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Abstract

Recently, stereo vision based on lightweight RGBD cam-
eras has been widely used in various fields. However, lim-
ited by the imaging principles, the commonly used RGB-D
cameras based on TOF, structured light, or binocular vision
acquire some invalid data inevitably, such as weak reflec-
tion, boundary shadows, and artifacts, which may bring ad-
verse impacts to the follow-up work. In this paper, we pro-
pose a new model for depth image completion based on the
Attention Guided Gated-convolutional Network (AGG-Net),
through which more accurate and reliable depth images can
be obtained from the raw depth maps and the corresponding
RGB images. Our model employs a UNet-like architecture
which consists of two parallel branches of depth and color
features. In the encoding stage, an Attention Guided Gated-
Convolution (AG-GConv) module is proposed to realize the
fusion of depth and color features at different scales, which
can effectively reduce the negative impacts of invalid depth
data on the reconstruction. In the decoding stage, an Atten-
tion Guided Skip Connection (AG-SC) module is presented
to avoid introducing too many depth-irrelevant features to
the reconstruction. The experimental results demonstrate
that our method outperforms the state-of-the-art methods
on the popular benchmarks NYU-Depth V2, DIML, and
SUN RGB-D. https://github.com/htx0601/AGG-Net

1. Introduction
Depth sensing is critical in applications such as au-

tonomous driving [4], robot navigation [22], and scene re-
construction [1]. The commonly used depth sensors include
LiDAR, Time-of-Flight, or binocular camera. However,
most of the acquired depth images will inevitably be ac-
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(a) NYU-Depth V2 (b) DIML (c) SUN RGB-D

Figure 1. Typical raw depth images with invalid data in the popular
benchmark datasets (a) NYU-Depth V2, (b) DIML, and (c) SUN
RGB-D, and the completion results of our method.

companied by many invalid areas caused by weak or direct
reflections, far distance, bright light, and other environmen-
tal noises, as shown in Fig. 1. These invalid data will have
severe diverse impacts on the following process. Therefore,
depth completion has become necessary for most applica-
tions based on depth images.

Although many approaches based solely on raw depth
images have been proposed, their performance is severely
limited because of the absence or uncertainty of invalid
data. Therefore, researchers consider introducing RGB in-
formation to guide the depth completion [7] through two
typical manners. The traditional one fills invalid pixels
based on their valid neighbors according to some given
rules, such as joint bilateral filters [2], fast marching [24],
and Markov random field [16]. However, these methods are
generally not fast nor sufficiently accurate. The other ap-
proach predicts invalid pixels with the deep neural network,
which usually employs an auto-encoder to extract depth and
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color features from the RGB-D data and fuse them to com-
plete depth map [5, 18, 19, 20, 25, 31, 29, 14, 23]. This ap-
proach has shown extraordinary progress compared to the
traditional one and is widely applied in recent works.

However, there are two challenges in the deep learning
approach. Firstly, the vanilla convolution operation treats
all inputs as valid values [30]. The raw depth images con-
tain a lot of invalid values, which can defile the latent fea-
tures extracted by convolution kernels and lead to various
visual artifacts during the reconstruction, such as cavities,
contradiction, and blurred edges. To ameliorate the limita-
tion, partial convolution has been proposed [17] to distin-
guish invalid pixels automatically and calculates the output
based only on valid pixels. Moreover, the output pixel will
be marked as valid if the receptive field contains at least
one valid pixel. This method improves the reliability of the
features, but it still has irreconcilable issues. For instance,
considering a convolution kernel that covers 3x3 pixels, and
no matter how many valid pixels are contained in this re-
gion, the kernel outputs are marked equally valid. Never-
theless, the truth is that the confidence of the outputs is to-
tally different in these cases. Going beyond, Gated Convo-
lution (GConv) and De-convolution (De-GConv) [30] was
proposed, which can learn a gating mask via additional con-
volution kernels to suppress invalid features and strengthen
the reliable ones. These operations are workable in extract-
ing features from raw depth images with invalid pixels but
fail to handle large missing areas, thus their depth comple-
tion results are still not trustworthy. A plausible approach to
complete depth images with big holes is taking both color
and depth information into account.

Here comes another challenge, using color information
for depth completion has both positive and negative effects.
Most existing models implement the fusion of color and
depth by concatenating latent features directly on the bot-
tleneck of the auto-encoder. However, the involvement of
depth-irrelevant color features may mislead the depth pre-
diction results, such as neighboring surfaces in the same
color and planes with rich textures. Therefore, a mecha-
nism of screening the interference from the fusion of depth
and color features certainly benefits the task of depth com-
pletion. Unfortunately, most comparative research has not
addressed this problem.

Based on the above observations, we propose a new
framework for depth completion based on an UNet-like [21]
architecture, in which the depth and color features are ex-
tracted in two parallel encoding branches and then merge
into one branch with skip connections in the decoding stage.
Specifically, the fusion of the two branches is conducted by
stages based on our proposed Attention Guided Gated Con-
volution (AG-GConv), which learns joint contextual atten-
tion from both color and depth values to guide the extraction
of depth features. Furthermore, the Attention Guided Skip

Connection module is designed to filter out irrelevant color
features from the reconstruction of depth. Our main contri-
butions can be summarized as follows:

• We propose a dual-branch multi-scale encoder-
decoder network that combines depth and color fea-
tures to achieve high-quality completion of the depth
image.

• An Attention Guided Gated Convolution (AG-GConv)
module is proposed to alleviate the adverse impacts of
invalid depth values on feature learning.

• A new Attention Guided Skip Connection (AG-SC)
module is presented to reduce the interference from
depth-irrelevant color features to the decoder.

• Experimental results indicate that our model outper-
forms state-of-the-art on three popular benchmarks,
including NYU-Depth V2, DIML and SUN RGB-D
datasets.

2. Related Works
Depth Completion. In recent years, due to the strong

ability of CNN networks on non-linear feature representa-
tion, more and more researchers have gradually changed
their interests in depth completion from hand-crafted fea-
tures to deeply learned features. Cheng et al. [5] proposed
the convolutional spatial propagation network (CSPN), of
which the architecture mainly refers to the UNet [21] and
the ResNet [9]. It generates a long-range context through a
loop operation, thus reducing the loss of details in the recon-
struction. Jaritz et al. [13] proposed an auto-encoder frame-
work modified from the famous NASNet [33] to obtain a
larger receptive field about the input image. Shivakumar et
al. [25] proposed DFuseNet based on the spatial pyramid
pooling module [32, 3] to pull contextual cues separately
from the intensity image and the depth features, and then
fuse them later in the network, which effectively exploits
the latent relationship between the two modalities. Huang
et al. [11] utilizes the self-attention mechanism and bound-
ary consistency schema to improve both the depth boundary
and image quality.

However, modification and optimization of the architec-
ture need to be further investigated. Firstly, the UNet and
the ResNet adopted by CSPN were initially designed for se-
mantic segmentation and image classification, respectively.
Their structures are proved good at catching semantic-aware
features while ignoring detailed regression due to the pool-
ing operation, limiting their ability to predict missing depth
values accurately. Although the multi-scale structure is
adopted on some models like DFuseNet, it is still hard to
recover the information lost in the encoding process, as the
decoding process entirely depends on the bottleneck layer
of the model. Secondly, vanilla convolution cannot handle
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Figure 2. Pipeline of the proposed AGG-Net, where ‘*’ indicates the module we proposed.

the invalid area of the depth image, a new fashion of convo-
lutional operation is desirable to facilitate robust and adap-
tive feature extraction from raw depth images with invalid
pixels. Lee et al. [15] proposed the CrossGuide network,
similar to DFuseNet, and its encoder introduces a sensing
module to learn multi-modal features from the RGB-D data.
Wang et al. [28] designed an RGB-D fusion GAN to prop-
agate the features across color and depth features. In this
work, we design the AG-GConv modules to capture better
depth features in the guidance of color features, especially
for handling large missing areas.

Contextual Attention. The attention mechanism has
been widely used to highlight the essential part of fea-
ture maps in image processing [10], [12]. In the task of
depth completion, a remarkable work named FuseNet [8]
weights the predicted depth maps with both the global and
the local confidence maps based on spatial attention mech-
anism. A beneficial attempt named DeepLidar conducted
by Qiu. [20] learns channel attention to guide the com-
bination of color features and the map of surface normal
vectors. Senushkin et al. [23] proposed a new decoder
modulation branch that controls the depth reconstruction
via SPADE blocks, which modify the spatial distribution
of output signals. We noticed that different feature channels
may have different optimal spatial attention maps, which
requires a new contextual attention mechanism to arrange
different spatial attention patterns for different feature chan-
nels. Therefore, we propose the new modules of AG-GConv
and AG-SC to modulate the fusion of depth and color fea-
tures based on joint contextual attention on both the chan-
nels and spatial locations.

3. Method
The architecture of the AGG-Net proposed for depth

image completion is illustrated from overview to details,
as shown in Fig. 2. The pipeline of the whole model,
our proposed Attention-Guided Gated-Convolution (AG-
GConv) and Attention-Guided Skip-Connection(AG-SC),

and a multi-task loss function are introduced in this section.

3.1. Architecture

Overview. The pipeline of our model comprises two
successive networks: the pre-filling network and the fine-
tuning network. The former takes the raw depth images
with the missing area and the corresponding RGB images as
inputs and provides a complete depth map by filling all the
missing values coarsely through a lightweight autoencoder.
The fine-tuning network employs a dual-branch encoder to
extract features from both depth and color images. Then
it reconstructs the depth images through a multi-scale skip-
connected decoder. Furthermore, the proposed AG-GConv
and the AG-SC modules are embedded into the encoder
and decoder layers, respectively, strengthening the fusion of
the two modalities more reasonably and consequently im-
proving the quality of the reconstructed depth images. The
whole pipeline will be trained in an end-to-end fashion.

Pre-filling. As plotted in Fig. 2, the raw depth image
and the RGB image are directly merged into a four-channel
multi-modal feature tensor fed into a light auto-encoder
with two layers of vanilla convolutions and de-convolutions.
The output of the pre-filling network is used to fill the miss-
ing area of the raw depth image while keeping the valid
depth values unchanged. It is worth noting that the convo-
lutional layers adopt larger-size kernels to ensure that the
receptive fields are big enough to cover most invalid areas.
Therefore, the pre-filling network can provide a coarsely
filled depth image without zero-value pixels.

Fine-tuning. As shown in Fig. 2, the fine-tuning net-
work employs a dual-branch UNet-like structure to recon-
struct the depth maps through feature encoding and decod-
ing. In each encoding layer, different from vanilla convo-
lution or gated convolution [30], the proposed AG-GConv
module gates the depth feature tensor with an element-
wise mask under the guidance of Contextual Attention (CA)
learned based on both depth and color features. In each de-
coding layer, in addition to the De-GConv module [30], the
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Figure 3. Details of VConv, GConv, AG-GConv and CA.

AG-SC module is presented to modulate the skip connec-
tion from a color encoding layer to the corresponding depth
decoding layer, in which a different attention mechanism is
applied to suppress out depth-irrelevant color features.

3.2. Encoding with AG-GConv

Most traditional encoder networks use multilayer vanilla
convolution (VConv) to extract features [30], as shown in
Fig. 3 (a). Unfortunately, the depth maps provided by
the pre-filling network are just filled coarsely. These filled
depth values are unreliable and can be transferred or even
amplified through the fine-tuning network to pollute the re-
construction results. Gated Convolution [30] (GConv) pro-
vides a better solution to this problem, in which a gating
signal is generated to screen out these unreliable features,
as shown in Fig. 3 (b). However, GConv still has some dis-
advantages. On the one hand, it only considers the depth
features but ignores the valuable information hidden in the
color image. On the other hand, it generates the gating sig-
nal based on the features of a small receptive field, which
weaken its ability to fill large holes.

To overcome the above limitations, we propose a new
module named Attention Guided Gated Convolution (AG-
GConv), to modulate the depth features under the guidance
of contextual attention learned from both depth and color
branches. For an AG-GConv module, the input depth and
color features are denoted to Fd and Fc, respectively. Typi-
cally, the size of Fd is H ×W ×C, and Fc is in the size of
H/2×W/2× C ′.

A standard VConv unit contains a 2d-convolutional
layer, a batch normalization layer, and a leakyReLU acti-
vation layer. At first, as shown in Fig. 3 (c), the input depth
feature is transformed into F ′

d ∈ ℜH/2×W/2×C′
through

two successive VConv units with stride=1 and stride=2 re-
spectively. Then we concatenate F ′

d and Fc along the chan-
nel axis into a combined feature tensor Fall = [F ′

d, Fc]

whose size is H/2 × W/2 × 2C ′. Next, we deliver Fall

to a VConv unit with stride=1 to obtain a new feature tensor
F ′
all in the size of H/2×W/2× C ′.

We build the CA module to generate gating signals from
F ′
all by learning the jointly distributed contextual attention

between space and channels. At first, it will be split into
slices S = {si ∈ ℜH/2×W/2|i = 1, .., C ′} along the chan-
nel axis, and then each slice is flattened into a long vector
fi ∈ ℜL, where L = H/2 ×W/2. The proposed CA net-
work consists of two fully-connection layers constructed to
learn the global contextual attention, as shown in Fig. 3
(d). It is worth noticing that all the slices Si of F ′

all share
the same fully-connection layers. Its hidden layer contains
M ReLU neurons (typical M = 4L), and the output layer
contains L Sigmoid neurons. The output vector gi can be
computed as:

gi = ϕca(f i;θca) (1)

where ϕca is the mapping function of the CA network, typ-
ically ReLU function, with the weight parameters θca. The
network considers all spatial positions to evaluate the spa-
tial attention for each specific feature slice. Then the output
vector {gi ∈ ℜL|i = 1, .., C ′} will be reshaped into the
size of H/2 ×W/2 and be packed into a gating tensor Gd

which has the same size as the feature tensor F ′
d. At last,

the output of the AG-GConv module can be obtained by
multiplying the depth feature F ′

d with the gating tensor Gd.

F ′′
d = F ′

d ⊗Gd (2)

where ⊗ denotes the element-wise multiplication between
two tensors and the output F ′′

d of the current AG-GConv
module is sent to the following encoding layer as input.

(a) F ′
d (b) F ′′

d

Figure 4. Visualization of the depth feature maps (a) F ′
d before and

(b) F ′′
d after the modulation of the AG-GConv module.

Motivation analysis. For a raw depth image with large
holes, low-level features for pixels inside the hole are unre-
liable because their neighbors are also invalid. However,
vanilla convolutions cannot distinguish these invalid pat-
terns from normal ones as it implements spatial convolu-
tion over all the areas in exactly the same fashion. Conse-
quently, these unreliable features will diffuse layer-by-layer
and finally degrade the reconstruction results. Although the
GConv can restrict the unreliable features with the gating
signal, which takes only a small neighborhood into account
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Figure 5. Detailed structure of AG-SC and De-GConv.

without considering the large-scale background. That lim-
its the ability to fill large holes in the depth images. Com-
pared to the above two methods, the proposed AG-GConv
considers both depth and color features and produces joint
contextual attention via the fully connected layers over both
space and channels, thus the gating signal is supposed to
have more reliability. As shown in Fig. 4, most scattered
invalid features surrounding the large hole (marked with red
boxes) are eliminated when the proposed AG-GConv is ap-
plied. It means that the filling process is dominated by re-
liable features but not invalid ones, which helps to improve
the quality and reliability of the reconstructed depth image.

3.3. Decoding with AG-SC

Most reconstruction networks realize the decoding pro-
cess with up-sampling and de-convolution. However, the
bottleneck between the encoder and the decoder may lead
to a severe loss of finer-scale features. Thus, skip connec-
tions from the encoder to the decoder are commonly used
to make up features in different scales. In addition, color
features can be beneficial in predicting depth values, which
has been proved by many remarkable works on monocu-
lar depth recovery [31]. Based on the above analyses, we
propose a new decoding scheme as shown in Fig. 5. Each
decoding layer collects features from three inputs: the pre-
vious layer of the depth branch, skip connections from the
depth encoders and the color encoder. Since the depth fea-
ture Fd from the stem and the feature from the skip con-
nection have been modulated through De-GConv and AG-
GConv modules, the proposed AG-SC module is only used
to improve the skip connection from the color branch.

Denoting the features of color skip connection as Fc ,
and the depth features from the previous layer as Rd, they
have the same size of H × W × C. Through a VConv
unit with kernel size = 1× 1 and the other one with kernel

size = 3 × 3, Rd and Fc are transformed to R′
d and F ′

c ,
respectively. As shown in Fig. 5 (a), the AG-SC module
concatenates them into the tensor R′

all = [R′
d;F

′
c] whose

size is H × W × 2C. Then we use it to learn the gating
signal Gc through a VConv unit with an additional ReLU
layer and a Sigmoid layer. At last, the output of the AG-SC
module can be obtained by implementing the element-wise
production according to Eq. 3:

F ′′
c = Fc ⊗Gc (3)

We concatenate Rd, Fd, and F ′′
d to build a combined fea-

ture tensor Sall = [Rd;Fd;F
′′
c ], and feed it into the De-

GConv module [30] to produce the output of the current
decoder layer, as shown as Fig. 5 (b).

Motivation analysis. Considering that there are some
potential correlations between the color and the depth im-
ages of the same scene, using color features to assist depth
prediction is proved to be an effective method for depth
completion. However, the correlation between color and
depth is complex and uncertain. On the boundaries of an ob-
ject, color patterns commonly correlate strongly with depth
variations. Nevertheless, depth generally keeps constant on
a flat surface, while color and texture can change sharply.
If the flat surface is a mirror with strong specular reflection
or a figured blanket with lower reflectance, a large area of
the hole may occur in the corresponding area of the depth
image. In these regions, the color information may mis-
lead the depth prediction severely. The AG-SC module is
proposed to establish a local attention mechanism by learn-
ing the joint distribution of color and depth to suppress the
depth-irrelevant color features in the skip connection and
reduce their adverse effects on the reconstructed depth im-
ages. In the merged tensor Sall, Rd can provide coarser-
scale depth features, Fd from the depth skip connection can
supply finer-scale depth features, and the tensor F ′′

c from
the AG-SC can offer filtered color features. It is conceiv-
able that their integration will still introduce some unreli-
able features. The De-GConv module can partially filter
out these destructive features by multiplying the original
features with the gating signals, guaranteeing better input
for the next decoder layer. In summary, both the proposed
AG-SC and the typical De-GConv serve to refine color and
depth features for depth completion. An ablative study
shows that the integration of the AG-SC and the De-GConv
modules does play a positive role in improving the quality
of the reconstructed depth images.

3.4. Loss Functions

The pipeline is trained in an end-to-end manner under
the guidance of the proposed loss function, which consists
of two terms, as described in Eq. 4:
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Ltotal = λδLδ + λpLp (4)

where Lδ is the Huber loss of the reconstruction error, as
defined as Eq. 5:

Lδ =

M∑
i=1

N∑
j=1

huber
(
d̂i,j , di,j

)
(5)

where d̂i,j is the predicted depth value at the location (i, j),
and di,j is the corresponding ground truth, M and N are
the height and the width of the reconstructed image, with
the value of 5 typically. The Huber loss can provide a ro-
bust measure for pixel-wise reconstructed errors, which in-
creases the ability to handle outliers and leads to higher ac-
curacy predictions.

Lp in Eq. 4 represents the edge persistence loss, which
is defined as:

Lp =

M∑
i=1

N∑
j=1

[
|gv(d̂i,j)− gv(di,j)|

+|gh(d̂i,j)− gh(di,j)|
] (6)

where the functions gv and gh can compute the vertical and
the horizontal gradients of depth images, respectively. It is
easy to understand that the Lp can be used to keep the con-
sistency of boundaries between the reconstructed depth im-
age and the ground truth, which is essential for edge sharp-
ing, spatial structure alignment, and the other downstream
visual tasks. The combination of the Huber loss Lδ and the
edge persistence loss Lp is weighted by λδ and λp jointly,
which are designed to balance the emphases on global con-
sistency and local fidelity.

4. Experiments
4.1. Datasets and Metrics

We adopted popular datasets, including NYU-Depth V2,
DIML, and SUN RGB-D to perform all the experiments.

NYU-Depth V2 [26] is the most commonly used dataset
for depth completion, which contains 1449 sets collected
from 464 different indoor scenes. It can be used as a bench-
mark to evaluate our model and the competing models. We
randomly split the dataset into 420 images for training and
1029 for testing. The original image of size 640 × 480 is
randomly cropped and resized to 324× 288.

DIML [6] is a recently presented dataset consisting of
a series of RGB-D frames captured by the Kinect V2 (in-
door) or the zed stereo camera (outdoor). Except for typical
invalid patterns, it contains many edge shadows and irregu-
lar holes, which can be used to evaluate the adaptation abil-
ity of the models to various invalid patterns. We only use

the indoor part of the dataset, which includes 1609 sets for
training and 503 sets for testing. The original images with
the size of 512× 288 will be randomly cropped and resized
to 320× 192.

SUN RGB-D [27] is a large dataset that contains 10,335
refined RGB-D images captured by four sensors in 19 major
scene categories. It serves as the testing for the generaliza-
tion ability of the models. Following the official scheme,
we used 4845 images for training and 4659 for testing. The
input images of size 730× 530 were randomly cropped and
resized to 384× 288.

Metrics. Three metrics are applied to evaluate the depth
completion results: Root Mean Squared Error(RMSE), ab-
solute Relative error(Rel), and δt, which is the percent-
age of predicted depth pixels falling within the thresholds
t = 1.10, 1.25, 1.252, and 1.253 for finer-grained evalua-
tions.

4.2. Ablation Studies

In this section, we report the results of ablation exper-
iments to analyze the effectiveness of our proposed AGG-
Net framework. At first, experiments on different pipeline
schemes are conducted to validate the contributions of our
work and find the best scheme for the proposed model.
Then a series of analysis experiments are carried out to op-
timize some significant hyper-parameters.

Settings. Our framework is implemented in Pytorch and
trained using the SDG optimizer. We use batch sizes of 8 for
both training and testing experiments. The initial learning
rate is η = 10−2, and it falls to 30% on a plateau until the
minimum value of η = 10−4. The momentum term is 0.95,
and the weight decay term is 10−4. The model’s setting in
the parameters ablation study is m = 3, k = 3, r = 1,
whereas the best setting in other experiments is m = 4, k =
3, r = 4. The weights of the loss in Eq. 4 are empirically set
as λδ = 0.7, λp = 0.3. All the corresponding models are
trained on the NYU-Depth v2 for 120 epochs, and the three
metrics RMSD, Rel, and δt are reported for evaluation.

Scheme Fusion Pre. GC. AG-GC. AG-SC RMSE↓ Rel↓ δ1.10 ↑
A None ✓ 0.136 0.026 96.6
B Concat. ✓ 0.122 0.024 97.0
C Concat. ✓ ✓ 0.115 0.018 97.5
D Guided ✓ ✓ 0.105 0.016 97.6
E Concat. ✓ ✓ ✓ 0.103 0.016 97.8
F Guided ✓ ✓ 0.105 0.016 97.4
G Guided ✓ ✓ ✓ 0.092 0.014 98.3

Table 1. Ablation study results for different schemes of the
pipeline. ‘Fusion’ represents the mode of the fusion between depth
and color.

On pipeline. The pipeline of the baseline framework
is the UNet-like architecture, containing only the branch
of depth with vanilla convolution and skip connections
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(a) Layers’ number m (b) Kernel size k (c) Ratio r of CA
Figure 6. Ablation study of parameters. RSME (left axis, lower the better), REL (middle axis, lower the better) and δ < 1.10 (right axis,
higher the better) w.r.t. (a) Layers’ number m, (b) Kernel size k, and (c) Ratio r for CA.

(Scheme A in Tab. 1). Then a group of ablation experi-
ments is implemented on different schemes of the baseline
model and the proposed modules. In the scheme B, the fu-
sion of depth and color is carried out by concatenating their
feature tensors directly at each encoder layer. The results
show that the addition of color features does benefit a lot
to depth completion. The scheme C adopts the GConv and
De-GConv modules instead of vanilla convolution and de-
convolution, which performs better because the gating sig-
nals can help filter out unreliable features. In the scheme D,
we replace the GConv with our proposed AG-GConv. All
the three metrics are improved significantly because of the
introduction of contextual attention. In the scheme E, we
replace the color skip connection with our proposed AG-
SC module while keeping the GConv and De-GConv mod-
ules. The improved performance proves the contribution
of the proposed AG-SC. In the scheme F, we remove the
Pre-filling module to investigate its effectiveness. At last,
we integrate the Pre-filling, AG-GConv and the AG-SC to-
gether in the scheme G, and all the three measures reach
their top scores, which proves that all the three modules help
the model enhance the performance.

All the above results demonstrate that both the proposed
AG-GConv and the AG-SC contribute to the depth comple-
tion task. The advantages of the AG-GConv over the GConv
originate from the fact that the former can learn contextual
attention for gating signals based on both depth and color
features, while the latter uses only the depth features with
local attention. The improvements caused by the proposed
AG-SC module indicate that purifying color features with
local attention is helpful to the reconstruction of depth im-
ages. Moreover, their combination can further improve the
final performance of our model. The accuracy of the opti-
mal scheme increases significantly compared with the base-
line, and the RMSE and Rel values reduce by around 32.4%
and 46.2%, respectively. According to the results, the opti-
mal scheme of our model is the dual-branch UNet-like ar-
chitecture embedded with the AG-GConv and the AG-SC
modules, as shown in Fig. 2.

On layers. The encoder-decoder architecture can realize
multi-scale feature extraction for image reconstruction, of

which the scale distribution heavily depends on the layers’
number m of the encoder and the decoder. The curves of
RMSE, REL, and δ1.10 are plotted against different layers’
numbers m = 2, 3, 4 and 5, as shown in Fig. 6 (a). It can
be seen that all three measures reach saturation at m = 4,
which is consequently adopted as the default setting of the
layers’ number.

On kernel size. The size of convolutional kernels de-
cides the receptive fields of neurons and gating signals, and
it influences the final performance dramatically. As shown
in Fig. 6 (b), all the three indexes get their tops at k = 3.
It is because those larger receptive fields are more likely to
involve irrelevant depth pixels, especially at the boundaries.
Therefore, we set the kernel size k = 3 for most convolu-
tional layers.

On hidden layer of CA. The number of neurons in the
Contextual Attention module’s hidden layer significantly
influences the capacity of the proposed AG-GConv module.
The ratio r between the input neurons and the hidden-layer
neurons can be regarded as an essential parameter to opti-
mize the final performance of the model. As shown in Fig.
6 (c), where the curves of the three measures are plotted vs.
r = 2, 3, 4, 5, the performance is saturated when the ratio
increases to r = 4. That is why we build the CA module
with 4×H ×W hidden-layer neurons.

Loss RMSE↓ Rel↓ δ1.10 ↑
Lmse 0.104 0.016 97.9
Lδ 0.100 0.015 98.0

Lδ + Lp 0.092 0.014 98.3

Table 2. Ablation study results on different loss functions.

On loss function. Unlike the traditional reconstruction
loss based on the Mean Square Error, we introduce the Hu-
ber loss to accommodate the outlier pixels in the recon-
structed depth images and present the edge persistence loss
to emphasize the boundaries of different surfaces. As shown
in Tab. 2, the Huber loss obtains slight improvements on all
three measures compared with the MSE loss, while adding
the edge persistence loss dramatically improves the perfor-
mance.
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Figure 7. Depth completion comparison results with different methods on DIML.

4.3. Comparison to State-of-the-art

To validate the performance of our proposed AGG-Net,
we compare our method against the classic bilateral filter-
ing method [2], and various latest SOTA work [18, 5, 25,
19, 28, 20] based on deep learning. Our model is imple-
mented by the optimal scheme and parameters based on the
ablation study results. The performance measurements of
the competing models are collected from their original pub-
lications or obtained by applying them to the above three
datasets according to their default settings. All the methods
are trained based on the raw depth map and tested in exactly
the same protocol. The results are shown in Tab. 3.

On NYU-Depth V2. On the most popular bench-
mark NYU-Depth V2, the deep learning models [18, 5, 25,
23, 28] are obviously superior to the traditional Bilateral
method [2] because deep learning is more potent than tradi-
tional image processing techniques in dealing with depth
completion. Among all the learning-based methods, our
model scores the best and wins the second by a large mar-
gin of 33.8% (0.092 vs. 0.139) in RMSE. Our model takes
the top scores of δt, and reaches 100% at the threshold
t = 1.253. For the index of Rel, our model achieves almost
the top score with just 0.001 point behind. Considering that
the NYU-Depth V2 dataset is the most widely used bench-
mark in this field, the corresponding results give confident
evidence that our model outperforms most existing SOTA
works in the average performance. The overall advantage
of our proposed AGG-Net derives from the proposed AG-
GConv and AG-SC modules.

On DIML. As a new dataset, the DIML is characterized
by some novel patterns of invalid areas, including spotted
mass, edge shadows, and large irregular holes. Our model is

Benchmark Method RMSE↓ Rel↓ δ1.25 ↑ δ1.252 ↑ δ1.253 ↑

(a) NYU.

Bilateral [2] 0.532 0.132 85.1 93.5 95.9
Sparse2Dense* [18] 0.230 0.054 94.5 97.3 98.9

CSPN* [5] 0.173 0.020 96.3 98.6 99.5
DfuseNet* [25] 0.156 0.016 98.8 99.7 99.9
DM-LRN [23] 0.205 0.014 98.8 99.6 99.9

RDF-GAN [28] 0.139 0.013 98.7 99.6 99.9
Ours 0.092 0.014 99.4 99.9 100.0

(b) DIML

Bilateral [2] 0.636 0.189 83.0 88.8 92.4
CSPN* [5] 0.162 0.033 96.1 98.7 99.6

DfuseNet* [25] 0.143 0.023 98.4 99.4 99.9
DM-LRN [23] 0.149 0.015 99.0 99.6 99.9

Ours 0.078 0.011 99.6 99.9 100.0

(c) SUN.

Sparse2Dense* [18] 0.329 0.074 93.9 97.0 98.1
CSPN* [5] 0.295 0.137 95.6 97.5 98.4

DeepLidar [20] 0.279 0.061 96.9 98.0 98.4
DM-LRN [23] 0.267 0.063 97.6 98.2 98.7

RDF-GAN [28] 0.255 0.059 96.9 98.4 99.0
Ours 0.152 0.038 98.5 99.0 99.4

Table 3. Quantitative comparison results with other methods on
(a) NYU-Depth V2, (b) DIML, and (c) SUN RGB-D. ‘*’ indicates
that the method is originally designed for sparse depth completion.

compared with the Bilateral and the other three SOTA meth-
ods [5, 25, 23] on the DIML dataset using the same testing
protocol. The results show that our model further improves
the Rel score while maintaining or expanding the advan-
tages on RMSE and δt. We also display several typical im-
ages in the DIML datasets and the corresponding comple-
tion results in Fig. 7. It can be clearly seen that, especially
marked with the red box, our results have more vivid de-
tails, sharper edges, and higher consistency to the GT com-
pared to the competing models, even for those very chal-
lenging cases with large irregular holes and dense speckles.
These results demonstrate that our model has a more ro-
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bust adaptation to various patterns of depth missing, which
is believed to come with the better learning ability of the
proposed AG-GConv and AG-SC modules.

On SUN RGB-D. The experiments on the large-scale
dataset SUN RGB-D are conducted to evaluate the gener-
alization ability of our model. As shown in Tab. 3, our
model vastly outperforms the other SOTA methods in all the
metrics. Especially compared to the latest SOTA method
RDF-GAN which ranks the second, our model improves
the RMSE score by 50% (0.128 vs. 0.256) and the Rel
score by around 40% (0.035 vs. 0.059), respectively. It
is considered that the multi-scale architecture, the fusion of
depth and color, the global contextual attention in the AG-
GConv, and the local attention of the AG-SC module jointly
enhance the generalization ability of our model on a wide
variety of scenes.

All the above experimental results prove that our method
provides a new strong baseline for depth completion. The
proposed architecture, AG-GConv and AG-SC modules
significantly contribute to the promotion of the AGG-Net
model, and make it outperform most existing depth com-
pletion methods on the popular benchmarks and metrics.

5. Conclusion

Our proposed Attention-Guided Gated-convolutional
network (AGG-Net) provides a more robust baseline for
depth completion tasks. It accommodates feature extrac-
tion and depth reconstruction within a dual-branch UNet-
like architecture embedded with the proposed AG-GConv
and AG-SC modules. The proposed AG-GConv can modu-
late the fusion of depth and color features by learning global
contextual attention. In addition, the proposed AG-SC con-
tributes to depth reconstruction by highlighting important
color features while suppressing depth-irrelevant ones. The
experimental results demonstrate that our proposed AGG-
Net outperforms the state-of-the-art methods on the popular
benchmarks NYU-Depth V2, DIML, and SUN RGB-D.
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