Dst are con-
sistent through the increments (close to accjoint). However,
the increased memory limit per task results in greater en-
ergy consumption and complexity, as summarised in Table
4. Figure 10 shows the performance for DER and POD on
old and new classes for the Dwh and Dcl data. It can be
seen that the performance of POD on old classes can be
improved using a higher exemplar memory. However, the
performance on new classes for Dcl worsens during incre-
mental training. This drop in performance on new data is
much worse for DER.
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Figure 8: Top-1 Accuracy vs Total Classes for Experiment
3 (Table 4) with increased rehearsal memory budget. Ear-
lier increments (shaded region) have access to all old data
as exemplars. The Handheld and Cluttered subcategories
experience a greater drop in accuracy as more tasks are in-
troduced.
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Figure 9: Accuracy and Energy Consumption for Experi-
ment 3. Earlier increments (shaded region) have access to
all old data as exemplars. As a result, the energy consump-
tion increases more rapidly.

Experiment 4: Study of long increment sequences and
Joint Training Update, Mi = 10 per class. We conduct a
6-month (26-week) long study to analyse the performance
of the CIL implementations over a long timeline. At the
3-month mark, we introduce JTupdate. Table 5 summarises
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Figure 10: Top-1 Accuracy on old and new classes for
Experiment 3 for white background and cluttered subcat-
egories for POD and DER. The trends are generally similar
to those seen in Figure 6, with increased fluctuation for new
class.

the results, and an increase in AUCacc can be seen with the
update for each implementation. Figure 11 visualises these
results and puts the average incremental accuracy in relation
to the computational footprint for the study.

5 Discussion
Incremental Accuracy. The Experiments provide sev-
eral insights that are not gleaned from standard benchmark
tests. Based on the results, we roughly classify the CIL
implementations as plastic and rigid. Plastic implemen-
tations perform better on newer classes compared to the
older classes and require a larger memory buffer to miti-
gate forgetting of old data. In contrast, rigid methods are
better at maintaining learning from old data, but struggle to
learn from new data. They also need lesser exemplars to
maintain adequate performance on old data. PODNet and
POD-AANet are generally more plastic, and DER and FOS-
TER are more rigid. The performance of each implemen-
tation worsens as more tasks are introduced, especially for
data with clutter and occlusion. The performance of plastic
methods on old data can be boosted using a higher rehearsal
memory limit, however, the performance of rigid imple-
mentations on new data cannot be improved and JTupdate

would be necessary. One exception to this classification is
FOSTER, which performs well on Experiments 1, 3 and 4.
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Metric PODNet [19] DER [64] FOSTER [62] POD-AANet [43] CJT
IL w/JT IL w/JT IL w/JT IL w/JT

#Params ↓ 11.7M 11.7M 291.9M 157.2M 22.6M 22.6M 13.1M 13.1M 11.2M
#PFLOPs ↓ 0.11E15 0.14E15 1.61E15 1.22E15 0.21E15 0.27E15 0.39E15 0.51E15 8.11E15
Accavg-Top:5 ↑ 77.24% 83.15% 90.22% 94.33% 84.45% 88.12% 80.5% 90.7% 99.7%
AUCacc ↑ 0.58 0.67 0.72 0.80 0.62 0.69 0.64 0.78 1

Table 5: Results for Experiment 4 (six-month study) with and without JTupdate. The performance of the approaches improves
after retraining, while the overall increase in the computational footprint is significantly lower than CJT.
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Figure 11: Results for Experiment 4 (six-month study). The
radius corresponds to the model size at the end of training.
The effect of JTupdate on the accuracy and computational
footprint for the different methods is shown.

However, it underperforms in Experiment 2, especially on
Dha and Dcl. We hypothesise this is due to fewer classes in
the initial increments.

Computational Footprint. Analysis of the computational
load of the implementation is necessary to compare IL ap-
proaches. For instance, Experiments 3 and 4 introduce dif-
ferent approaches to improve model accuracy (increasing
the rehearsal memory limit and introducing JTupdate, respec-
tively). Based on the computational complexity, the ap-
proach taken in Experiment 4 is optimal. With JTupdate, the

DER implementation significantly improves w.r.t. accuracy
and computational complexity. PODNet, FOSTER AND P-
AA achieve a higher AUCacc score with an increase in the
computational load. PODNet w/JTupdate has higher AUCacc

and lower complexity than FOSTER and P-AA with only
IL. Tracking the task-wise energy consumption is more ac-
curate and provides a detailed understanding of the compu-
tational footprint. From Tables 1 and 4, we observe that
the total time consumption for an implementation corre-
lates with the energy consumption, given that all the other
variables are controlled. In the absence of such a setup,
however, it is recommended to report the model sizes and
#FLOPs alongside accuracy results, as shown in Figures 5
and 11. This can be readily done with no added planning or
setup.

Interpretation. We study the CAMs to interpret the in-
correct model predictions for the CIL methods. Figure
12 shows the effects of plastic CIL implementations. The
model predicts newer classes with greater confidence. Fig-
ure 13 demonstrates the opposite scenarios for the relatively
rigid DER and FOSTER implementations. We observe that
older classes are predicted with higher confidence. In the
case of clutter, occlusion or blur, the issue worsens, as mod-
els falsely tend to overfit the features of background objects
that may be similar to new class data. The InVar-100 subcat-
egories help highlight these issues which a carefully curated
clean industrial dataset would not. W.r.t. visual context,
clutter has the most impact on IL performance due to false
class activations. Occlusion by hand and cropping tends to
be less impactful in industrial contexts, provided that the
target object features are sufficiently captured.

Project Applicability. Addressing the research questions
in §2, we see that the maximum possible IL-Tasks T that
can be performed in a continual project depends on the re-
quirements, the quality of data and its availability. For in-
stance, a plastic implementation may be a better option for
projects where little data is available at the beginning of the
project. Implementation of regular JTupdate similar to Exper-
iment 4 is efficacious w.r.t. performance and computational
footprint trade-off. This trade-off generally depends on the
dataset, IL methods, and setup. The rehearsal memory re-
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Figure 13: Example objects, corresponding CAMs and Pre-
dictions for incremental training with (a) DER [64] and (b)
FOSTER [62]. #Tpart gives the Task during which the pre-
dicted object was introduced. CAM activations show that
learnt features from the new classes overfit the older classes.
This is further exacerbated for data with occlusion and clut-
ter.

quirements and optimal retrain period would be subject to
the IL approach and the visual contexts in the data. Thus,
accuracy gain from higher memory limits is also context
and data-dependent (Table 3, Figure 8). However, the Ex-
periments show that CIL approaches can be implemented
for practical use cases and offer a significant reduction in
overall training time and computational footprint compared
to retraining the model from scratch (CJT).

Limitations. Introducing real-world scenarios for contin-
ual learning makes it challenging to directly compare and
benchmark different approaches. Energy Consumption for
ML training can be difficult to study in cloud and shared
computing environments. The Experiments (§4) primar-
ily focus on the four CIL implementations. We consid-
ered including additional methods for all experiments and
found them redundant for the core focus of this paper. The

selected IL approaches and the chosen set of experiments
cover diverse scenarios (w.r.t. computational load, energy-
accuracy trade-off) and setups (memory budgets, increment
sequences, retraining), but are not exhaustive. Our paper
introduces a generalised approach, which can be expanded
and applied to more use cases.

6 Conclusion

We introduced RECIL, a more realistic approach for
evaluating Incremental Learning methods, especially for in-
dustrial use cases. The InVar-100 dataset is one of the
core contributions of this paper, which can also be used
for other general Computer Vision research. The experi-
ments demonstrate that the computational footprint is a cru-
cial metric for assessing and comparing different implemen-
tations. Putting the incremental accuracy in relation to the
energy consumption, training times or computational com-
plexity provides a fair and comprehensive comparison be-
tween IL approaches and can be done with no added plan-
ning (#FLOPs) or minimal setup (measuring the energy
consumption with an energy metering device). Addition-
ally, we identify and address research gaps between current
IL research and its practical implementation. We note that
performance on standardised benchmarks on well-curated
data does not transfer to practical use cases. An emphasis on
Green AI is essential for a sustainable, broad-scale adoption
of IL research in real-world applications with long time-
lines. We encourage the IL community to adopt these prac-
tices to increase trust and understandability in their work.
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