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Abstract

Models pre-trained on large datasets such as ImageNet
provide the de-facto standard for transfer learning, with
both supervised and self-supervised approaches proving ef-
fective. However, emerging evidence suggests that any
single pre-trained feature will not perform well on di-
verse downstream tasks. Each pre-training strategy en-
codes a certain inductive bias, which may suit some down-
stream tasks but not others. Notably, the augmentations
used in both supervised and self-supervised training lead
to features with high invariance to spatial and appear-
ance transformations. This renders them sub-optimal for
tasks that demand sensitivity to these factors. In this
paper we develop a feature that better supports diverse
downstream tasks by providing a diverse set of sensi-
tivities and invariances. In particular, we are inspired
by Quality-Diversity in evolution, to define a pre-training
objective that requires high quality yet diverse features
— where diversity is defined in terms of transformation
(in)variances. Our framework plugs in to both super-
vised and self-supervised pre-training, and produces a
small ensemble of features. We further show how down-
stream tasks can easily and efficiently select their preferred
(in)variances. Both empirical and theoretical analysis
show the efficacy of our representation and transfer learn-
ing approach for diverse downstream tasks. Code avail-
able at https://github.com/ruchikachavhan/
quality-diversity-pretraining.git

1. Introduction

Pre-training neural networks on large-scale datasets such
as ImageNet followed by representation transfer is a dom-
inant paradigm in applied deep learning [58]. Supervised
pre-training [34] is long established, with self-supervised
[14, 30, 15, 11, 69] pre-training rapidly gaining popular-
ity. Such pre-training algorithms often aspire to providing a
universal representation which is effective for diverse down-

Figure 1. Illustration of the quality and behavior space of QD4V
feature representations. Each point in this space is a potential fea-
ture extractor. The x and y axes correspond sensitivity-invariance
axes for spatial and appearance transformations, and define the
behaviour space for features. The z axis shows the quality of the
features (eg: ImageNet accuracy). The shaded zones schemati-
cally show the range of feature encodings that might be preferred
by different types of downstream tasks. Conventional pre-training
learns a single solution (denoted with +) that is high-quality (z
axis near 1) but by default occupies the green zone of high in-
variance to spatial and appearance transforms. In contrast, QD4V
aims to learn a set of solutions (marked by �) that better span the
(in)variance axes, while being also being high quality. These lead
to better performance for diverse downstream tasks. Note that in
practice the invariance space has many more dimensions than the
two illustrated here.

stream tasks across computer vision, with evaluation studies
showing promising results [34, 24]. Nevertheless, emerging
evidence suggests that any single pre-trained feature will
not be optimal for diverse downstream tasks [25, 68, 13].
This is because, any given pre-training strategy encodes a
certain inductive bias in the learned representation, which
will better suite some downstream tasks more than others.

This issue is evident with regards to transformation in-
variance. By way of example, downstream object recog-
nition benefits from strong affine invariance in a feature
since pose is a distractor for object recognition. In con-
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trast, downstream pose estimation depends heavily on affine
sensitivity in a feature. However, supervised pre-training
tends to promote affine-invariance due to the nature of the
task and the popular augmentations used. Meanwhile self-
supervised pre-training produces feature with even stronger
affine-invariance due to optimising for augmentation invari-
ance. So neither may be optimal for downstream pose esti-
mation. More generally, there are a diverse set of potential
transformations, each of which may be nuisance factors for
some tasks and crucial for others – and any given represen-
tation exhibits different different degrees of (in)sensitivity
to each each possible transformation. Thus, despite the
power of mainstream supervised and self-supervised pre-
training, since any single feature induces a particular set
of (in)variance strengths, it will be sub-optimal for those
downstream tasks with different (in)variance preferences.

Within the self-supervised learning community, a few
studies have attempted to address these issues by learning
features with multiple (in)variances. This often achieved by
an ensemble of different models [25], pre-training multi-
headed networks with contrastive learning for different
augmentations in each head [68], or with different heads
dedicated to (invariance promoting) contrastive learning
and (sensitivity promoting) transformation prediction [38].
However, these initial attempts suffer important limitations.
Firstly, given that there are many transformations for which
invariance or sensitivity may be preferred, it’s unclear how
to build a compact enough ensemble. For example, if N

models are used to encode N distinct strengths of sensiv-
ity to a particular transformation, and there are K possible
transformations, this naively leads to an ensemble of size
N

K to cover the possible invariance preferences of down-
stream tasks. Secondly, it’s unclear how to optimally select
or fuse these different features for downstream tasks with
apriori unknown (in)variance preferences.

In this paper, we address the first of these challenges
through the lens of Quality Diversity (QD) [12, 51, 27]
a strategy in evolutionary computation that has seen great
success in robotics [20]. QD strategies aim to more robustly
solve problems by searching for a set of solutions rather
than a single solution, and – crucially – requiring that the
set of solutions are diverse in some meaningful behavioural
metric. We introduce the notion of Quality Diversity Op-
timisation for Vision (QD4V), where, in a computer vision
context, we interpret the idea of behaviour space for diver-
sity measurement as degree of (in)variances to different data
augmentations. When applied to supervised ImageNet pre-
training, this corresponds to optimising for a small set of
ImageNet models that are highly performant, yet use as dif-
ferent cues as possible for recognition. This is qualitatively
illustrated in Fig. 1. Each downstream task is then pre-
sented with a meaningfully diverse set of high-quality fea-
tures from which a feature meeting the (in)variance prefer-

ences of the task is more likely to be found.
Our second contribution addresses how to fuse this small

ensemble of features for the downstream task. The lim-
ited existing work on learning multiple (in)variances relies
on ad-hoc heuristics, such as simply concatenating features
prior to linear readout [25, 68]. We argue that a better solu-
tion is train a per feature linear readout on the downstream
train set, and then learn a fusion weight on the downstream
val set, i.e., stacking [66]. We show both empirically and
theoretically that this approach to transfer learning outper-
forms the standard approach.

In summary, we present a framework for learning a com-
pact and high-quality yet meaningfully diverse set of fea-
tures. We present a simple approach for transferring them
to downstream tasks with strong theoretical backing. Fi-
nally, we show empirically that our framework improves
on average compared to standard pre-trained features when
evaluated on a diverse range of downstream tasks.

2. Related Work
Invariance learning in vision: Invariances for in-domain
image classification have been learned using data augmen-
tation [9] via MAP [6] and marginal likelihood [32] learn-
ing. However, these methods do not focus on transferability
to downstream target tasks. On the other hand, the suc-
cess of representation transfer in contrastive self-supervised
learning has been attributed to augmentation-based training
engendering invariances [25, 63, 52] which act as strong
inductive biases for downstream tasks. The field aspires to
provide a single general-purpose feature suited for all down-
stream tasks [8], however, this goal is not straightforward to
achieve. Recent studies have shown that features with in-
variances to different augmentations are suited for different
downstream tasks, with no single feature being optimal for
all tasks [25, 68] and performance suffers if inappropriate
invariances are provided. In contrastive learning, this leads
to the laborious need to produce and combine an ensemble
of features [68, 25], to disentangle invariance and transfor-
mation prediction [38], costly task-specific self-supervised
pre-training [54, 61], or amortising invariances [13]. We in-
troduces a framework for learning diverse invariances dur-
ing either supervised or self-supervised pre-training, while
maintaining the quality of those features in terms of encod-
ing image semantics. We also provide an efficient and the-
oretically supported approach to fuse the resulting features
that improves on standard heuristics [25, 68].
Quality Diversity: Quality Diversity (QD) optimisation
[12, 51, 27] originated in evolutionary algorithms as a
strategy for finding a meaningfully diverse set of high-
performing solutions to a problem, rather than just one
global optimum. Access to a suite of meaningfully di-
verse high-quality solutions often has substantial robustness
benefits that are widely exploited in robotics community
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[20]. In order to drive diversity, a QD algorithm requires
an application-specific measure of behaviour as a feature
between which two models’ difference can be compared.
We develop a novel behavioural measure for vision in terms
of invariances. Mainstream QD optimisation algorithms
such as MAP-Elites are not amenable to the differentiable
gradient-based solutions required for application in vision.
We develop a simple differentiable instantiation of QD that
is amenable to easy integration as a loss within a typical
deep learning for vision pipeline.
Ensemble methods: QD is related to ensemble methods,
which have a long history in vision and machine learning
[22]. However, ensembles have mostly focused on single-
task learning rather than pre-training for transfer learning.
A key challenge in ensemble methods is obtaining mean-
ingful inter-model diversity, with the standard approaches
of random seeds, boosting, and bagging, providing compar-
atively weak diversity. Our novel strategy is to take QD’s
insight that diversity should be measured in a meaningful
space, and identifying (in)variance axes as such a meaning-
ful space for diversity measurement in visual pre-training.
A second key issue for ensembles is fusing the ensem-
ble prediction, which has been variously performed by un-
weighted prediction averaging [45] or parameter averaging
[46], and feature concatenation in transfer learning [25, 68].
We show both empirically and theoretically the efficacy of
learning a weighted combination of predictions.

3. Methodology
3.1. Background

Mainstream QD optimization [27, 51] searches for a di-
verse set of solutions {✓i} to an optimization problem Lq

by solving an objective like

min
{✓i}

X

i

Lq(✓i) s.t. D({⇡(✓i)}), (1)

where ⇡ is a vector of application relevant observable prop-
erties of a given solution ✓i that is called phenotype in the
QD community. D is a diversity constraint that enforces
diversity among the solutions. It is often enforced by tesse-
lation, or gridding, the space of ⇡. Thus solution sets {✓i}
have the maximum posible quality (Lq) while also covering
the space of measurable differences in behaviour [27, 51].
To make such QD problems more efficient to solve in a vi-
sion context, we will relax them to

min
{✓i}

X

i

Lq(✓i)�
X

i 6=j

Ldiv(⇡(✓i),⇡(✓j)}), (2)

where Ldiv is a loss that measures pairwise distance.

3.2. Visual Pre-training
We denote a large dataset for pre-training by Dt ⇢

X ⇥ Y , where X is some space of input images and the

space Y may be contain labels obtained from manual anno-
tation or pre-text tasks from self-supervision. We introduce
a population of N feature extractors, represented as an en-
semble, F = {f✓i}Ni=1, which aim to learn a diverse set
of invariances while maintaining high quality. Each mem-
ber of the ensemble is followed by a projection layer g�i

which can be a classifier layer in case of supervised learn-
ing or a projection head in case of self-supervised learning
[14, 30, 16]. We denote a set of K augmentations consid-
ered for pre-training as T . Let us also denote a sample x
transformed by augmentation Tj 2 T as x̃j .

3.2.1 QD for Visual Pre-training: Diversity

To quantify the diversity of solutions during pre-training,
we must first define a phenotype — an observable measure-
ment of a feature extractor’s behaviour. We define the be-
havior of a solution by the degree of invariance it shows
to a set of augmentations T . We borrow the definition of
invariance from [25], where invariance of a model to a par-
ticular data augmentation is defined as the cosine similar-
ity S(f✓(x), f✓(x̃j)) between augmented and unaugmented
features. Thus, we define a phenotype of a solution f✓i as
a vector ⇡(x; ✓i) 2 RK such that jth element of the pheno-
type vector indicates the invariance that the model exhibits
to augmentation Tj 2 T , as shown in Eq 3.

⇡(x; ✓i) =
⇣
S(f✓i(x), f✓i(x̃

j)
⌘|T |

j=1
(3)

Diversity Loss: Based on the above phenotype definition,
we can encourage each model to exhibit a diverse combina-
tion of invariances to augmentations in T . Specifically, we
minimise the negative exponential distance between pheno-
type vector of each member as in Eq 4

Ldiversity =
NX

i 6=j

exp(�|⇡(x; ✓i)� ⇡(x; ✓j)|) (4)

3.2.2 QD for visual pre-training: Quality

Quality Loss: Depending on the pre-training paradigm em-
ployed, different loss functions can be used to promote
high quality. In the case of supervised learning, the loss
function denoted by lq can be cross-entropy, while self-
supervised methods such as SimCLR/MoCo use contrastive
loss [48]. The loss function for the entire ensemble for a
sample (x, y) 2 D is given in Eq. 5

Lquality =
1

N

NX

i=1

lq(g�i(f✓i(x)), y) (5)

This objective reflects standard supervised or self-
supervised learning of the upstream model. Empirically,
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Figure 2. Schematic illustration of Quality Diversity Pre-training, shown with only 2 augmentations for simplicity. Ldiversity maximises the
difference between invariances that models exhibit to T1 and T2, while Lquality+�klLKL maximises the quality of the ensemble by pushing
it to the quality of a conventionally pre-trained model (denoted by Baseline).

we found that purely using this quality objective it is hard
for a diverse ensemble to match the quality of a baseline
model trained solely for quality. To help the diverse en-
semble match the quality of the baseline we introduce an
additional loss term, which is the Kullback-Leibler (KL) di-
vergence between the posteriors of the ensemble members
and baseline model with parameters �b and ✓b. We denote
the predictions of a model by ŷi = g�i(f✓i(x)). The loss
function is shown in Eq. 6. This term ensures that the mem-
bers of the ensemble mimic the predictions of the baseline
model, thus ensuring high quality with diverse invariances.

Lquality-KL =
NX

i=1

1

m

mX

j=1

KL (�(ŷi; ⌧)k�(ŷb; ⌧)) (6)

Here, � denotes the softmax function and ⌧ denotes the
temperature used to scale the logits within softmax.
Summary Finally, to achieve our goal of diverse invari-
ances and high quality in QD4V pre-training, we formulate
a total loss function asin Eq. 7.

Lqd = Lquality + �klLquality-KL + �dLdiversity (7)

The diverse set of optimal solutions learned from the pro-
posed QD pre-training stage denoted as F⇤ is then trans-
fered to a downstream task.

3.3. Downstream task Learning
We next address how to construct models for down-

stream tasks given the diverse ensemble of features F⇤ pro-
duced by pre-training in the previous section. Existing ap-
proaches have concatenated features prior to linear readout
[68], or conducted unweighted averaging of ensemble fea-
tures [45]. We propose to fuse the ensemble via a variant of
stacking [66].

Decoder Design For each feature extractor, f✓i 2 F ,
we follow the standard linear readout approach, and build
a linear model, h(i), parameterised by U

(i) 2 Rk⇥d and
b(i) 2 Rk,

h
(i)(x) = ⇢(U (i)

f✓i(x) + b(i)),

where ⇢ is a transfer function for linear models (e.g., the
softmax function or identity). To produce a final prediction
we fuse the ensemble of classifiers h

(i)(x) by learning a
weight vector, w 2 RN that is used to make a linear com-
bination of their predictions,

h(x) =
NX

i=1

wih
(i)(x).

Decoder Training Strategy For each downstream task
have a collection of data, Dds, which we split into two non-
overlapping subsets, Dtr and Dval. The hyperparameters
of the linear models are tuned using this train–validation
split, and the best model parameters found during this tun-
ing phase are denoted by Ũ

(i) and b̃(i). Each model is re-
trained using the full Dds dataset using the best hyperpa-
rameters to obtain the final values for each U

(i) and b(i).
The procedure used to fit the weights for linearly combining
the models is carried out using the Ũ (i) and b̃(i) parameters,
and w is fit on the Dval set,

w = argmin
v2RN

EDval

2

4
�����

NX

i=1

vi⇢(Ũ
(i)
f✓i(x) + b̃(i))� y

�����

2

2

3

5

(8)
In the following section, we provide theoretical justification
for our proposed downstream architecture and training strat-
egy by way of bounding the generalisation error for down-
stream tasks learned in this way.

3.4. Theoretical Analysis
For ease of exposition, consider the case where ⇢ is the

identity and the underlying problem is binary classification.
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In this case, each U
(i) can be written as a vector, u(i). We

can define the effective hypothesis class of our algorithm
for learning on downstream tasks as

H =

(
x !

NX

i=1

wihu(i)
, f✓i(x)i :

kw � E[w]k2  A, ku(i) � E[u(i)]kF  B

)
,

where we have absorbed the bias values into u by assuming
a 1 has been appended to each x. Our goal is to bound
the generalisation error of models from this class trained
using our stacking procedure in Sec 3.3. The first step is to
bound the empirical Rademacher complexity in terms of A
and B (from the definition of H), the norm of the features,
and the total amount of data available for the downstream
task, m = |Dds|. We then show how the stacking procedure
influences the values of A and B. We use ⌘ to indicate the
fraction of data used for training, hence ⌘m = |Dtr| and
(1� ⌘)m = |Dval|. Our main result in given below.

Theorem 1. For a model trained using our stacking proce-
dure and the conditions outlined in the statements of Lem-
mas 1 and 2, we have with probability at least 1� 2�,

E[1[sgn(h(x)) 6= y]]  Ê[l(h(x), y)]

+
12X3kṼ k2

p
ln(4/�)ln(4N/�)

�1�2
p
1� ⌘m3/2

+
2X2

p
2ln(4N/�)

�1m

+
2X2kṼ k2

p
2ln(4/�)

�2
p
1� ⌘m

+ 3

r
ln(1/�)
2m

,

where Ê[l(h(x), y)] is the mean ramp loss of the model h,
computed on the training data.

Notably, this bound achieves the “fast” rate of conver-
gence, O(m�1), in the complexity terms, with the first term
even exhibiting a super-fast rate of O(m�3/2). This is in
contrast to the standard O(m�1/2) rate in existing bounds.
The proof is in the supplemental material.
Discussion This theorem depends on both the specific ar-
chitecture and optimisation strategy outlined in Sec. 3.3,
and thus provides justification for these design choices. It
says that the generalisation gap between train error and ex-
pected (test) error rapidly goes to zero with the size of the
downstream train set m. Furthermore, because we have ac-
cess to an ensemble of features, the train error êr(h) can
likely be reduced below that of a single feature.

4. Implementation details
Pre-training: We perform supervised training for
ResNet50 and ConvNeXt [42] on ImageNet1K [21] and
contrastive training for ResNet50 on both ImageNet1K and
ImageNet100 [68]. To learn our feature ensemble, in a pa-
rameter efficient way for both architectures, we share the
first three layers (layer1, layer2, layer3 according
to [65]), after which different members of the ensemble
branch out into their own sequence of layers having a sep-
arate layer4 and projection head. We initialise the entire
ensemble with ImageNet pre-trained models in case of su-
pervised pre-training and MoCo pre-trained models in case
of contrastive learning.
Augmentations: For supervised pre-training, most meth-
ods that rely on strong augmentation policies. Our approach
applies the quality loss (Eq. 5) to unaugmented samples
only as using augmented samples for quality maximisation
would lead to typical strong invariance to all augmentations
and prevent diversity. For contrastive learning, we apply
very weak augmentations for instance discrimination.
Learning rates and Optimisers: For supervised pre-
training and contrastive learning experiments, we train the
model for 20 epochs with SGD and AdamW optimizers re-
spectively, along with learning rate warm-up for 5 epochs,
followed by a cosine decay schedule. For supervised pre-
training, we apply label smoothening and perform exponen-
tial moving average (EMA) on the model weights.
Downstream tasks: Our suite of downstream tasks consists
of object recognition, regression, and dense estimation. We
provide more details about downstream tasks in the supple-
mentary material.

• Classification: For classification, we evaluate on stan-
dard benchmarks CIFAR10/100 [36], Caltech101 [26],
Oxford Flowers [47], Stanford Cars [35], Describable
Textures Dataset (DTD) [17], Aircraft [43].

• Regression: We include a set of spatially sensitive
tasks including facial landmark detection on 300W
[1], CelebA [41], human pose estimation in LSP [33]
and MPII [2], Animal Pose prediction [10], ALOI ob-
ject orientation prediction [29], and Causal3DIdent 6D
pose and appearance attribute prediction [60].

• Dense estimation: We also evaluate the QD pre-
trained models on dense estimation tasks like Pascal
VOC object detection using Faster R-CNN [55] with a
Feature Pyramid Network backbone [39] and linear se-
mantic segmentation similar to [4] on CityScapes and
ADE20k [7] datasets.

Downstream evaluation: For classification and regres-
sion tasks, we fit multinomial logistic regression and multi-
output linear regression on the extracted features from each
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Figure 3. Radar plot comparing invariance w.r.t. for 4 Spatial and 4 Appearance based transformations of baseline models (green) and QD
ensemble (dots). The red and blue lines correspond to maximum and minimum invariances within QD ensemble. The blue shaded region
corresponds to the range of invariances spanned by the QD ensemble, which encompasses the (in)variance of the baselines.

Methods CIFAR10 CIFAR100 Flowers Caltech 101 DTD Cars Aircraft 300w LS Pose CelebA Animal Pose MPII ALOI Causal3D Rank

IN
1K

(R
N

50
)

Su
p.

Baseline 90.4 68.2 85.2 84.7 71.9 44.4 36.0 70.2 55.4 49.0 11.2 18.0 24.1 64.1 2.7
Multihead 90.3 67.3 84.8 84.1 69.9 43.2 35.0 68.3 53.2 50.1 10.9 17.0 22.8 62.3 3.7

Div. Ens. [23] 91.6 72.9 84.6 89.3 69.8 42.7 35.3 66.6 52.6 49.2 11.5 17.9 22.6 60.8 3.4
MeTTA [3] 91.0 71.6 85.3 85.1 71.8 41.1 34.0 65.3 52.8 47.9 10.5 16.3 23.1 61.2 3.8

QD4V 90.3 70.4 86.9 89.9 72.2 45.4 36.9 76.6 62.4 61.5 12.5 18.5 28.4 72.8 1.4

M
oC

o MoCo 90.3 70.6 89.8 87.9 73.9 39.3 41.8 87.2 69.0 92.5 13.9 19.9 46.0 78.1 1.9
Fusionx [25] 95.0 – 81.0 86.0 – – – 65.0 68.0 33.0 – – – – –

QD4V 88.9 71.2 85.2 88.2 75.8 41.3 43.9 88.9 71.8 95.2 14.2 22.4 47.4 80.6 1.2

IN
10

0

Su
p. Baseline (CN-T) 89.4 70.6 94.5 89.1 68.0 52.5 48.4 63.1 48.1 52.5 11.5 17.7 8.02 69.4 1.8

QD4V (CN-T) 91.5 72.9 96.5 89.9 69.8 51.5 50.0 82.2 69.9 60.7 12.5 18.5 9.3 71.9 1.1

M
oC

o MoCo 84.6 61.6 82.4 77.3 64.5 33.9 37.2 85.5 58.7 61.0 13.2 18.6 30.9 61.4 3.5
AugSelf⇤ [38] 85.3 63.9 85.7 78.9 66.2 37.4 39.5 77.3 63.9 77.0 12.9 19.5 35.2 61.6 2.4

AI+ [13] 81.3 64.6 81.3 78.4 68.8 38.6 37.3 90.0 65.2 82.0 12.5 21.6 32.7 62.6 2.5
QD4V 84.5 65.4 85.5 81.2 71.9 39.8 37.9 88.9 69.7 85.0 14.3 20.6 33.8 65.3 1.5

Table 1. Downstream performance of ImageNet (IN1K) pretrained (1) Supervised ResNet50, (2) MoCo ResNet50 and ImageNet-100
(IN100) pretrained (3) Supervised ConvNeXt-Tiny (CN-T), (4) MoCo ResNet50. The first seven columns are classification tasks (accuracy,
%); the last seven are regression (R2, %). + numbers from [13] where reported, ⇤ A mix of our runs and numbers from [13] where reported,
x numbers from [25], rest are our runs.

Figure 4. Correlation between our classifier fusion weights (Eq 8) and task for 4 Spatial and 4 Appearance based augmentations. The y-axis
corresponds to Pearson’s r correlation between w assigned to each member by a particular task and invariances exhibited by that member
to specific augmentations. Tasks are grouped by classification and regression, which tend to show different invariance preferences.
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Methods CUB Flowers FC 100 Plant Disease 300w LS Pose CelebA Causal3D Rank
(5, 1) (5, 5) (5, 1) (5, 5) (5, 1) (5, 5) (5, 1) (5, 5) s = 0.05 s = 0.2 s = 0.05 s = 0.2 s = 0.05 s = 0.2 s = 0.05 s = 0.2

Baseline 70.0 90.4 77.3 93.7 53.8 78.7 68.9 88.8 20.5 24.8 46.9 48.5 39.2 41.4 58.9 62.4 2.3
Multihead 69.6 88.2 76.5 92.6 52.9 78.5 68.2 87.3 19.4 24.7 39.3 44.9 39.4 40.8 57.2 61.3 3.5

Div. Ensemble 68.3 88.7 78.4 94.6 54.9 78.1 68.7 91.9 18.1 18.8 35.7 36.8 39.3 39.7 54.7 58.9 3.4
MeTTA 68.4 88.9 77.6 92.3 54.4 72.8 68.7 87.5 18.3 20.3 36.8 37.5 37.2 37.9 49.3 58.6 4.1

Ours 71.4 90.8 73.4 93.2 57.5 76.2 69.4 91.0 37.5 44.9 59.7 60.3 50.5 53.1 60.3 63.4 1.6
MoCo 51.7 69.8 71.8 89.4 54.9 71.0 67.5 85.3 39.9 48.3 59.3 63.1 47.5 59.0 66.7 77.4 1.8
Ours 49.9 74.1 70.4 93.4 50.9 72.9 62.3 89.6 57.3 60.4 62.6 65.6 64.2 64.7 70.3 79.4 1.3

MoCo 41.0 56.9 69.6 76.4 31.7 43.9 65.7 85.0 39.0 50.1 54.2 60.3 40.2 52.3 52.5 57.0 3.7
AugSelf [38] 44.2 57.4 76.0 85.6 35.0 48.8 71.8 87.8 42.0 51.8 53.8 60.1 53.2 66.3 54.4 61.8 2.7

LooC [38] - - 70.9 80.8 - - - - - - - - - - – – –
AI [13] 45.0 58.0 76.7 88.7 37.4 48.4 72.6 89.1 49.2 57.9 55.3 62.0 56.0 76.0 60.2 62.8 1.6

Ours 41.3 56.6 67.8 88.9 39.5 53.7 65.9 88.1 51.1 57.5 58.3 64.8 50.2 57.7 61.8 63.9 1.9
Table 2. Few-shot classification and regression accuracy (%, R2) of our QD ResNet50 ensemble for supervised (top), MoCo pre-trained on
ImageNet (middle) and MoCo pre-trained on ImageNet-100 (bottom). Values are reported with 95% confidence intervals averaged over
2000 episodes on FC100, CUB200, and Plant Disease. (N, K) denotes N-way K-shot tasks. For regression tasks (300w, LS Pose, CelebA,
Causal3D), we report downstream performance for different splits with train proportion given by s.

of the ensemble and then learn a weighted combination
of over all these predictions using linear regression. We
sweep the regularisation parameters for all members for
each downstream dataset based on its validation set. For
dense tasks, we train a decoder head for each member of
the ensemble using default hyperparameters in [67] for ob-
ject detection and [18] for semantic segmentation.

Few-shot downstream tasks: We also evaluate the pre-
trained networks on various few-shot learning benchmarks:
FC100 [49], Caltech-UCSD Birds (CUB200), and Plant
Disease [44]. We also show results for few-shot regres-
sion problems on 300w, Leeds Sports Pose, CelebA, and
Causal3DIdent datasets, where we we repeatedly sampled
5%, and 20% to generate low-shot training sets. For few-
shot classification, we perform logistic regression using the
frozen ensemble and learn episode-wise fusion weights w
the support set itself.

Competitors: All methods are evaluated by readouts on
fixed features. Supervised: Besides conventional super-
vised pre-training (denoted ‘baseline’), we also train a con-
ventional ensemble via a multi-head model (‘multihead’)
that has the same architecture and number of parameters
as our architecture but uses only Lq loss. We also com-
pare with another diverse ensemble strategy [23, 50] (de-
noted ’div ensemble’): to optimises for diversity in terms
of KL between posterior probability of ensemble members.
The idea being that differences in secondary probabilities
are a good measure of diversity. We provide more de-
tails in the supplementary material. Finally, we compare
with a test-time ensemble created by taking a single pre-
trained model and generating different invariances through
test-time mean embeddings [3] (denoted ‘MeTTA’). Con-
trastive: We compare our approach to two state of the
art ensemble based alternatives AugSelf [68], LOOC [38]
and amortised invariances (AI) [13]. Note that unlike other
competitors, AI uses backprop to update the features.

Methods CityScapes ADE20k Pascal VOC Rank
MIoU Acc. MIoU Acc. AP AP50 AP75

Su
p.

Baseline 39.6 82.1 30.4 52.9 48.8 80.3 51.6 2.6
Multihead 35.4 80.3 27.3 51.8 49.8 80.2 50.9 3.9

Div. Ensemble 36.2 82.4 27.6 52.7 50.6 81.9 58.1 2.3
QD4V 41.0 81.7 33.8 54.3 50.8 82.5 58.7 1.3

Baseline (FT) 61.7 94.1 40.1 67.2 55.1 82.8 60.5 2.0
QD4V (FT) 65.2 94.3 42.3 67.4 56.2 84.9 62.9 1.0

M
oC

o.

Baseline 46.3 87.4 35.2 50.4 54.2 81.8 59.9 1.7
QD4V 49.2 88.9 39.0 54.6 53.3 82.2 59.9 1.1

Baseline 34.5 83.4 26.7 40.6 41.2 71.4 42.9 3.0
AugSelf 37.9 84.9 27.3 40.8 43.2 73.4 48.1 1.6
QD4V 36.1 84.9 28.5 41.7 45.9 75.2 48.0 1.3

Table 3. Downstream performance of (1) Frozen supervised (2)
fine-tuned supervised, (3/4) MoCO trained on ImageNet1K/100
model evaluated on semantic segmentation for CityScapes and
ADE20k datasets, and Pascal VOC object detection.

5. Results

Can we successfully learn diverse (in)variance strengths
with QD pre-training? To answer this question, we use the
definition of invariance in Eq. 3 and evaluate the invariances
learned by both default models (i.e., supervised and MoCo)
and members of our QD ensemble for four appearance aug-
mentations (blur, brightness, grayscale, contrast) and four
spatial augmentations (resized crop, horizontal flip, rota-
tion, scale). We compare the invariance strengths learned
by the models via the visualization shown in Figure 3. The
results show that the standard models provide a fixed set of
invariance strengths (green). The members of the QD en-
semble (dots) span a diverse range of invariance strengths
from low (blue) to high-invariance (red), which can be se-
lected downstream by picking among ensemble members.
Does QD4V benefit a set of downstream tasks with di-
verse invariance requirements? Our suite of downstream
tasks is represent a diverse range of objectives with dif-
fering invariance-sensitivity requirements. The ability to
exploit the appropriate (in)variance for each task is cru-
cial to achieving high performance. As discussed earlier,
off-the-shelf models tend towards high-invariance to mul-
tiple factors (Figure 3), which is often effective for object
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Decoder Aircraft Flowers DTD Animal Pose ALOI Causal3D Rank

Su
p. Concat 36.8 85.9 70.9 11.2 26.6 72.9 2.0

Average 33.8 83.4 69.1 9.1 23.7 74.3 2.7
Ours 36.9 86.9 72.2 12.5 28.4 72.8 1.3

M
oC

o Concat 42.0 83.5 72.9 13.7 45.7 80.2 2.2
Average 37.9 83.9 72.0 12.6 42.9 78.1 2.8

Ours 43.9 85.2 75.8 14.2 47.4 80.6 1.0

M
oC

o. Concat 35.9 84.9 68.6 13.8 28.2 65.1 2.0
Average 33.3 77.8 64.6 12.1 25.3 65.0 3.0

Ours 37.9 85.5 71.9 14.3 33.8 65.3 1.0

Table 4. Comparison of our proposed downstream task decoder
with conventional approaches. Top: Supervised/ImageNet 1k pre-
trained. Middle/Bottom: Moco pre-training on ImageNet 1K/100.
Our fusion strategy performs better than learning a classifier over
concatenated features and averaging features of the ensemble.

recognition, but may not be effective for fine-grained tasks
like CelebA facial attributes, or pose and lighting-prediction
tasks like 300W and ALOI/Causal3D.

To evaluate the ability of features to support diverse
downstream tasks, we evaluate the competitors on a range
of tasks likely to exhibit different invariance preferences
in Table 1. Our approach achieves comparable or better
performance than baselines on all tasks against both super-
vised and self-supervised baselines. It has particularly re-
markable improvements in regression tasks such as CelebA
and Causal3D where we see an improvement of 12.5% and
8.5% over supervised pre-training of ResNet50.

To better understand the success of our method, we anal-
yse the weights assigned to each member of the QD ensem-
ble by different downstream tasks. Specifically, we employ
Pearson’s r correlation coefficient between w and the in-
variances learned by the QD ensemble (in Fig 3) as a metric
to measure the strength of the relationship between the two
variables. The resulting correlations are shown in Figure 4
and grouped by classification vs regression tasks. The trend
shows that the spatially sensitive regression tasks tend to
assign lower or negative weights to spatially invariant mod-
els, whereas classification tasks prefer models with gener-
ally stronger invariances. This analysis illustrates how our
framework achieves reliably high performance across the
range of tasks evaluated quantitatively in Table 1 – by en-
abling task-specific invariance preference selection.
Does QD4V benefit few-shot learning tasks? To answer
this question we focused on MoCo-v2 CNN models trained
on ImageNet1K and ImageNet100. For classification tasks,
we followed [38, 68] in sampling C-way K-shot epsiodes
from the target problem and training linear readouts and
learning w for each episode. For regression tasks we repeat-
edly sampled 5%, and 20% to generate low-shot training
sets. From the results in Table 2, QD pre-training usually
performs better than all competitors, with substantial mar-
gins in several cases, especially for pose estimation tasks.
Does QD4V benefit dense estimation tasks? We evaluate
QD pre-training on semantic segmentation on Cityscapes
[19] and ADE20k [7] datasets. We evaluate QD4V by (1)
Freezing the entire backbone and solely train a linear seg-

mentation head and (2) Finetuning the entire backbone. We
report the Mean Intersection over Union (IoU) and average
accuracy for segmentation. Similarly, we also examine the
performance of QD pre-training on Pascal VOC object de-
tection. The results for semantic segmentation and object
detection for frozen features and finetuning in Table 3 show
that QD pre-training generally provides performance gains.
Ablation study for decoders: Finally, we compare our pro-
posed downstream task decoder (Section 3.3) with conven-
tional approaches. The results in Table 4 show that learn-
ing fusion weights using Eq. 8 consistently performs better,
especially for regression tasks than conventional concate-
nation and prediction averaging. Intuitively, this is because
our stacked fusion decoder has the chance for explicit in-
variance weighting. More technically, this is explained by
the fast convergence rate in Theorem 3.4 which shows that
our generalisation gap (between train and test error) tends
to zero much faster than standard linear models as a func-
tion of the amount of training data. (See Supplementary for
further discussion).
How does QD4V compare to large scale pre-trained
models? The seminal CLIP [53] model is highly effective
at various downstream tasks. Table 9 (supplementary) com-
pares CLIP/RN50 to ImageNet1K QD4V/RN50 in terms of
invariances and performance on downstream pose sensitive
tasks. The results show that QD4V substantially outper-
forms CLIP, despite being trained on orders of magnitude
less data - which we attribute to CLIP having learned too
strong spatial and appearance invariances. This shows that
pre-training scale is not a substitute for providing the cor-
rect invariance for the downstream task at hand.

6. Conclusion

We addressed the difficulty of pre-training a model to
achieve high performance on diverse downstream tasks
by introducing the notion of quality-diversity pre-training.
By instantiating diversity optimisation in terms of the
(in)variance properties of a feature extractor, we ob-
tain a compact set of high-quality features with diverse
(in)variance properties. Together with an efficient and ef-
fective fusion strategy, we show strong performance on a
diverse range of downstream tasks including classification,
pose estimation, semantic segmentation, and object detec-
tion. Our approach presents a step towards the vision of a
universal feature representation capable of supporting mul-
tiple vision tasks. In future work we will explore other def-
initions of of behavioural phenotypes in QD4V.
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