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Abstract

Panoptic segmentation assigns semantic and instance ID
labels to every pixel of an image. As permutations of in-
stance IDs are also valid solutions, the task requires learn-
ing of high-dimensional one-to-many mapping. As a re-
sult, state-of-the-art approaches use customized architec-
tures and task-specific loss functions. We formulate panop-
tic segmentation as a discrete data generation problem,
without relying on inductive bias of the task. A diffusion
model is proposed to model panoptic masks, with a simple
architecture and generic loss function. By simply adding
past predictions as a conditioning signal, our method is ca-
pable of modeling video (in a streaming setting) and thereby
learns to track object instances automatically. With ex-
tensive experiments, we demonstrate that our simple ap-
proach can perform competitively to state-of-the-art spe-
cialist methods in similar settings. 1

1. Introduction
Panoptic segmentation [30] is a fundamental vision task

that assigns semantic and instance labels for every pixel of

an image. The semantic labels describe the class of each

pixel (e.g., sky, vertical), and the instance labels provides

a unique ID for each instance in the image (to distinguish

different instances of the same class). The task is a combi-

nation of semantic segmentation and instance segmentation,

providing rich semantic information about the scene.

While the class categories of semantic labels are fixed a

priori, the instance IDs assigned to objects in an image can

be permuted without affecting the instances identified. For

example, swapping instance IDs of two cars would not af-

fect the outcome. Thus, a neural network trained to predict

instance IDs should be able to learn a one-to-many map-

ping, from a single image to multiple instance ID assign-

ments. The learning of one-to-many mappings is challeng-

ing and traditional approaches usually leverage a pipeline

of multiple stages involving object detection, segmentation,

† Equal advising.
1Code at https://github.com/google-research/pix2seq

Figure 1: We formulate panoptic segmentation as a con-

ditional discrete mask (m) generation problem for images

(left) and videos (right), using a Bit Diffusion generative

model [12].

merging multiple predictions [30, 34, 66, 40, 14]. Recently,

end-to-end methods [58, 17, 70, 16, 35, 68, 69, 33] have

been proposed, based on a differentiable bipartite graph

matching [7]; this effectively converts a one-to-many map-

ping into a one-to-one mapping based on the identified

matching. However, such methods still require customized

architectures and sophisticated loss functions with built-in

inductive bias for the panoptic segmentation task.

Eshewing task-specific architectures and loss functions,

recent generalist vision models, such as Pix2Seq [10, 11],

OFA [60], UViM [31], and Unified I/O [43], advocate a

generic, task-agnostic framework, generalizing across mul-

tiple tasks while being much simpler than previous models.

For instance, Pix2Seq [10, 11] formulates a set of core vi-

sion tasks in terms of the generation of semantically mean-

ingful sequences conditioned on an image, and they train a

single autoregressive model based on Transformers [55].

Following the same philosophy, we formulate the panop-

tic segmentation task as a conditional discrete data genera-

tion problem, depicted in Figure 1. We learn a generative

model for panoptic masks, treated as an array of discrete

tokens, conditioned on an input image. One can also apply

the model to video data (in an online/streaming setting), by

simply including predictions from past frames as an addi-

tional conditioning signal. In doing so, the model can then

learn to track and segment objects automatically.

Generative modeling for panoptic segmentation is very

challenging as the panoptic masks are discrete/categorical

This ICCV paper is the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it is identical to the accepted version;

the final published version of the proceedings is available on IEEE Xplore.

909



and can be very large. To generate a 512×1024 panoptic

mask, for example, the model has to produce more than 1M

discrete tokens (of semantic and instance labels). This is

expensive for auto-regressive models as they are inherently

sequential, scaling poorly with the size of data input. Dif-

fusion models [50, 23, 51, 52] are better at handling high

dimension data but they are most commonly applied to con-

tinuous rather than discrete domains. By representing dis-

crete data with analog bits [12] we show that one can train

a diffusion model on large panoptic masks directly, without

the need to also learn an intermediate latent space.

In what follows, we introduce our diffusion-based model

for panoptic segmentation, and then describe extensive ex-

periments on both image and video datasets. In doing so we

demonstrate that the proposed method performs competi-

tively to state-of-the-art methods in similar settings, proving

a simple and generic approach to panoptic segmentation.

2. Preliminaries
Problem Formulation. Introduced in [30], panoptic seg-

mentation masks can be expressed with two channels, m ∈
Z
H×W×2. The first represents the category/class label. The

second is the instance ID. Since instance IDs can be per-

muted without changing the underlying instances, we ran-

domly assign integers in [0,K] to instances every time an

image is sampled during training. K is maximum number

of instances allowed in any image (0 denotes the null label).

To solve the panoptic segmentation problem, we simply

learn an image-conditional panoptic mask generation model

by maximizing
∑

i logP (mi|xi), where mi is a random

categorical variable corresponding to the panoptic mask for

image xi in the training data. As mentioned above, panoptic

masks may comprise hundreds of thousands or even mil-

lions of discrete tokens, making generative modeling very

challenging, particularly for autoregressive models.

Diffusion Models with Analog Bits. Unlike autoregres-

sive generative models, diffusion models are more effective

with high dimension data [50, 23, 51, 52] . Training en-

tails learning a denoising network. During inference, the

network generates target data in parallel, using far fewer it-

erations than the number of pixels.

In a nutshell, diffusion models learn a series of state tran-

sitions to transform noise ε from a known noise distribution

into a data sample x0 from the data distribution p(x). To

learn this mapping, we first define a forward transition from

data x0 to a noisy sample xt as follows,

xt =
√

γ(t) x0 +
√
1− γ(t) ε, (1)

where ε is drawn from standard normal density, t is from

uniform density on [0,1], and γ(t) is a monotonically de-

creasing function from 1 to 0. During training, one learns a

neural network f(xt, t) to predict x0 (or ε) from xt, usually

formulated as a denoising task with an �2 loss:

Lx0 = Et∼U(0,T ),ε∼N (0,1),xt
‖f(xt, t)− x0‖2. (2)

To generate samples from a learned model, it starts with a

sample of noise, xT , and then follows a series of (reverse)

state transitions xT → xT−Δ → · · · → x0 by iteratively

applying the denoising function f with appropriate transi-

tion rules (such as those from DDPM [23] or DDIM [51]).

Conventional diffusion models assume continuous data

and Gaussian noise, and are not directly applicable to dis-

crete data. To model discrete data, Bit Diffusion [12]

first converts integers representing discrete tokens into bit

strings, the bits of which are then cast as real numbers

(a.k.a., analog bits) to which continuous diffusion models

can be applied. To draw samples, Bit Diffusion uses a con-

ventional sampler from continuous diffusion, after which a

final quantization step (simple thresholding) is used to ob-

tain the categorical variables from the generated analog bits.

3. Method
We formulate panoptic segmentation as a discrete data

generation problem conditioned on pixels, similar to

Pix2Seq [10, 11] but for dense prediction; hence we coin

our approach Pix2Seq-D. In what follows we first specify

the architecture design, and then the training and inference

algorithms based on Bit Diffusion.

3.1. Architecture

Diffusion model sampling is iterative, and hence one

must run the forward pass of the network many times dur-

ing inference. Therefore, as shown in Fig. 2, we intention-

ally separate the network into two components: 1) an im-

age encoder; and 2) a mask decoder. The former maps raw

pixel data into high-level representation vectors, and then

the mask decoder iteratively reads out the panoptic mask.

Pixel/image Encoder. The encoder is a network that

maps a raw image x ∈ R
H×W×3 into a feature map in

R
H′×W ′×d where H ′ and W ′ are the height and width of

the panoptic mask. The panoptic masks can be the same

size or smaller than the original image. In this work, we

follow [7, 10] in using ResNet [22] followed by trans-

former encoder layers [55] as the feature extractor. To

make sure the output feature map has sufficient resolution,

and includes features at different scales, inspired by U-

Net [23, 45, 47] and feature pyramid network [38], we use

convolutions with bilateral connections and upsampling op-

erations to merge features from different resolutions. More

sophisticated encoders are possible, to leverage recent ad-

vances in architecture designs [20, 41, 25, 71, 26], but this

is not our main focus so we opt for simplicity.
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Figure 2: The architecture for our panoptic mask generation framework. We separate the model into image encoder and mask

decoder so that the iterative inference at test time only involves multiple passes over the decoder.

Algorithm 1 Pix2Seq-D training algorithm.

def train_loss(images, masks):
"""images: [b, h, w, 3], masks: [b, h’, w’, 2]."""

# Encode image features.
h = pixel_encoder(images)

# Discrete masks to analog bits.
m_bits = int2bit(masks).astype(float)
m_bits = (m_bits * 2 - 1) * scale

# Corrupt analog bits.
t = uniform(0, 1) # scalar.
eps = normal(mean=0, std=1) # same shape as m_bits.
m_crpt = sqrt( gamma(t)) * m_bits +

sqrt(1 - gamma(t)) * eps

# Predict and compute loss.
m_logits, _ = mask_decoder(m_crpt, h, t)
loss = cross_entropy(m_logits, masks)

return loss.mean()

Mask Decoder. The decoder iteratively refines the panop-

tic mask during inference, conditioned on the image fea-

tures. Specifically, the mask decoder is a TransUNet [8]. It

takes as input the concatenation of image feature map from

encoder and a noisy mask (randomly initialized or from pre-

vious step), and outputs a refined prediction of the mask.

One difference between our decoder and the standard U-Net

architecture used for image generation and image-to-image

translation [23, 45, 48] is that we use transformer decoder

layers on the top of U-Net, with cross-attention layers to in-

corporate the encoded image features (before upsampling).

3.2. Training Algorithm

Our main training objective is the conditional denoising

of analog bits [12] that represent noisy panoptic masks. Al-

gorithm 1 gives the training algorithm (with extra details

in A), the key elements of which are introduced below.

Analog Bits with Input Scaling. The analog bits are real

numbers converted from the integers of panoptic masks.

Algorithm 2 Pix2Seq-D inference algorithm.

def infer(images, steps=10, td=1.0):
"""images: [b, h, w, 3]."""

# Encode image features.
h = pixel_encoder(images)

m_t = normal(mean=0, std=1) # same shape as m_bits.
for step in range(steps):
# Get time for current and next states.
t_now = 1 - step / steps
t_next = max(1 - (step + 1 + td) / steps, 0)

# Predict analog bits m_0 from m_t.
_, m_pred = mask_decoder(m_t, h, t_now)

# Estimate m at t_next.
m_t = ddim_step(m_t, m_pred, t_now, t_next)

# Analog bits to masks.
masks = bit2int(m_pred > 0)
return masks

When constructing the analog bits, we can shift and scale

them into {−b, b}. Typically, b is set to be 1 [12] but we

find that adjusting this scaling factor has an significant ef-

fect on the performance of the model. This scaling factor

effectively allows one to adjust the signal-to-noise ratio of

the diffusion process (or the noise schedule), as visualized

in Fig. 3. With b = 1, we see that even with a large time

step t = 0.7 (with t ∈ [0, 1]), the signal-to-noise ratio is

still relatively high, so the masks are visible to naked eye

and the model can easily recover the mask without using

the encoded image features. With b = 0.1, however, the

denoising task becomes significantly harder as the signal-

to-noise ratio is reduced. In our study, we find b = 0.1
works substantially better than the default of 1.0.

Softmax Cross Entropy Loss. Conventional diffusion

models (with or without analog bits) are trained with an

�2 denoising loss. This works reasonably well for panop-

tic segmentation, but we also discovered that a loss based

on softmax cross entropy yields better performance. Al-
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b = 1.0

(a) t = 0.1. (b) t = 0.3. (c) t = 0.5. (d) t = 0.7. (e) t = 0.9.

b = 0.1

(f) t = 0.1. (g) t = 0.3. (h) t = 0.5. (i) t = 0.7. (j) t = 0.9.

Figure 3: Noisy masks at different time steps under two input scaling factors, b = 1.0 (top row) and b = 0.1 (bottom row).

Decreasing the input scaling factor leads to smaller signal-to-noise ratio (at the same time step), which gives higher weights

to harder cases.

(a) p = 0.1. (b) p = 0.2. (c) p = 0.3. (d) p = 0.4.

Figure 4: The effect of p on loss weighting for panoptic masks. With p = 0, every mask token is weighted equally (equivalent

to no weighting). As p increases, larger weight is given to mask tokens of smaller instances (indicated by warmer colors).

though the analog bits are real numbers, they can be seen

as a one-hot weighted average of base categories. For ex-

ample, ‘01’ = α0‘00’ + α1‘01’ + α2‘10’ + α3‘11’ where

α1 = 1, and α0 = α2 = α3 = 0. Instead of modeling

the analog bits in ‘01’ as real numbers, with a cross entropy

loss, the network can directly model the underlying distri-

bution over the four base categories, and use the weighted

average to obtain the analog bits. As such, the mask de-

coder output not only analog bits (m_pred), but also the

corresponding logits (m_logits), ỹ ∈ R
H×W×K , with a

cross entropy loss for training; i.e.,

L =
∑

i,j,k

yijk log softmax(ỹijk)

Here, y is the one-hot vector corresponding to class or in-

stance label. During inference, we still use analog bits from

the mask decoder instead of underlying logits for the reverse

diffusion process.

Loss Weighting. Standard generative models for discrete

data assign equal weight to all tokens. For panoptic segmen-

tation, with a loss defined over pixels, this means that large

objects will have more influence than small objects. And

this makes learning to segment small instances inefficient.

To mitigate this, we use an adaptive loss to improve the

segmentation of small instances by giving higher weights

to mask tokens associated with small objects. The specific

per-token loss weighting is as follows:

wij = 1/cpij , and w′
ij = H ∗W ∗ wij/

∑

ij

wij ,

where cij is the pixel count for the instance at pixel location

(i, j), and p is a tunable parameter; uniform weighting oc-

curs when p = 0, and for p > 0, a higher weight is assigned

to mask tokens of small instances. Fig. 4 demonstrate the

effects of p in weighting different mask tokens.

3.3. Inference Algorithm

Algorithm 2 summarizes the inference procedure. Given

an input image, the model starts with random noise as the

initial analog bits, and gradually refines its estimates to be

closer to that of good panoptic masks. Like Bit Diffu-

sion [12], we use asymmetric time intervals (controlled by

a single parameter td) that is adjustable during inference

time. It is worth noting that the encoder is only run once, so

the cost of multiple iterations depends on the decoder alone.

3.4. Extension to Videos

Our image-conditional panoptic mask modeling with

p(m|x) is directly applicable for video panoptic segmen-
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Figure 5: Mask decoder extended for video settings. The

image conditional signal to the mask decoder is concate-

nated with mask predictions from previous frames of the

video.

tation by considering 3D masks (with an extra time dimen-

sion) given a video. To adapt for online/streaming video

settings, we can instead model p(mt|xt,mt−1,mt−k),
thereby generating panoptic masks conditioned on the im-

age and past mask predictions. This change can be eas-

ily implemented by concatenating the past panoptic masks

(mt−1,mt−k) with existing noisy masks, as demonstrated

in Fig. 5. Other than this minor change, the model remains

the same as that above, which is simple and allows one to

fine-tune an image panoptic model for video.

With the past-conditional generation (using the denois-

ing objective), the model automatically learns to track and

segment instances across frames, without requiring explicit

instance matching through time. Having an iterative refine-

ment procedure also makes our framework convenient to

adapt in a streaming video setting where there are strong de-

pendencies across adjacent frames. We expect fewer infer-

ence steps to arrive at good segmentation results when there

are relative small change in video frames, it may be possible

to set refinement steps adaptively across video frames.

4. Experiments

4.1. Setup and Implementation Details
Datasets. For image panoptic segmentation, we conduct

experiments on the two commonly used benchmarks: MS-

COCO [39] and Cityscapes [19]. MS-COCO contains ap-

proximately 118K training images and 5K validation im-

ages used for evaluation. Cityscapes contains 2975 images

for training, 500 for validation and 1525 for testing. We

report results on Cityscapes val set, following most exist-

ing papers. For expedience we conduct most model abla-

tions on MS-COCO. Finally, for video segmentation we use

DAVIS [46] in the challenging unsupervised setting, with

no segmentation provided at test time. DAVIS comprises

60 training videos and 30 validation videos for evaluation.

Training. MS-COCO is larger and more diverse than

Cityscapes and DAVIS. Thus we mainly train on MS-

COCO, and then transfer trained models to Cityscapes

and DAVIS with fine-tuning (at a single resolution). We

first separately pre-train the image encoder and mask de-

coder before training the image-conditional mask genera-

tion on MS-COCO. The image encoder is taken from the

Pix2Seq [10] object detection checkpoint, pre-trained on

objects365 [49]. It comprises a ResNet-50 [22] backbone,

and 6-layer 512-dim Transformer [55] encoder layers. We

also augment image encoder with a few convolutional up-

sampling layers to increase its resolution and incorporate

features at different layers. The mask decoder is a Tran-

sUNet [8] with base dimension 128, and channel multipli-

ers of 1×,1×,2×,2×, followed by 6-layer 512-dim Trans-

former [55] decoder layers. It is pre-trained on MS-COCO

as an unconditional mask generation model without images.

Directly training our model on high resolution images

and panoptic masks can be expensive as the existing ar-

chitecture scales quadratically with resolution. So on MS-

COCO, we train the model with increasing resolutions, sim-

ilar to [53, 54, 24]. We first train at a lower resolution

(256×256 for images; 128×128 for masks) for 800 epochs

with a batch size of 512 and scale jittering [21, 65] of

strength [1.0, 3.0]. We then continue train the model at full

resolution (1024×1024 for images; 512×512 for masks) for

only 15 epochs with a batch size of 16 without augmenta-

tion. This works well, as both convolution networks and

transformers with sin-cos positional encoding generalize

well across resolutions. More details on hyper-parameter

settings for training can be found in Appendix B.

Inference. We use DDIM updating rules [51] for sam-

pling. By default we use 20 sampling steps for MS-COCO.

We find that setting td= 2.0 yields near optimal results.

We discard instance predictions with fewer than 80 pixels.

For inference on DAVIS, we use 32 sampling steps for the

first frame and 8 steps for subsequent frames. We set td= 1
and discard instance predictions with fewer than 10 pixels.

4.2. Main Results

We compare with two families of state-of-the-art meth-

ods, i.e., specialist approaches and generalist approaches.

Table 1 summarizes results for MS-COCO. Pix2Seq-D
achieves competitive Panoptic Quality (PQ) to state-of-the-

art methods with the ResNet-50 backbone. When compared

with other recent generalist models such as UViM [31], our

model performs significantly better while being much more

efficient. Similar results are obtained for Cityscape, the de-

tails of which are given in Appendix C.

Table 2 compares Pix2Seq-D to state-of-the-art methods

on unsupervised video object segmentation on DAVIS, us-

ing the standard J&F metrics [46]. Baselines do not in-
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Method Backbone # of Params PQ PQthing PQstuff

Specialist approaches:
MaskFormer [17] ResNet-50 45M 46.5 51.0 39.8

K-Net [70] ResNet-50 - 47.1 51.7 40.3

CMT-DeepLab [68] ResNet-50 - 48.5 - -

Panoptic SegFormer [35] ResNet-50 51M 49.6 54.4 42.4

Mask2Former [16] ResNet-50 44M 51.9 57.7 43.0

kMaX-DeepLab [69] ResNet-50 57M 53.0 58.3 44.9

DETR [7] ResNet-101 61.8M 45.1 50.5 37.0

Mask2Former [13] Swin-L 216M 57.8 - -

kMaX-DeepLab [69] ConvNeXt-L 232M 58.1 64.3 48.8

MasK DINO [33] Swin-L 223M 59.4 - -

Generalist approaches:
UViM [31] ViT 939M 45.8 - -

Pix2Seq-D (steps=5) ResNet-50 94.5M 47.5 52.2 40.3

Pix2Seq-D (steps=10) ResNet-50 94.5M 49.4 54.4 41.9

Pix2Seq-D (steps=20) ResNet-50 94.5M 50.3 55.3 42.9

Pix2Seq-D (steps=50) ResNet-50 94.5M 50.2 55.1 42.8

Table 1: Results on MS-COCO. Pix2Seq-D achieves competitive results to state-of-the-art specialist models with ResNet-50

backbone.

Method Backbone J&F J -Mean J -Recall F -mean F -Recall

Specialist approaches:
RVOS [56] ResNet-101 41.2 36.8 40.2 45.7 46.4

STEm-Seg [3] ResNet-101 64.7 61.5 70.4 67.8 75.5

MAST [32] ResNet-18 65.5 63.3 73.2 67.6 77.7

UnOVOST [44] ResNet-101 67.9 66.4 76.4 69.3 76.9

Propose-Reduce [37] ResNeXt-101 70.4 67.0 - 73.8 -

Generalist approaches:
Pix2Seq-D (ours) ResNet-50 68.4 65.1 70.6 71.7 77.1

Table 2: Results of unsupervised video object segmentation on DAVIS 2017 validation set.

clude other generalist models as they are not directly appli-

cable to the task. Our method achieves results on par with

state-of-the-art methods without specialized designs.

4.3. Ablations on Training

Ablations on model training are performed with MS-

COCO dataset. To reduce the computation cost while still

be able to demonstrate the performance differences in de-

sign choices, we train the model for 100 epochs with a batch

size of 128 in a single-resolution stage (512×512 image

size, and 256×256 mask size).

Input Scaling of Analog Bits. Table 3 shows the de-

pendence of PQ results on input scaling of analog bits. The

scale factor of 0.1 used here yield results that outperform

the standard scaling of 1.0 in previous work [12].

Loss Functions. Table 4 compares our proposed cross

entropy loss to the �2 loss normally used by diffusion mod-

els. Interestingly, the cross entropy loss yields substantial

gains over �2.

Loss weighting. Table 5 shows the effects of p for loss

Input scaling 0.03 0.1 0.3 1.0

PQ 40.8 43.9 38.7 21.3

Table 3: Ablation on input scaling

Loss function �2 Regression Cross Entropy

PQ 41.9 43.9

Table 4: Ablation on loss function.

Loss weight p 0 0.2 0.4 0.6

PQ 40.4 43.9 43.7 41.3

Table 5: Ablation on loss weighting.

weighting. Weighting with p = 0.2 appears near optimal

and clearly outperforms uniform weighting (p = 0).

4.4. Ablations on Inference

Figure 6 explores the dependence of model performance

on hyper-parameter choices during inference (sampling),
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(a) (b) (c)

Figure 6: Inference ablations on MS-COCO.

Figure 7: Effect of inference steps on DAVIS. Left: we vary

the number of steps for the 1st frame while using a fixed

of 8 steps for the remaining frames. Right: we use 8 steps

for the 1st frame, while varying the number of steps for the

remaining frames. The first frame requires more inference

steps due to the cold start.

namely, the number of inference steps, time differences and

threshold on the minimum size of instance regions, all on

MS-COCO. Specifically, Fig. 6a shows that inference steps

of 20 seems sufficient for near optimal performance on MS-

COCO. Fig. 6b shows that the td parameter as in asymmet-

ric time intervals [12] has a significant impact, with inter-

mediate values (e.g., 2-3) yielding the best results. Fig. 6c

shows that the right choice of threshold on small instances

leads to small performance gains.

Figure 7 shows how performance varies with the number

of inference steps for the first frame, and for the remain-

ing frames, on DAVIS video dataset. We find that more

inference steps are helpful for the first frame compared to

subsequent frames of video. Therefore, we can reduce the

total number of steps by using more steps for the first frames

(e.g., 32), and fewer steps for subsequent frames (e.g., 8).

It is also worth noting that even using 8 steps for the first

frame and only 1 step for each subsequent frame, the model

still achieves an impressive J&F of 67.3.

4.5. Case study

Figure 8, 9 and 10 show example results of Pix2Seq-D
on MS-COCO, Cityscape, and DAVIS. One can see that our

model is capable of capturing small objects in dense scene

well. More visuslizations are shown in Appnedix E.

5. Related Work
Image Panoptic Segmentation. Panoptic segmentation,

introduced in [30], unifies semantic segmentation and in-

stance segmentation. Previous approaches to panoptic seg-

mentation involve pipelines with multiple stages, such as

object detection, semantic and instance segmentation, and

the fusion of separate predictions [30, 34, 66, 40, 14, 7].

With multiple stages involved, learning is often not end-

to-end. Recent work has proposed end-to-end approaches

with Transformer based architectures [58, 17, 70, 16, 35, 68,

69, 33], for which the model directly predicts segmentation

masks and optimizes based on a bipartite graph matching

loss. Nevertheless, they still require customized architec-

tures (e.g., per instance mask generation, and mask fusion

module). Their loss functions are also specialized for opti-

mizing metrics used in object matching.

Our approach is a significant departure to existing meth-

ods with task-specific designs, as we simply treat the task

as image-conditional discrete mask generation, without re-

liance on inductive biases of the task. This results in a sim-

pler and more generic design, one which is easily extended

to video segmentation with minimal modifications.

Video Segmentation. Among the numerous video seg-

mentation tasks, video object segmentation (VOS) [46, 61]

is perhaps most canonical task, which entails the segmenta-

tion of key objects (of unknown categories). Video instance

segmentation (VIS) [67] is similar to VOS, but requires

category prediction of instances. Video panoptic segmen-

tation (VPS) [28] is a direct extension of image panoptic

segmentation to the video domain. All video segmentation

tasks involve two main challenges, namely, segmentation

and object tracking. And like image segmentation, most

existing methods are specialist models comprising multi-

ple stages with pipe-lined frameworks, e.g., track-detect

[67, 57, 36, 6, 44], clip-match [3, 5], propose-reduce [37].

End-to-end approaches have also been proposed recently

[62, 29], but with a specialized loss function.

In this work we directly take the Pix2Seq-D model,

pretrained on COCO for panoptic segmentation, and fine-

tune it for unsupervised video object segmentation (UVOS),

where it performs VOS without the need for manual ini-

tialization. Model architectures, training losses, input aug-

mentations and sampling methods all remained largely un-

changed when applied to UVOS data. Because of this, we

believe it is just as straightforward to apply Pix2Seq-D to

the other video segmentation tasks as well.

Others. Our work is also related to recent generalist vi-

sion models [10, 11, 60, 31, 43] where both architecture and

loss functions are task-agnostic. Existing generalist models

are based on autoregressive models, while our work is based

on Bit Diffusion [12, 23, 50, 51]. Diffusion models have
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Image Prediction Groundtruth

Figure 8: Predictions on MS-COCO val set.

Image Prediction Groundtruth

Figure 9: Predictions on Cityscapes val set.

Figure 10: Predictions on DAVIS val set.

been applied to semantic segmentation, directly [1, 64, 27]

or indirectly [4, 2]. However none of these methods model

segmentation masks as discrete/categorical tokens, nor are

their models capable of video segmentation.

6. Conclusion and Future Work
This paper proposes a simple framework for panoptic

segmentation of images and videos, based on conditional

generative models of discrete panoptic masks. Our ap-

proach is able to model large number of discrete tokens (106

in our experiments), which is difficult with other existing

generative segmentation models. We believe both the archi-

tecture, modeling choices, and training procedure (includ-

ing augmentations) we use here can be further improved

to boost the performance. Furthermore, the required infer-

ence steps can also be further reduced with techniques like

progressive distillation. Finally, we want to note that, as

a significant departure to status quo, we acknowledge that

our current empirical result is still behind compared to well-

tuned pipelines in existing systems (though our results are

still competitive and at a practically usable level). How-

ever, with the simplicity of the proposed approach, we hope

it would spark future development that drives new state-of-

the-art systems.
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