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Abstract

Large-scale data from the real-world usually follow a
long-tailed distribution (i.e., a few majority classes occupy
plentiful training data, while most minority classes have
few samples), making the hyperplanes heavily skewed to the
minority classes. Traditionally, reweighting is adopted to
make the hyperplanes fairly split the feature space, where
the weights are designed according to the number of sam-
ples. However, we find that the number of samples in a
class can not accurately measure the size of its spanned
space, especially for the majority class, where the size of
its spanned space is usually larger than the samples’ num-
ber because of the high diversity. Therefore, weights de-
signed based on the samples’ number will still compress
the space of minority classes. In this paper, we reconsider
reweighting from a totally new perspective of analyzing the
spanned space of each class. We argue that, besides statisti-
cal numbers, relations between samples are also significant
for sufficiently depicting the spanned space. Consequently,
we estimate the size of the spanned space for each category,
namely effective area, by detailedly analyzing its samples’
distribution. By treating samples of a class as identically
distributed random variables and analyzing their correla-
tions, a simple and non-parametric formula is derived to
estimate the effective area. Then, the weight simply cal-
culated inversely proportional to the effective area of each
class is adopted to achieve fairer training. Note that our
weights are more flexible as they can be adaptively adjusted
along with the optimizing features during training. Exper-
iments on four long-tailed datasets show that the proposed
weights outperform the state-of-the-art reweighting meth-
ods. Moreover, our method can also achieve better results
on statistically balanced CIFAR-10/100. Code is available
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Figure 1. The effective area and statistical number on CIFAR-100-
LT under the imbalance ratio of 100. We can see that since sam-
ples in “Beaver” are distributed dispersedly with different back-
grounds, viewpoints, and poses, their effective area is larger than
the samples’ number. Whereas, the effective area of “Clock” is
smaller than its number of samples, as samples are highly over-
lapped with limited backgrounds and viewpoints.

at https://github.com/xiaohua-chen/AREA.

1. Introduction

Recently, deep neural networks have achieved great im-
provements on many tasks [16, 23, 55]. Their dramatic per-
formance significantly depends on high-quality annotated
and balanced distributed datasets, such as ImageNet [46]
and COCO [29]. However, data are usually long-tailed in
the real world, where many minority classes occupy a small
number of samples and most samples belong to a few ma-
jority classes. Obviously, majority classes will dominate the
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training, making the hyperplanes heavily skewed to minor-
ity classes [43]. Therefore, it is a serious challenge to train a
classifier with a severely unbalanced dataset [35, 19, 36, 1].

Rebalancing is an intuitive approach for fair training. To
achieve a balanced training set, we can under-sample the
majority classes by randomly discarding some samples, or
over-sample the minority classes by duplicating their sam-
ples [15, 2, 3]. But under-sampling may degrade the per-
formance of majority classes, and over-sampling makes mi-
nority classes easily over-fitted [53, 4, 9]. Although data
augmentation may intuitively diversify minority classes, the
enlarged dataset will tremendously slow down the training
procedure [57, 25, 5]. Besides, the reasonability of the aug-
mented data to a target category requires further discussion.

Compared to rebalancing, reweighting is much more
simple and lightweight, which assigns higher costs to the
loss of minority classes. In reweighting, weights are im-
portant for good performance. Thus, complex re-weighting
methods are designed with sophisticated hyper-parameters,
held-out validation sets, or expensive training procedures
[28, 48, 59]. Usually, weights are devised based on the num-
ber of samples. However, the spanned space of a category
is essentially far more than the statistical number, where the
relation of samples is also significant. Class-Balanced Loss
[9] is the preliminary attempt that considers the samples’
distribution in reweighting. It estimates the size of a cat-
egory with the assumption that each sample is either en-
tirely inside or outside the set of previous data. However,
this strong assumption is difficult to be satisfied, where in-
stances are naturally partially overlapped. For example, the
shape of “Apple” is round, but the color of an instance can
be red, green, or yellow, which leads to partial overlap (i.e.,
sharing the same shape but having different colors).

In contrast to existing work, we consider the size of the
spanned space of a category by detailedly analyzing the
samples’ distribution. We call this size the effective area,
which can be larger than, smaller than, or equal to the num-
ber of samples. If samples are distributed far away from
each other, then the effective area should be larger than the
statistical number. Inversely, when samples are highly over-
lapped, the effective area is smaller. Figure 1 shows the
effective areas on CIFAR-100-LT under the imbalance ra-
tio of 100. We can see that since samples in “Beaver” are
distributed dispersedly with different backgrounds, view-
points, and poses, the effective area (452.43) of “Beaver”
is larger than the samples’ number (415). Whereas, the ef-
fective area (173.10) of “Clock” is less than the number of
samples (179) as samples are highly overlapped because of
the limited backgrounds and viewpoints. While the effec-
tive area of the “Pine tree” is equal to the statistical num-
ber. Therefore, weights designed by inversing the statistical
number will still lead to a biased allocation of the feature
space. For example, the weight ratio of “Beaver” to the

“Pine tree” in the statistical number-based line is (1:12.96).
While it can be (1:14.14) under the effective area. However,
estimating the effective area is unexplored.

In this paper, we propose a simple, elegant, and non-
parametric formula to calculate the effective area for each
category. Thus, our method Adaptive Reweighting based
on the Effective Area (AREA) can achieve better weights
for reweighting. It consists of two stages. In the first stage,
we train a basic feature extractor with the standard cross-
entropy loss. In the second stage, the trained feature extrac-
tor is used to extract features for the training data. Then, for
a category, the correlation coefficient between any two sam-
ples can be calculated, making up its correlation coefficient
matrix R. Subsequently, we compute its effective area with
the derived formula 1/aTRa, where a =

(
1
N , 1

N , ..., 1
N

)
∈

RN×1, N is its statistical number. Finally, the loss for each
category is reweighted by the inversely proportional to its
effective area. Notably, the weights in AREA can be adap-
tively updated during training, since R is calculated with
the optimizing features. Extensive experiments demonstrate
that the proposed AREA can not only greatly improve the
performance on long-tailed datasets, but also promote the
accuracy on balanced datasets.

Our key contributions can be summarized as follows:

• To the best of our knowledge, we are the first to pro-
pose using the effective area instead of the statistical
sample number for reweighting.

• To quantify the effective area of a category, we derive a
simple and non-parametric formula 1/aTRa accord-
ing to the correlation between all its samples.

• By directly assigning the inversely proportional effec-
tive area as the weight for each category, the simply
improved cross-entropy loss can substantially boost
the performance of long-tailed classification.

• The proposed AREA outperforms current state-of-the-
art reweighting methods on four long-tailed datasets.
In addition, it also achieves good improvements on sta-
tistically balanced CIFAR-10/100.

2. Related Work
2.1. Resampling and Data Augmentation

A commonly used strategy to deal with the long-tailed
problem is rebalancing, including under-sampling the ma-
jority categories [20, 2] and over-sampling the minority cat-
egories [47, 2, 3]. However, under-sampling may damage
feature representation by discarding important majority data
[53, 4, 9], while over-sampling may cause over-fitting by
duplicating minority samples.

To alleviate over-fitting, data augmentation is introduced
to enhance the intra-class diversity for minority categories.
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A direct way to synthesize new instances is by combin-
ing several samples from a target class [63, 13]. Similarly,
mixup [57] creates additional samples with a convex com-
bination of two randomly selected images. While, gener-
ative adversarial networks [42, 6] can generate new sam-
ples with the generator. MBJ [30] accumulates jitters to en-
hance the diversity of the minority categories, while CMO
[39] uses the rich context of the majority categories. Never-
theless, with the increasing number of augmented samples,
the training speed is sharply slowed down, especially for
large-scale datasets. Recently, although MetaSAug [25] and
RISDA [5] have been proposed to do implicit augmentation,
the rationality of the augmented data remains an open issue.

2.2. Instance-level and Class-level Reweighting

Another typical strategy is reweighting, which aims
to make the loss of minority categories more impor-
tant, including instance-level and class-level reweighting.
Instance-level reweighting assigns different weights to each
sample. It either requires sophisticated hyper-parameters
(e.g., Focal loss[28], IB[41], and FSR[59]), or a held-out
validation set (e.g., L2RW [44] and Meta-Weight-Net [48]).

Differently, class-level methods are much easy and
lightweight, which assign different weights for each class
to make the hyperplane fairly split the feature space. An
intuitive method is to reweight each class inversely pro-
portional to its statistical number [18, 52]. However, this
strategy performs worse [38, 34] on large-scale long-tailed
datasets since the spanned space of a category is never equal
to its sample number. Therefore, some researchers try to
find complicated relations between weight and number em-
pirically. LDAM [4] introduces a label-distribution-aware
marginal loss based on the statistical numbers to extend the
decision boundary for tail categories. Difficulty-Net [49] in-
novatively proposes using the performance of the model to
predict class-difficulty scores and then dynamically assigns
weights based on the scores instead of statistical numbers.

However, the essential reason for the unsatisfactory per-
formance is that the spanned space of a category is far
more than its statistical number, where the samples’ dis-
tribution is also significant. Class-Balance Loss [9] is pro-
posed to emphasize the effective number of samples based
on a strong assumption that each sample is either entirely
inside the set of previous data or entirely outside. However,
samples from the same category are naturally partially over-
lapped. Therefore, a more effective way to estimate the size
of spanned space for a category by considering its samples’
exhaustive distribution is urgently required.

3. The Adaptive Effective Area

Before diving into the mathematical formulations, we
first give the definition of effective area.

Definition (Effective Area). For a specific category, the
effective area is the size of its spanned space.

Given a long-tail distributed dataset {xi, yi}Ni=1 , where
yi ∈ L = {l1, l2, ..., lC}, C is the number of categories.
Our method contains two stages. In stage-I, we train a basic
classifier with the standard cross-entropy loss. For a sample
xi, we extract its feature fi ∈ R1×d with F (xi,Θf ), where
Θf are parameters of the feature extractor. H is the classi-
fier and Θh are its parameters. During stage-II, we use the
effective area to design the weights of each class to achieve
fair training. In the latent space, we estimate the effective
area of a category by considering the distribution of all its
samples. Specifically, for a category lc, by treating its sam-
ples as identically distributed random variables, we analyze
the variance of its prototype based on sufficient analysis of
the correlation between all its samples. Then, with the as-
sumption of rendering the spanned space of category lc with
virtual independent identically distributed samples, we can
obtain a compact variance. Finally, by comparing these two
variances, a simple and non-parametric formula of the ef-
fective area is derived.

3.1. Variance of the Prototype

To measure the effective area, for a category lc, we
should consider the distribution of all its Nc instances. Ide-
ally, we can collect numerous different instance sets to rep-
resent lc, where each set contains Nc instances belonging to
lc. In this case, instance in the ith position is a random vari-
able sampled from the distribution of lc. Then, its feature
fi is also a random variable. When different Nc instances
are collected, its effective area in the feature space will vary,
and so is its prototype µc. Since the effective area has never
been explored, while µc is maturely defined. Inspired by the
relation of effective sample size and variance of the proto-
type in statistics [45], we use V ar(µc) as a bridge to quan-
tify the Neff . Consequently, we can estimate the effective
area by analyzing the variance of µc. Generally, µc can be
estimated with 1

Nc
f1 + 1

Nc
f2 + · · · + 1

Nc
fNc . If the Nc

samples are independent and identically distributed, then,
the variance of their prototype µc is:

V ar (µc) = V ar

(
1

Nc
f1 +

1

Nc
f2 + · · ·+ 1

Nc
fNc

)
=

1

N2
c

(V ar (f1) + V ar (f2) + · · ·+ V ar (fNc
))

=
1

N2
c

Nc∑
i=1

σ2
fi
.

(1)
Since each fi is a random variable following the distribu-
tion of category lc, each σfi is equal to σc, where σ2

c =

E
[
(fi − µc) (fi − µc)

T
]

denotes the variance of category
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lc. Therefore, we can rewrite Eq.(1) as:

V ar (µc) =
1

N2
c

·
(
Ncσ

2
c

)
=

σ2
c

Nc
. (2)

However, samples from the same class in the real world are
essentially correlated to each other (i.e., non-independent
and identically distributed). So the variance ˆV ar (µc) is:

ˆV ar (µc) = ˆV ar

(
1

Nc
f1 +

1

Nc
f2 + · · ·+ 1

Nc
fNc

)
=

1

N2
c

Nc∑
i

σ2
fi

+
1

N2
c

Nc∑
i,j=1,i̸=j

Cov(fi,fj)

=
1

N2
c

Ncσ
2
c +

Nc∑
i,j=1,i̸=j

Cov(fi,fj)


= aT

c ·Mc · ac,

(3)

where ac =
(

1
Nc

, 1
Nc

, ..., 1
Nc

)
∈ RNc×1, and Mc is the

covariance matrix of all the samples in class lc. The co-
variance between two random variables can be obtained by:

Cov (fi,fj) = E
[
(fi − µc) (fj − µc)

T
]
. (4)

Next, we will review the Pearson correlation coefficient to
reflect the linear correlation between two random variables
fi and fj , which is as follows:

ρfi,fj
=

Cov (fi,fj)

σfi
σfj

=
Cov (fi,fj)

σ2
c

. (5)

With Eq.(5), we can rewrite M ij
c as:

M ij
c = Cov(fi,fj) = ρfi,fj

× σ2
c . (6)

We use Rc to denote the the correlation matrix of
{f1,f2, ...,fNc

}. Since the covariance matrix Mc is σ2
c

times of Rc, we can rewrite Eq.(3) as follows:

ˆV ar (µc) = σ2
c × aT

c Rcac. (7)

3.2. Effective Area Estimation

Inspired by Eq.(2), we want to obtain a compact form
for ˆV ar (µc). Following the assumption that each sample
has the unit volume of 1 [9], and suppose the effective area
is Neff

c , then, we can use Neff
c virtual tangent instances

to render the feature space spanned by Nc real correlational
samples. Figure 2 (a) and (b) show an intuitive geometric
interpretation. In this case, according to Eq.(2), the variance
calculated with these virtual independent instances is:

ˆV ar (µc) =
σ2
c

Neff
c

. (8)

Figure 2. (a) Samples distribution of category “Chimpanzee” in
the metric space with cosine distance. (b) The spanned space of N
real correlational samples in category “Chimpanzee” rendered by
Neff virtual tangent samples. (c) For two samples, the effective
area 1/aTRa degenerates to 2/(1+ρ), where ρ is the correlation
between two samples. When ρ= { 0.5, -0.5, 0 }, the effective area
= { 4/3, 4, 2}, which can be smaller than, larger than, or equal to
the statistical number 2.

The assumption of utilizing Eq.(8) to approximate
Eq.(3) is reasonable. If Nc samples are entirely uncorre-
lated, i.e., they are independent and identically distributed,
then Neff

c = Nc, thus ˆV ar (µc) in Eq.(3) and Eq.(8) all
degrade into V ar(µc) in Eq.(2). When samples are pos-
itively correlated, i.e., Cov(fi,fj) > 0, then ˆV ar(µc)
in Eq .(3) is larger than V ar(µc) in Eq.(2). Accordingly,
Neff

c < Nc, resulting in ˆV ar (µc) in Eq.(8) is also larger
than V ar (µc) in Eq.(2). Inversely, ˆV ar (µc) in both Eq.(3)
and Eq.(8) are smaller than V ar (µc) in Eq.(2).

Since Eq.(7) is rewrited from Eq.(3), then, combining
Eq.(7) and Eq.(8), we can obtain:

σ2
c × aT

c Rcac =
σ2
c

Neff
c

. (9)

Therefore, the expected effective area for category lc is:

Neff
c =

{
1

aT
c Rcac

,∀i ∈ [1, Nc],aci = 1/Nc

}
. (10)

Our effective area can reflect the distribution of samples.
For example, for two samples in a category, Eq.(10) degen-
erates into Neff = 2/(1 + ρ). As shown in Figure 2(c), if
the correlation of the two samples is ρ=0.5, then, the effec-
tive area is 4/3, smaller than 2. While, when the correlation
is ρ=-0.5, the effective area is 4, larger than the number 2.
Note that our Neff

c may not be an integer, which makes the
Neff

c -based reweighting more flexible than Nc.
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4. Training
4.1. Estimation of the Correlation Matrix

According to Eq.(10), we only need to calculate the cor-
relation matrix Rc to obtain the effective area for category
lc. Ideally, if we can sample enough instances for each vari-
able of lc, the correlation ρfi,fj

can be calculated by:
ρfi,fj =

E
[
(fi − µc) (fj − µc)

T
]

√
E
[
(fi − µc) (fi − µc)

T
]√

E
[
(fj − µc) (fj − µc)

T
] .

(11)
However, in reality, it is impossible to collect numerous dif-
ferent instance sets to represent lc, nor can we obtain suf-
ficient instances for the variable in the ith position. There-
fore, in the case of limited samples of each variable, the
correlation between the variables will change, resulting in
an adaptive Rc. During implementation, all we can utilize
is one training dataset, i.e., only one sample is collected at
the corresponding position of each variable. Therefore, we
use the dataset at hand to estimate the Rc of this dataset.

We review the feature centralization of fi and fj , i.e.,
{fi −µc} and {fj −µc}. Then, their cosine similarity is:

cos
(
θ̂
)
=

(fi − µc) (fj − µc)
T√

(fi − µc)(fi − µc)T
√
(fj − µc)(fj − µc)T

=
E
[
(fi − µc) (fj − µc)

T
]

√
E
[
(fi − µc) (fi − µc)

T
]√

E
[
(fj − µc) (fj − µc)

T
] .

(12)
According to Eq.(12), we can see that when there only one
instance is sampled for each variable, the form of correla-
tion calculation is the same with the cosine similarity. Since
it is impossible to obtain the correlation from the training
dataset at hand, we have to use the cosine similarity instead,
which also relates to the spanned space. So we can calcu-
late the correlation matrix Rc with the cosine similarity be-
tween two centralized features. Then, the effective area for
category lc can be obtained with Eq.(10).

4.2. Online Effective Area Approximation

Theoretically, the effective area is calculated with
1/aT

c Rcac. However, it is intractable to estimate it during
implementation in a class-wise manner. There are two main
reasons. Firstly, as the head class is usually large-scale, it
is storage-consuming to maintain high dimensional features
for its numerous samples. Secondly, the batch-wise calcu-
lation for the tail class is more reasonable. As head classes
dominate the training process, features of tail samples are
inaccurate. Then, the class-wise calculation will result in an
inappropriately enlarged Neff for the tail. The batch-wise

Algorithm 1 Effective area calculation in an epoch
Input: Dtrain, and the learned feature extractor Θf ;
Output: {Neff

i }Ci=1;
1: Extract features for all the training samples with Θf ;
2: Calculate the prototype for each category;
3: for b = 1: B do
4: Sample a batch from Dtrain, containing a subset of

categories Lsub.
5: for each lc ∈ Lsub do
6: Calculate each term in Rcb with Eq.(12);
7: Calculate effective area Neff

cb with Eq.(13);
8: end for
9: end for

10: Calculate the effective area for each class with Eq.(14);

calculation can obtain the sub-optimal Neff which is near
the statistical number N for the tail. So it is more reason-
able to calculate the Neff batch-by-batch. The simplified
batch-wise based effective area calculation can be:

Neff
cb = 1/aT

cbRcbacb, (13)

where ∀i ∈ [1, Ncb] , ai
cb = 1/Ncb, Ncb is the number of

samples from class lc in batch b. Note that it is probable that
a batch only contains 1 tail instance, then we set its batch-
wise effective area to 1. Subsequently, we sum the effective
area in all batches to obtain the overall effective area:

Neff
c =

B∑
b=1

Neff
cb , (14)

where B is the number of batches in a training epoch. As
we have mentioned above, the batch-wise effective area of
minority categories is probably to be 1, so their overall ef-
fective area is almost equal to their statistical number N .

4.3. Reweighted Loss Function

When the effective area for each category is obtained,
we can achieve fair training with the simple reweighted loss
function as follows:

LAREA = − 1

N

N∑
i=1

wyi log
ez

yi
i∑C

j=1 e
zj
i

, (15)

where wyi
is the weight for class lyi

, zi = H(fi,Θh) is the
prediction score. For a category lc, we simplify the relation
between its weight wc and the effective area Neff

c as:

wc =
1/Neff

c

ΣC
i=11/N

eff
i

× C. (16)

Our method contains two stages. In stage-I, we train a
basic classifier with the standard cross-entropy loss. In
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Datasets Class Number λ Training Set Min Class Number Max Class Number Test Set

CIFAR-10-LT 10 200, 100, 50, 20, 10, 1 11,203 ∼ 50,000 25 ∼ 500 5,000 10,000
CIFAR-100-LT 100 200, 100, 50, 20, 10, 1 9,502 ∼ 50,000 2 ∼ 500 500 10,000
ImageNet-LT 1,000 256 115,846 5 1,280 50,000
iNaturalist 2018 8,142 500 437,513 2 1,000 24,426

Table 1. Details of CIFAR-10/100-LT, ImageNet-LT, and iNaturalist 2018.

CIFAR-10-LT CIFAR-100-LT

Imbalance ratio λ 200 100 50 20 10 200 100 50 20 10

Cross-Entropy† 65.68 70.36 74.81 82.23 86.39 34.84 38.32 43.85 51.14 55.71

Focal Loss(γ= 0.5)† [28] 64.00 70.23 76.72 82.89 86.81 35.00 38.69 44.12 51.10 55.70
Focal Loss(γ= 1.0)† [28] 65.29 70.38 76.71 82.76 86.66 35.62 38.41 44.32 51.95 55.78
Focal Loss(γ= 2.0)† [28] 64.88 69.59 76.52 83.23 86.32 34.75 38.39 43.70 51.02 55.00
L2RW‡ [44] 66.25 72.23 76.45 81.35 82.12 33.00 38.90 43.17 50.75 52.12
Meta-Weight-Net [48] 68.91 75.21 80.06 84.94 87.84 37.91 42.09 46.74 54.37 58.46
FSR [59] 67.76 - 79.17 - 87.40 35.44 - 42.57 - 55.45

Class-Balanced Loss [9] 68.89 74.57 79.27 84.36 87.49 36.23 39.60 45.32 52.59 57.99
CE-DRW [4] - 76.34 79.97 - 87.56 - 41.51 45.29 - 58.12
CE-DRS [4] - 75.61 79.81 - 87.38 - 41.61 45.48 - 58.11
LDAM [4] - 73.35 - - 86.96 - 39.6 - - 56.91
Meta-Class-Weight ‡[19] 70.66 76.41 80.51 86.46 88.85 39.31 43.35 48.53 55.62 59.58

LDAM-DRW [4] - 77.03 - - 88.16 - 42.04 - - 57.99
FSR-DF [59] 66.15 - 79.78 - 88.15 36.74 - 44.43 - 55.60
IB [41] 73.96 78.26 81.70 85.80 88.25 37.31 42.14 46.22 52.63 57.13

AREA 74.99 78.88 82.68 85.99 88.71 43.85 48.83 51.77 57.02 60.77

Table 2. Accuracy of ResNet-32 on CIFAR-10-LT and CIFAR-100-LT.

stage-II, we update the parameters of the network with the
reweighted loss function in Eq.(15). More details about cal-
culating the effective area are shown in Algorithm 1.

5. Discussion

Rationality of the ρfi,fj
Estimation: Theoretically, if

each sample can be a random variable and their correlation
coefficients can be obtained, then, we can calculate the in-
trinsic effective area for each category (i.e., the spanned size
of a category, which can be estimated with sufficient sam-
ples). Fortunately, it is unnecessary to estimate the intrinsic
effective area in implementation. Since we learn the model
with a specific training dataset, all we have to do is to esti-
mate the spanned space of the currently collected samples
in each category to achieve fair training with this training
set, rather than the original intrinsic effective area of each
category. Therefore, obtaining the practical effective area
depicted by the training set at hand is enough.

Adaptive Updating of the Weights: For a specific cate-
gory, features of its samples are optimized in different train-

ing epochs. Then, the correlation matrix changes with the
optimizing features. Accordingly, the effective area also
varies. Therefore, our weights will be adaptively updated.

6. Experiment

Datasets We conduct our experiments on four long-
tailed datasets: CIFAR-10/100-LT [9], ImageNet-LT [31],
and iNaturalist 20181, and two balanced datasets: CIFAR-
10/100. We set the imbalance ratio λ2 as the ratio of the
sample sizes between the most and least frequent classes
(i.e., λ = Nmax/Nmin). Details are shown in Table 1.
Compared Methods. We compare AREA with the state-of-
the-art reweighting methods. (1) Baseline: Cross-Entropy.
(2) Instance-level reweighting: Focal Loss , L2RW, Meta-
Weight-Net, FSR. (3) Class-level reweighting: Class-
Balanced Loss, LDAM, CE-DRW and Meta-class-Weights.
(4) Hybrid methods, which combine instance-level and
class-level reweighting: LDAM-DRW, IB, and FSR-DF.

1https://github.com/visipedia/inat_comp
2λ = 1 stands for the balanced CIFAR-10/100.
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Note that, the most relevant methods are CE-DRW and
Class-Balanced Loss. CE-DRW is reweighted by invers-
ing the samples’ number N and Class-Balanced Loss is
reweighted by the effective number. In the tables below, “†”
and “‡” indicate the results reported in [9] and [5]. Methods
without “†” and “‡” mean the results from original papers.

6.1. Results on CIFAR-10/100-LT

For CIFAR-10/100-LT, we use ResNet-32 [16] as our
backbone, which is trained 200 epochs by standard SGD
with a momentum of 0.9 and a weight decay 5× 10−4. For
the sake of fairness, we follow LDAM [4] using simple data
augmentation strategies including RandomCrop and Ran-
domHorizontalFlip without extra augmentations. The ini-
tial learning rate is 0.1, and the linear warm-up learning rate
schedule [14] is adopted. Besides, we decay the learning
rate by 0.01 at the 160th epoch and again at 180th epoch.
From the results in Table 2, we can conclude that:

Firstly, compared with the most relevant method CE-
DRW and Class-Balanced Loss, our method outperforms a
large margin by {-, 2.54%, 2.71%, -, 1.15%} and {6.1%,
4.31%, 3.41%, 1.63%, 1.22% } on CIFAR-10-LT under
different λ, respectively. While the improvements are {-
, 7.32%, 6.48%, -, 2.65% } and {7.62%, 9.23%, 6.45%,
4.43%, 2.78%} on CIFAR-100-LT. It shows that consider-
ing the correlation between samples is more reasonable.

Secondly, compared with the best reweighting method
IB, our AREA improves the accuracy by {1.03%, 0.62%,
0.98%, 0.19%, 0.46% } on CIFAR-10-LT and {6.54%,
6.69%, 5.55%, 4.39%, 3.64%} on CIFAR-100-LT, which
illustrates the effectiveness of our method.

Thirdly, the improvements of AREA on CIFAR-100-LT
are more obvious than those on CIFAR-10-LT, and so is
with a higher λ. It shows that AREA is more suitable to deal
with large-scale long-tailed data. The more imbalanced the
data, the better improvements our AREA can achieve.

6.2. Results on ImageNet-LT and iNaturalist 2018

For fairness, we use ResNet-50 as the backbone and train
the network with batch size 256 for ImageNet-LT and iNat-
uralist 2018. The linear warm-up learning rate schedule
is used for them. Concretely, for ImageNet-LT, we train
the model 120 epochs by SGD with a momentum of 0.9
and a weight decay 2 × 10−4. We set the initial learning
rate to 0.1 and decay it by 0.1 at the 60th and 80th epoch.
From the results in Table 3, we can see that the accuracy of
AREA is improved to 49.53%, which is the best among all
the reweighting methods. Besides, it is improved by 8.68%
compared with the Class-Balanced Loss, which shows that
AREA can obtain a much more unbiased classifier by com-
prehensively considering the correlation between samples.

To detailly analyze the results, we further report the ac-
curacy of three groups of categories that contain varied

Method ImageNet-LT

Cross-Entropy‡ 38.88
Focal Loss‡[28] 30.50
Class-Balanced Loss‡[9] 40.85
OLTR‡ [32] 40.36
LDAM‡ [4] 41.86
LDAM-DRW [4] 45.74
Meta-Class-Weight‡ [19] 44.92
NCM [22] 44.30
Decoupling [22] 47.30
AREA 49.53

Table 3. Results on ImageNet-LT.
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Figure 3. Detailed results on ImageNet-LT.

Method iNaturalist 2018

Cross-Entropy‡ 57.30
Focal Loss‡[28] 58.03
Class-Balanced Loss‡[9] 61.12
CE-DRW [4] 63.73
CE-DRS‡ [4] 63.56
LDAM‡ [4] 64.58
LDAM-DRW [4] 68.00
NCM [22] 63.10
Decoupling [22] 67.60
FSR [59] 65.52
IB [41] 65.39
AREA 68.36

Table 4. Results on iNaturalist 2018.

numbers of training data on ImageNet-LT following the re-
search in [31]: Many-shot (>100), Medium-shot (20∼100),
and Few-shot (<20). As shown in Figure 3, our AREA can
achieve good improvements {2.09%, 2.58%, 1.66%} on all
three groups compared with Decoupling, which is also the
two-stage methods. Besides, the AREA can outperform the
CE by a large margin {12.78%, 21.96%} on Medium and
Few, while with a little drop of 3.11% on Many.

For iNaturalist 2018, we train the model by SGD with
a momentum of 0.9 and a weight decay 1 × 10−4. We set
the learning rate initialized to 0.05 and decay it by 0.1 at
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Apple(0.0438/0.0358)

Tulip(3.6517/4.1544)

Figure 4. N -based weights vs Neff -based weights on CIFAR-100-LT with λ=100. The “Original” means N -based weight.

CIFAR100 200 100 50 20 10

AREA-fixed weights 42.23 47.73 50.67 56.58 60.21
AREA 43.85 48.83 51.77 57.02 60.77

Table 5. Adaptively updated vs fixed weights after stage-I.

160th and 180th epoch. As shown in Table 4, our AREA
achieves the best performance of 68.36%. Compared with
the most relevant Class-Balanced Loss and CE-DRW, the
improvements are 7.24% and 4.63%, respectively. It shows
that AREA can better describe the size of categories in the
feature space compared with the statistical number N .

6.3. N-Based Weight vs Neff -Based Weight

To explicitly exhibit the difference between the N -based
weight and the Neff -based weight, we visualize them on
CIFAR-100-LT with λ = 100. The “Original” in figures
means N -based weight. According to the results shown in
Figure 4, we have the following observations:

Firstly, most Neff -based weights are not equal to the
corresponding N -based weights, making up a large over-
all gap. For example, the Neff -based weight of “Tulip”
is 4.1544, which is larger than the N -based weight 3.6517.
For “Apple”, the Neff -based weight is 0.0358, which is
smaller than the N -based weight 0.0438.

Secondly, our Neff -based weights can be adaptively ad-
justed in different training epochs. This is because as the
training procedure proceeded, the features are optimized.
Correspondingly, the correlations of samples are updated,
resulting in adaptive effective areas in different epochs. Al-
though the Neff -based weights in different epochs look
similar in Figure 4, a subtle gap will generate a large weight
ratio change. For instance, the Neff -based weight ratio of
“Tulip/Apple” in epoch 160 is 91.75 (3.67/0.04) and 115.39
(4.154/0.036) in epoch 190. To show the effectiveness of

Method CIFAR-10 CIFAR-100

Cross-Entropy 92.61 68.80
AREA 92.84 (+0.23) 69.70 (+0.90)

Table 6. Results on balanced CIFAR-10/100.

adaptation, we conduct an ablation study in Table 5.
Thirdly, to explicitly explain the effectiveness of AREA

compared with the most relevant CE-DRW, we further an-
alyze the weight ratio of the N -based and Neff -based.
For example, the weight ratio of “Tulip/Apple” in the N -
based line is 83.3721(3.6517/0.0438). However, it can be
115.9137(4.1544/0.0358) under Neff -based, which makes
the classifier give the tail category “Tulip” more attention.
So this improved weight ratio can alleviate the skewness of
the hyperplane to minority categories.

Furthermore, we also visualize the effective area on
CIFAR-100-LT with different λ in the Appendix. It shows
that the Neff of most majority categories are much larger
than the statistical number N because of the high diversity.
More analysis and visualization of the Neff and weights
can be found in the Appendix.

6.4. Results on Balanced CIFAR-10/100

Inevitably, statistically balanced datasets may be imbal-
anced in the feature space. Therefore, we conduct experi-
ments on balanced CIFAR-10/100. The results are shown
in Table 6, we can see that even for the balanced CIFAR-
10/100, our method can achieve improvements of 0.23%,
and 0.90% compared with cross-entropy loss, respectively.

Figure 5 depicts the difference between the Neff -based
and N -based weights on balanced CIFAR-100. To show it
clearly, we reorder the classes according to the Neff -based
weights. We can see that although the N -based weights are
all 1 on the balanced dataset, the Neff -based weights vary
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Rose(1/0.9630)

Beaver(1/1.0353)

Figure 5. N -based vs Neff -based weights.

because of the different sample distributions. For example,
the Neff -based weight of “Beaver” (1.0353) is larger than
its N -based one, while the Neff -based of “Rose” (0.9630)
is smaller than N -based due to the high diversity of its sam-
ples. Details of the experimental settings and analysis of
Neff on balanced CIFAR are provided in the Appendix.

6.5. Combining with SOTA

Our simple and non-parametric AREA is orthogonal to
the SOTA methods based on hybrid rebalancing methods
[61, 58, 37, 17, 49], data augmentations [7, 10, 40], en-
semble [51, 24] and supervised contrastive learning [54, 8,
50, 62, 26]. Although the performance of AREA is not so
good as those methods, which benefit from complex, mul-
tiple models and strong augmentations, our AREA can be
effectively and flexibly plugged into them to achieve further
improvements. We combine it with the current SOTA meth-
ods, i.e., two supervised contrastive methods PaCo [8] and
BCL[62], one ensemble method NCL[24] and one data aug-
mentation method GLMC [10]. They are weighted based
on the samples’ number N and we use effective area Neff

to replace N . The results in Table 7 show that combining
AREA with SOTA methods can achieve better performance.

7. Conclusion and Limitations
In this paper, we have derived a simple and non-

parametric formula to estimate the size of the spanned space
(i.e., the effective area) for a category based on the statisti-
cal number and the relations of its samples. By simply as-
signing the inverse of the effective area for reweighting, our
method has achieved state-of-the-art performance on four
long-tailed datasets compared with other reweighting meth-
ods. Furthermore, it has also shown a good improvement on
balanced datasets, indicating that the statistically balanced
dataset may be imbalanced in the spanned space.

Nonetheless, AREA has some limitations. Firstly, it
is calculated based on high-level representations, so better
representations can further promote the accuracy of effec-
tive area estimation. Secondly, the AREA is designed for
the supervised scenario. Therefore, how to apply it in unsu-
pervised and semi-supervised learning needs to be further

CIFAR-100-LT Reference 100 50 10

Hybrid rebalancing
BBN [61] CVPR20 42.56 47.02 59.12
Difficulty-Net+cRT [49] WACV23 45.41 50.50 60.86
MiSLAS [60] CVPR21 47.00 52.30 63.20
Weight Balancing [1] CVPR22 53.35 57.71 68.67
GML-CE [12] CVPR23 41.06 - -
SuperDisco [11] CVPR23 50.90 57.20 65.90
CR-CE [33] CVPR23 40.50 45.10 57.40

Augmentation
FSA [7] ECCV20 48.51 52.17 65.29
RISDA [5] AAAI22 50.16 53.84 62.38
OPeN [56] ICML22 51.50 56.30 -
CMO [40] CVPR22 47.20 51.70 58.40
GLMC [10] CVPR23 57.11 62.32 72.33

Contrastive learning
SSD [27] ICCV21 46.00 50.50 62.30
PaCo [8] ICCV21 52.00 56.00 64.20
TSC [26] CVPR22 43.80 47.40 59.00
BCL [62] CVPR22 51.93 56.59 64.87

Ensemble
RIDE (3 experts)∗ [51] ICLR21 48.60 51.40 59.80
NCL (ensemble) [24] CVPR22 54.20 58.20 65.55
SHIKE(3E) [21] CVPR23 56.30 59.80 -

AREA

in this paper

48.83 51.77 60.77
PaCo[8]+AREA 52.37 56.58 65.13
BCL[62]+AREA 52.03 56.67 65.01
NCL[24] +AREA 55.17 58.68 65.81
GLMC [10] +AREA 57.95 61.08 73.20

Table 7. Combining AREA with current SOTA methods.

explored. Despite these limitations, we believe that AREA
moves an important step forward to estimate the size of a
category considering its sample distributions, and will in-
spire more talented and interesting work. In the future, we
will work on better representation learning for long-tailed
distribution and consider the possibility to extend AREA in
unsupervised and semi-supervised learning.
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domain-specific transformations for data augmentation. In
NeurIPS, pages 3236–3246, 2017. 3

[43] Jiawei Ren, Cunjun Yu, Shunan Sheng, Xiao Ma, Haiyu
Zhao, Shuai Yi, and Hongsheng Li. Balanced meta-softmax
for long-tailed visual recognition. In NeurIPS, 2020. 2

[44] Mengye Ren, Wenyuan Zeng, Bin Yang, and Raquel Urta-
sun. Learning to reweight examples for robust deep learning.
In ICML, pages 4331–4340, 2018. 3, 6

[45] Christian P Robert, George Casella, and George Casella.
Monte Carlo statistical methods, volume 2. Springer, 1999.
3

[46] Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, San-
jeev Satheesh, Sean Ma, Zhiheng Huang, Andrej Karpathy,
Aditya Khosla, Michael Bernstein, et al. Imagenet large
scale visual recognition challenge. Int. J. Comput. Vis.,
115(3):211–252, 2015. 1

[47] Li Shen, Zhouchen Lin, and Qingming Huang. Relay back-
propagation for effective learning of deep convolutional neu-
ral networks. In ECCV, pages 467–482, 2016. 2

[48] Jun Shu, Qi Xie, Lixuan Yi, Qian Zhao, Sanping Zhou,
Zongben Xu, and Deyu Meng. Meta-weight-net: Learning
an explicit mapping for sample weighting. In NeurIPS, pages
1917–1928, 2019. 2, 3, 6

[49] Saptarshi Sinha and Hiroki Ohashi. Difficulty-net: Learning
to predict difficulty for long-tailed recognition. In WACV,
pages 6433–6442, 2023. 3, 9

[50] Peng Wang, Kai Han, Xiu-Shen Wei, Lei Zhang, and Lei
Wang. Contrastive learning based hybrid networks for long-
tailed image classification. In CVPR, pages 943–952, 2021.
9

[51] Xudong Wang, Long Lian, Zhongqi Miao, Ziwei Liu, and
Stella X. Yu. Long-tailed recognition by routing diverse
distribution-aware experts. In ICLR, 2021. 9

[52] Yu-Xiong Wang, Deva Ramanan, and Martial Hebert. Learn-
ing to model the tail. In NeurIPS, pages 7032–7042, 2017.
3

[53] Tong Wu, Qingqiu Huang, Ziwei Liu, Yu Wang, and Dahua
Lin. Distribution-balanced loss for multi-label classification
in long-tailed datasets. In ECCV, pages 162–178, 2020. 2

[54] Yuzhe Yang and Zhi Xu. Rethinking the value of labels for
improving class-imbalanced learning. In NeurIPS, 2020. 9

[55] Zexian Yang, Dayan Wu, Wanqian Zhang, Bo Li, and Weip-
ing Wang. Handling label uncertainty for camera incremen-
tal person re-identification. In ACM MM, 2023. 1

[56] Shiran Zada, Itay Benou, and Michal Irani. Pure noise to the
rescue of insufficient data: Improving imbalanced classifica-
tion by training on random noise images. In ICML, pages
25817–25833, 2022. 9

[57] Hongyi Zhang, Moustapha Cissé, Yann N. Dauphin, and
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