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Abstract

Albeit the notable performance on in-domain test points,
it is non-trivial for deep neural networks to attain satis-
factory accuracy when deploying in the open world, where
novel domains and object classes often occur. In this pa-
per, we study a practical problem of Domain Generaliza-
tion under Category Shift (DGCS), which aims to simulta-
neously detect unknown-class samples and classify known-
class samples in the target domains. Compared to prior DG
works, we face two new challenges: 1) how to learn the con-
cept of “unknown” during training with only source known-
class samples, and 2) how to adapt the source-trained
model to unseen environments for safe model deployment.
To this end, we propose a novel Activate and Reject (ART)
framework to reshape the model’s decision boundary to ac-
commodate unknown classes and conduct post hoc modifi-
cation to further discriminate known and unknown classes
using unlabeled test data. Specifically, during training, we
promote the response to the unknown by optimizing the un-
known probability and then smoothing the overall output
to mitigate the overconfidence issue. At test time, we in-
troduce a step-wise online adaptation method that predicts
the label by virtue of the cross-domain nearest neighbor
and class prototype information without updating the net-
work’s parameters or using threshold-based mechanisms.
Experiments reveal that ART consistently improves the gen-
eralization capability of deep networks on different vision
tasks. For image classification, ART improves the H-score
by 6.1% on average compared to the previous best method.
For object detection and semantic segmentation, we estab-
lish new benchmarks and achieve competitive performance.

1. Introduction
Deep neural networks have achieved unprecedented suc-

cess in a myriad of vision tasks over the past decade. De-
spite the promise, a well-trained model deployed in the open
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Figure 1. DGCS in image classification and object detection tasks.

and ever-changing world often struggles to deal with the
domain shifts—the training and testing data do not follow
the independent and identically distributed (i.i.d) assump-
tion, and therefore deteriorates its safety and reliability in
many safety-critical applications, such as autonomous driv-
ing and computer-aided disease diagnosis. This gives rise to
the importance of Domain Generalization (DG) [101, 83],
a.k.a. out-of-distribution (OOD) generalization, which aims
at generalizing predictive models trained on multiple (or a
single) source domains to unseen target distributions.

In order to unearth domain-agnostic knowledge and al-
leviate domain-specific components, a plethora of DG al-
gorithms have been proposed, spanning invariant risk min-
imization [2, 1], augmentation [81, 87, 105, 9], feature dis-
entanglement [63, 49, 93], meta-learning [43, 44, 21], to
name a few. Among them, a common assumption is that
the label spaces of source and target domains are identi-
cal, which may not always hold in practice. Suppose that
we wished to deploy modern vision systems to recognize
objects in an autonomous vehicle. When only the environ-
ment (e.g., weather and illumination) and appearance (e.g.,
size and viewpoint) of previously seen objects can change,
principled approaches are capable of correcting for the po-
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tential shifts on the fly. But what if the sudden arrival of
new objects in an ever-changing world? Most existing DG
methods will break and may even result in catastrophe, rais-
ing strong concerns about model reliability. Although sev-
eral prior arts [71, 106] have explored the open DG sce-
narios, the “adaptivity gap” [22] between training and test
distributions still hinders safe deployment of source-learned
models [30].

To this premise, we challenge the status quo by raising
an open question: can deep models learn what they don’t
know during training and subsequently adapt to novel envi-
ronments at test-time for safe model deployment? Thus, we
consider a more realistic scenario namely Domain General-
ization under Category Shift (DGCS) (see Fig. 1), wherein
the source-trained model is expected to simultaneously de-
tect unknown-class samples and categorize known-class
samples under the presence of domain shifts. The core chal-
lenges are: (i) no unknown-class data is available in train-
ing and (ii) the mixture of domain and label shifts during
test time. In this paper, we present a simple yet effective
framework—Activate and RejecT (dubbed ART), which re-
shapes the model’s decision boundary to accommodate un-
known classes and adjusts the final prediction to reconcile
the intrinsic tension between domain and label shifts. ART
encapsulates two key components: (i) Unknown-aware Gra-
dient Diffusion (UGD) to make the classifier give response
to unknown dimension and smooth the decision boundary
to mitigate overconfidence; (ii) Test-time Unknown Rejec-
tion (TUR) to conduct post hoc modification to the learned
classifier’s final predictions, making the decision bound-
aries of different classes closer to the well-behaved case.

Specifically, the logit of unknown class is activated by
minimizing the negative log-likelihood regarding unknown
probability. However, we find that the learned probability
will be suppressed due to the overconfidence w.r.t. known
classes. Thus, we introduce a smoothed cross-entropy loss
to promote the response to the unknown by adding the
penalty on theL2 norm of the logits and using a temperature
scaling parameter, where the former mitigates the excessive
increase of the logit norm while the latter magnifies the ef-
fect of logit penalty. Due to the unavailability of real target
data in training, the source-trained decision boundaries be-
tween known and unknown classes may still be ambiguous.
Therefore, TUR refines the source-trained classifier using
unlabeled test data in an online adaptation manner. To be
specific, TUR first determines if the input belongs to known
classes or not via a cross-domain nearest neighbor search,
based on prototype information and cyclic consistent con-
straint; otherwise, the prediction will be made by a paral-
lel module that measures the input’s similarity with a set
of dynamically-updated target prototypes. TUR is training-
free (no backward passes) and does not rely on threshold-
based criteria nor impose any distributional assumptions.

Our key contributions are summarized as follows:
• We study a challenging DG problem (DGCS) and pro-

pose a principled framework (ART) to jointly consider
domain shift, label shift, and adaptivity gap.

• We propose an unknown-aware training objective to
activate the unknown’s logit and alleviate the overcon-
fidence issue, and an online adaptation strategy to per-
form post hoc modification to the learned classifier’s
prediction at test-time without additional tuning.

• Extensive experiments show that ART achieves supe-
rior performance on a wide range of tasks including
image classification, object detection, and semantic
segmentation. In particular, on four image classifica-
tion benchmarks (PACS, Office-Home, Office-31, and
Digits), ART improves the H-score by 6.1% on average
compared to the previous best method.

2. Related Works
Domain Generalization (DG). The objective of DG is
to learn representations that are independent of domain-
specific factors and thus can extrapolate well to unseen test
distributions. This is typically achieved by invariant learn-
ing and robust learning. Current approaches can be broadly
categorized into feature matching [45, 54, 107, 12], de-
composition [66, 63, 17, 53, 72, 49, 93, 100], augmenta-
tion [80, 102, 103, 87, 56, 105, 86, 96, 13, 6], and meta-
learning-based [43, 46, 44, 21, 15] approaches. To adapt
to complex real-world applications, very recently, several
works [71, 106, 91] consider the existence of both known
and unknown classes in new DG settings, such as open
DG [71] open-set DG (OSDG) [106]. Shu et al. [71]
assume that both source and target domains have differ-
ent label spaces and introduce novel augmentation strate-
gies to augment domains on both feature- and label-level.
Zhu et al. [106] generate auxiliary samples via an adversar-
ial data augmentation strategy [81] and enhance unknown
class identification with multi-binary classifiers. Yang et
al. [91] introduce an additional CE loss based on the as-
sumption that any non-ground-truth category can be viewed
as unknown categories. However, these works rely on ad-
ditional training modules and heuristic thresholding mech-
anism [106] or impose a strong distributional assumption of
the feature space regarding known and unknown data [91].
In addition, Dubey et al. [22] reveal that there will always be
an “adaptivity gap” when applying the source-learn model
to target domains without further adaptation. How to endow
the source model with the capability of identifying unseen
open classes and safely adapting the learned classifier to un-
labeled test samples is yet to be thoroughly studied.

Domain Adaptation (DA). DA [59, 52, 25, 10, 8] aims
to improve the performance of the learned model on the tar-
get domain using labeled source data and unlabeled target
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Figure 2. Toy example illustrating the decision boundaries learned by different methods. We generate isotropic Gaussian blobs with 4
classes. Red, green, and blue points indicate the known-class samples. Black points denote unknown-class samples, which are unavailable
during training. (a) Train with standard CE loss, i.e., vanilla (|Cs|+1)-way classifier in DGCS. (b) Train with our unknown activation loss
LUA. (c) Train with full UGD loss LUGD. (d) The result of ART (UGD + TUR). This figure is best seen in color.

data. In addition to the close-set setting, many new and
practical DA paradigms have been proposed, such as par-
tial [94, 5], open-set [60, 69, 38, 4, 7, 50], universal [92, 68],
and source-free [85, 89, 20, 97, 90]. In particular, open-set
DA (OSDA) and source-free DA (SFDA) are closely related
to the problem explored in this paper.

Test-Time Adaptation (TTA). For DG, due to the inac-
cessibility of target data during training, it is natural to solve
the adaptivity gap [22] with TTA strategies. Adaptive meth-
ods [47, 76, 82, 35, 61, 11, 95, 14] have been proposed
to refine the matching process between target test data and
source-trained models in an online manner, i.e., all test data
can be accessed only once. Tent [82] proposes to reduce
the entropy of model’s predictions on test data via entropy
minimization. T3A [35] introduces a training-free approach
by classifying each test sample based on its distance to a
dynamically-updated support set. Despite the promising re-
sults on closed-set classes, these approaches fail to deal with
open-set samples and thus lead to semantic mismatching.

Out-of-Distribution Detection (OD). A separate line of
work studies the problem of OD [88], which aims to identify
novel examples that the network has not been exposed to at
the training phase. Mainstream OD methods are devoted to
design OOD scoring functions, e.g., confidence-based ap-
proaches [3, 31, 32], distance-based score [41, 70, 75], and
energy-based score [51, 73]. The main difference between
OD and our problem is that the former is a binary classifica-
tion problem and does not account for the domain and label
shifts between training and test data at the same time.

Discussion. We provide a comparison of the problem set-
tings among different methods in Tab. 1. OSDA and SFDA
optimize offline with target data and specific learning ob-
jectives, while ART only adjusts the classifier in an online

Table 1. Comparison of different problem settings. (Xs, Ys) and
Xt are the labeled source and unlabeled target data respectively.
Fine-tune means to update the model’s parameters. Adjustment
means making post-hoc modifications to the model’s predictions.

Problem Setting Training Test-time

Data Domain Shift Open Class Fine-tune Adjustment

OD [31, 74] Xs, Ys % ! % %

OSDA [69, 4] Xs, Ys, Xt ! ! % %

SFDA [92, 97] Xs, Ys, Xt ! % ! %

TTA [76, 82, 95] Xs, Ys ! % ! !

OSDG [106, 91] Xs, Ys ! ! % %

Ours Xs, Ys ! ! % !

manner. TTA usually needs to update the trained model’s
parameters (e.g. entropy minimization [82, 95]) and a batch
of data, while our TUR is fully training-free and can be per-
formed on single test samples. These promising properties
make the proposed approach more suitable for DG. Com-
pared to OSDG, our setting allows training-free test-time
adjustment for adapting source-trained models to novel en-
vironments, largely mitigating the potential adaptivity gap.

3. Methodology

3.1. Preliminary and Motivation

Notation. In DGCS, we have a single source domain
Ds = {(xis, yis)}

ns
i=1 of ns labeled samples and multiple (or

a single) unseen target domains Dt = {D1
t , ...,DM

t }, where
M ≥ 1 and Dm

t = {(xjt , y
j
t )}

nm
t

j=1. Ds and Dt are sampled
from probability distributions ps(x, y) and pt(x, y) respec-
tively. DGCS jointly considers two distribution shifts: (i)
class-conditional shift where ps(y|x) ̸= pt(y|x), and (ii)
label shift where ps(y) ̸= pt(y). Specifically, assume that
Cs and Ct are the source and target class sets, respectively.
DGCS dictates Cs ⊂ Ct and Cu

t = Ct \ Cs is called un-
known classes. Note we take all unknown classes as a whole
even though there can be multiple classes. The objective of
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Input Image (a) Vanilla Classifier (b) Unknown Activation (c) Full UGD Loss

Figure 3. The softmax outputs of different training methods regarding two input images on the PACS [42] benchmark. Source Domain:
Cartoon, Target Domain: Art. Known: dog from Domain Cartoon, Unknown: horse from Domain Art.

DGCS is to train a model on Ds to classify all target in-
stances from Dt into |Cs|+ 1 classes.

Motivation. Before formally introducing technical de-
tails, we discuss the motivation of our method using toy
data. Since the decision boundaries are learned by known
classes only, the unknown target samples tend to lie out
of the support of source training data (i.e., low-density
regions [27]) and are ambiguous for the decision bound-
aries. On the other hand, as shown in Fig. 3(a), deep neural
networks trained with the standard softmax Cross-Entropy
(CE) loss tend to give overconfident predictions even when
the test input differs from the training distribution [58]. Mo-
tivate by this, our goal is to explicitly create a support region
for unknown target samples. A native choice is the low-
density regions with respect to the source-trained classifier.

To empirically verify our intuitions, we use scikit-
learn [62] to generate samples (3 known classes and 1 un-
known class) and show the comparison in Fig. 2. From
the figure, we have the following observations. (1) Simply
training a (|Cs|+1)-way classifier cannot improve the dis-
crimination of unknown class. (2) Forcefully increasing the
softmax probability in the unknown dimension creates an
additional support region. However, due to the overconfi-
dence issue regarding known classes, the response to the
unknown (reflected by the size of the region) is still limited.
(3) To increase the response to unknown class, we penalize
the prediction confidence w.r.t. known classes, i.e., making
the known-class data closer to their decision boundaries.
(4) Although the reshaped decision boundaries are able to
accommodate unknown-class data, the boundaries between
known and unknown classes are less discriminative as we
do not have access to real unknown data, i.e., the unknown
samples do not necessarily lie in the support of the created
region since the above operations only encourage it far away
from the support of known classes. Thus, we dynamically
adjust the learned boundaries using unlabeled test data.

Grounded on these insights, we propose a novel Activate
and Reject (ART) approach. Specifically, ART encompasses
two innovative components: 1) Unknown-aware Gradient
Diffusion (UGD) to diffuse the gradient to the unknown’s

logit with smoothing regularization; 2) Test-time Unknown
Rejection (TUR) to conduct post hoc modification to the
learned classifier’s final prediction.

3.2. Unknown-aware Gradient Diffusion

As discussed in Sec. 3.1, deep classifiers trained with the
standard softmax CE loss are susceptible to the notorious
overconfidence issue. This problem becomes more sophis-
ticated in the context of DGCS, wherein the learned deci-
sion boundary is highly biased towards source known-class
samples. On the other hand, given only access to known-
class data during the training phase, how to optimize the
|Cs|+1-way classifier is problematic (cf. Fig. 2(a)).

With this premise, we propose the UGD to solve the
above issues at training phase from two perspectives, i.e.,
unknown activation and output’s smoothness. The former
activates the unknown probability, while the latter mitigates
the overconfidence issue. First of all, we need to train a
(|Cs|+1)-way classifier, where an additional dimension is
introduced to discriminate unknown classes from known
ones. Given xs ∈ Ds and a neural network f(x; θ) pa-
rameterized by θ, we define the standard CE loss as:

LCE(f(xs), ys) = − log
exp(fys

(xs))∑
k∈|Cs|+1 exp(fk(xs))

, (1)

where f(xs) ∈ R|Cs|+1 denotes the network’s logit and
fys(xs) is the ys-th element of f(xs) corresponding to the
ground-truth label ys.

Based on the (|Cs|+1)-way classifier, we aim to activate
the unknown’s logit in the absence of real unknown-class
samples. The key idea is to increase the value of unknown
probability without affecting the ground-truth classification.
For notation shorthand, we use fk to represent the logit of
k-th class and fu for the unknown’s logit. Since we have no
supervision over the unknown, the value of fu is negligible
(cf. Fig. 3(a)). For a source sample (xs, ys) ∈ Ds, we
forcefully increase the unknown probability by minimizing
the negative log-likelihood,

LUA = − log
exp(fu)∑

k∈|Cs|+1,k ̸=ys
exp(fk)

, (2)
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This objective ensures that the unknown probability can
give a response to any input sample regardless of its class la-
bel (cf. gray region in Fig. 2(b)). Since the learning process
is always dominated by CE loss regarding the ground-truth
category, Eq. (2) is tractable and will not hurt the known-
class performance. However, the activated probability is
relatively small (compared to the ground-truth category),
which leads to an unsatisfactory accuracy for real unknown
samples, especially for some hard samples (cf. Fig. 3(b)).

Next, we aim to enhance the response to unknown
classes by increasing the smoothness of the network’s out-
put (cf. Fig. 2(c)). Formally, we impose two constraints
to the standard CE loss: a temperature scaling parameter τ
(τ > 1) and a penalty on the L2 norm of the logits. Thus,
the proposed smoothed CE (SCE) loss LSCE is defined as:

LSCE = − log
exp(fys(xs)/τ)∑

i∈|Cs|+1 exp(fi(xs)/τ)
+ λ∥f(xs)∥2,

(3)
where λ is set to 0.05 in all experiments.

Finally, the UGD loss is formulated as:

LUGD = LUA + LSCE. (4)

As shown in Fig. 3(c), the proposed LUGD not only re-
duces the overconfidence issue (smaller max-probability for
known sample) but also significantly increases the unknown
probability.

3.3. Test-Time Unknown Rejection

Although we have activated the network’s logit about
unknowns, there still exist two critical challenges that im-
pede the safe and reliable deployment of our source-trained
models on open-world data. First, a conservative (smaller
max-probability) and smoothing (larger entropy) output on
source data may not guarantee the category correspondence
across domains and therefore may lead to semantic mis-
alignment. Second, how to reject a sample as “unknown”
lacks principled criterion considering that the unknown-
class samples may distribute randomly in the embedding
space. In this regard, previous open-set-oriented meth-
ods [68, 106] that typically rely on thresholding mecha-
nisms (e.g. entropy value [106]) are heuristic and will be
sensitive to the variations of domain disparity.

To solve the above issues, we introduce a simple and
effective technique—TUR—to match unlabeled test data
to the source-trained model in an online adaptation man-
ner. Our key idea is to conduct post hoc modification
to the learned classifier’s final predictions, so as to bring
the decision boundaries of different classes closer to the
well-behaved case. TUR is training-free (i.e., no backward
passes) and does not impose any distributional assumptions.

Technically, we impose a cross-domain cycle-consistent
constraint on the top of embedding space for identifying

whether a test sample corresponds to any known classes or
not. The cross-domain relationships are based onK-nearest
neighbor (KNN) [36] to perform non-parametric density es-
timation, which is model-agnostic and easy to implement.
Specifically, we decompose the source-trained model into
a feature extractor g and a linear classifier f . Assume that
the embedding of training data is Zs = {z1

s, z
2
s, ...,z

ns
s },

where zi
s is the L2-normalized penultimate feature zi

s =
g(xs)/∥g(xs)∥2. Here, we do not require access to the orig-
inal training samples since the embedding will be extracted
in advance, and no need to update. Then, we define two sets
of known-class prototypes on the top of penultimate layer,
i.e., {µk

s}
|Cs|
k=1 and {µk

t }
|Cs|
k=1, where µk

s is computed from Zs

(mean feature per class) and will be fixed at test time. µk
t is

empty at the beginning.
For an test input xj

t with its normalized feature vector
zj
t , we compute its KNN in Zs, denoted by Ns(z

j
t ). The

feature centroid of Ns(z
j
t ) is denoted by z̄j

s. Next, we find
the corresponding source class as,

k′ = argmax
k′∈{0,1,··· ,|Cs|}

sim(z̄j
s, µ

k′

s ) (5)

Here, we measure the cosine similarity between features as:

sim(z̄j
s, µ

k′

s ) =
(z̄j

s)
Tµk′

s

∥z̄j
s∥2∥µk′

s ∥2
. In the same way, we search

the target class k′′ based on the similarity between z̄j
s and

µk′′

t . If k′ and k′′ belongs to the same category, the sample
xj
t will be predicted as class k′′ and we further update µk′′

t

in the following manner,

µk′′

t(I) = ϕ zj
t + (1− ϕ)µk′′

t(I), (6)

where µk′′

t(I) denote the k′′-th target prototype until time I
and ϕ ∈ (0, 1) is a preset scalar and fixed to 0.3 in practice.

If k′ and k′′ belong to different categories, the prediction
will be given by using a follow-up strategy. Specifically, a
memory bank MI = {M1

I , · · · ,M
|Cs|+1
I } is a set of target

sample embedding until time I , which is initialized by the
weight of linear classifier f . At time I , MI is updated as:

Mk
I =

{
Mk

I−1 ∪ zj
t if k′ ̸= k′′ and f(zj

t ) = k,

Mk
I−1 otherwise,

(7)

Similarly, we can build a new set of target class prototypes
{ψk

t }
|Cs|+1
k=1 based on samples from MI . Note that ψk

t will
be constantly updated during test time. Then, we predict the
class label ((|Cs|+1)-way) of xj

t as follows,

k̂ = argmax
k̂∈{0,1,··· ,|Cs|+1}

sim(z̄j
s, ψ

k̂
t ). (8)

The decision boundaries between known and unknown
classes are refined without backpropagation (cf. Fig. 2(d)).
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Table 2. Accuracy (%) on four classification benchmarks (ResNet-18).

Regime Method PACS Office-Home Office-31 Digits Average

acck accu hs acck accu hs acck accu hs acck accu hs acck accu hs

OSDA
(upper bound)

OSBP [69] 40.6 49.5 44.6 47.1 66.9 55.3 75.8 84.3 77.7 35.6 70.6 40.5 49.8 67.8 54.5
ROS [4] 35.6 66.4 46.4 50.8 77.5 60.8 71.7 80.0 75.6 20.1 48.6 34.9 47.7 68.1 54.4

OD
MSP [31] 38.9 62.5 46.4 52.7 75.6 62.0 49.7 89.2 63.8 17.2 87.1 28.8 39.6 78.6 50.3

LogitNorm [84] 35.1 47.6 38.3 56.3 56.5 56.1 41.0 71.2 52.1 26.8 51.2 35.2 39.8 56.6 45.4
DICE [74] 44.0 53.4 49.2 61.5 58.8 59.9 72.8 61.1 66.4 35.0 47.6 40.3 53.3 55.2 54.0

SFDA SHOT [47] 51.2 34.9 40.8 52.5 32.4 44.3 84.8 60.2 70.4 27.4 20.3 23.3 54.0 37.0 44.7
AaD [90] 45.1 40.0 42.0 59.4 58.7 58.9 70.1 85.3 76.9 25.6 26.9 26.2 50.1 52.7 51.0

TTA
TTT [76] 36.9 44.6 38.9 52.0 45.9 47.2 35.4 79.6 49.0 44.1 45.1 44.6 42.1 53.8 44.9
Tent [82] 25.2 43.1 31.7 33.6 45.9 38.7 56.0 85.1 67.5 27.2 41.1 32.7 35.5 53.8 42.7

MEMO [95] 37.9 52.3 44.5 49.0 55.6 52.1 59.8 72.7 65.6 21.7 56.1 31.3 42.1 59.2 48.4

OSDG

ERM [78] 52.3 27.0 36.1 66.9 23.7 34.3 85.1 27.0 40.7 56.4 13.0 18.0 65.2 22.7 32.3
ADA [81] 54.2 30.9 36.4 67.9 25.4 36.2 85.6 25.2 38.7 57.2 15.1 20.1 66.2 24.2 32.9

ADA+CM [106] 56.4 45.6 43.0 65.0 40.4 48.5 83.0 34.5 48.5 49.2 52.1 39.9 63.4 43.2 45.0
MEADA [98] 54.1 31.4 36.2 67.6 25.7 36.4 85.8 25.1 38.6 57.6 29.8 30.4 66.3 28.0 35.4

MEADA+CM [106] 54.3 46.6 42.7 64.9 40.5 49.6 82.8 41.1 54.7 52.3 46.1 38.7 63.6 43.6 46.4
One Ring-S [91] 43.7 49.4 41.5 56.9 69.0 62.3 67.3 77.0 71.3 33.2 51.3 40.3 50.3 61.7 53.9
ART w/o TUR 47.0 51.3 48.1 58.8 69.8 63.7 70.7 65.9 68.2 29.7 65.7 40.9 51.6 63.2 55.2

DGCS ART (full) 43.7 65.9 52.3 64.3 65.3 64.8 82.1 75.2 78.5 34.3 63.8 44.6 56.1 67.6 60.1

Table 3. Performance of ART on object detection benchmarks.

Method Pascal VOC→Clipart Pascal VOC→Watercolor Pascal VOC→Comic

WI↓ AOSE↓ mAPK↑ APU↑ hs↑ WI↓ AOSE↓ mAPK↑ APU↑ hs↑ WI↓ AOSE↓ mAPK↑ APU↑ hs↑

ORE [37] 17.3 876 37.7 3.0 5.6 28.4 3216 19.8 13.5 16.1 23.1 2242 7.3 3.0 4.3
OpenDet [28] 14.2 300 32.7 6.7 11.1 14.9 1944 19.2 19.3 19.2 15.2 744 7.5 3.1 4.4

ART (full) 11.7 317 35.8 10.2 15.9 19.7 944 20.8 15.2 17.6 13.2 596 7.2 9.1 8.0
w/o LUA 16.3 1363 35.4 6.0 10.3 29.4 3924 18.6 14.1 16.0 25.0 2826 6.4 2.2 3.3
w/o LSCE 14.6 426 34.7 3.2 5.9 24.8 1104 21.4 19.1 20.2 24.7 1372 6.3 3.5 4.5
w/o TUR 14.9 444 34.5 4.9 8.6 23.3 1398 21.1 17.6 19.2 15.0 784 7.3 4.6 5.6

Table 4. Performance of ART on semantic segmentation bench-
mark, i.e., from GTA5 (synthetic) to Cityscapes (real).

Method mAcc mIOU accu hs

ERM [78] 64.9 48.2 27.6 39.4
One Ring-S [91] 55.7 41.0 72.5 61.9

ART (full) 57.1 43.3 73.2 63.1
w/o UGD 64.2 46.6 41.6 50.2
w/o TUR 54.7 42.6 78.5 62.6

4. Experiments
4.1. Generalization in Image Classification

Dataset. We evaluate our ART on four standard DG bench-
marks. PACS [42], which has dramatic differences in terms
of image styles, contains 9,991 images of seven object
classes from four domains, i.e., Photo, Art Painting, Car-
toon, and Sketch. 4 classes (dog, elephant, giraffe, and
guitar) are adopted as Cs and the remaining 3 classes are
used as Ct

u. Office-Home [79], which is collected from
office and home environments, has 15,500 images of 65
classes from four domains, i.e., Artistic, Clipart, Product,
and Real World. The domain shifts stem from the vari-
ations of viewpoint and image style. In alphabetic order,

the first 15 classes are selected as Cs and the remaining 50
classes are used as Ct

u. Office-31 [67] has 31 classes col-
lected from three domains: Amazon, DSLR, and Webcam.
The 10 classes shared by Office-31 and Caltech-256 [26]
are adopted as Cs. In alphabetical order, the last 11 classes
along with Cs form Ct

u. Digits, which differs in the back-
ground, style, and color, contains four handwritten digit do-
mains including MNIST [40], MNIST-M [25], SVHN [57],
USPS [33], and SYN [25]. MNIST is used as the source do-
main and the other datasets are viewed as target domains.
Cs includes numbers from 0 to 4.
Evaluation Protocols. Following [4, 106, 91], we adopt
H-score (hs) [24] as the main evaluation metric. hs har-
monizes the importance of known and unknown classes by
requiring that known and unknown class accuracy should be
both high and balanced. The known class accuracy (acck)
and unknown class accuracy (accu) are also provided.
Implementation Details. We conduct experiments based
on Dassl [104], including data preparation, model training,
and model selection. For PACS, Office-Home, and Office-
31, we use ResNet-18 [29] pre-trained on the ImageNet as
the backbone network. We use the ConvNet [39] with archi-
tecture conv-pool-conv-pool-fc-fc-softmax for Digits. The

11557



networks are trained using SGD with momentum of 0.9 for
100 epochs. The batch size is set to 16.
Baselines. Given the contact points with other problem set-
tings, we compare ART with five types of state-of-the-art
methods. (1) OSDG [106, 91] is the most related base-
line. When TUR is removed, the proposed ART becomes
a standard OSDG method. (2) OSDA [69, 4] jointly uti-
lizes source and target data for training and thus can be
viewed as an upper bound of our problem. (3) OD [84, 74]
usually identifies unknown-class samples via scoring func-
tions. (4) SFDA [47, 90] and TTA [47, 90] cannot deal
with unknown-class samples directly. Therefore, we fol-
low [106] that uses the entropy of softmax output as the
normality score.
Results. The classification results on PACS and Office-
Home, Office-31, and Digits benchmarks are reported in
Tab. 2. ART substantially and consistently outperforms
baseline methods on different benchmark datasets. For ex-
ample, ART improves hs by 9.3% (PACS), 2.5% (Office-
Home), 7.2% (Office-31), and 4.3% (Digits) compared to
the previous best OSDG baselines. In particular, only using
UGD could also substantially exceed state-of-the-art meth-
ods, e.g. DICE [74] and One Ring-S [91]. The results also
reveal several interesting observations. (1) The performance
of [91] is unstable across different benchmarks. For exam-
ple, they outperform CM [106] by +12.7% and +16.6% on
Office-Home and Office-31 but show inferior performance
(-1.5%) on PACS. By contrast, our method achieves more
consistent improvements, indicating the efficacy and scal-
ability of ART. (2) ART achieves even better performance
than OSDA methods (upper bound) under much more chal-
lenging settings. (3) LogitNorm [84] and Tent [82] achieve
inferior performance due to the imbalance between acck
and accu, showing the non-triviality of performing both
unknown-aware training and test-time modification.

4.2. Generalization in Other Vision Tasks

Setup. (1) Object Detection. We introduce four datasets to
form three tasks, i.e., Pascal VOC [23], Clipart, Watercolor,
and Comic [34] datasets. They share 6 classes, where per-
son is selected as Ct

u and the remaining 5 classes are viewed
as Cs. The Pascal VOC2007-trainval and VOC2012-trainval
datasets are combined to form the source domain, and Cli-
part1k, Watercolor, and Comic as used as the target do-
mains respectively. For evaluation, we introduce four met-
rics: Wilderness Impact (WI) [19], Absolute Open-Set Er-
ror (AOSE) [55], mean average precision of known classes
(mAPK) and average precision of unknown class (APU ). (2)
Semantic Segmentation. GTA5 [65] and Cityscapes [18]
are used as the source and target domains respectively.
GTA5 is a synthetic dataset generated from Grand Theft
Auto 5 game engine, while Cityscapes is collected from the
street scenarios of different cities. They share 19 classes in

Table 5. Ablation of ART on four benchmarks. hs (%) is reported.
- and + denote the removal or addition of a module respectively.

Method PACS Office-Home Office-31 Digits Avg.

ART 52.3 64.8 78.5 44.6 60.1

- LUA 39.9 62.5 69.0 20.0 47.9
- LSCE 43.4 60.0 71.5 41.3 54.1
- UGD 45.5 57.0 66.6 32.0 50.3
- TUR & LUA 44.4 61.4 65.8 7.9 44.9
- TUR & LSCE 41.0 58.9 63.0 40.3 50.8

UGD 48.1 63.7 68.2 40.9 55.2

+ TTT [76] 48.5 60.8 72.8 41.3 55.9
+ Tent [82] 37.8 45.3 64.9 33.2 45.3
+ T3A [35] 49.2 62.7 72.0 41.7 56.4
+ MEMO [95] 49.9 61.4 75.4 41.0 56.9
+ SHOT [47] 46.6 50.3 71.5 33.5 50.5
+ AaD [90] 50.2 62.5 74.7 41.8 57.3

all. According to the number of pixels per class, we use 10
classes as Cs and the remaining 9 classes as Cu

t . We report
the mean accuracy of all classes (mAcc), mean Intersection
over Union (mIOU), accu and hs.
Implementation Details. (1) Object Detection. We utilize
Faster R-CNN [64] as the detection model and ResNet-50
with FPN [48] as the backbone network. To avoid the mu-
tual influence between classification and regression heads,
the original shared FC layer is replaced by two parallel FC
layers. The networks are trained for 40 epochs. (2) Seman-
tic Segmentation. We adopt DeepLab-v2 [16] segmenta-
tion network with ResNet-101 backbone. We use SGD op-
timizer with an initial learning rate of 5×10−4, momentum
of 0.9, and weight decay of 10−4.
Results. Tab. 3 shows the detection results compared to
ORE [37], OpenDet [28], and several variants of ART. With
respect to mAPK and APU , ART outperforms the previ-
ous best method by 1.5% and 1.8% on average, revealing
that ART strikes a better balance between identifications of
known- and unknown-class objects. Fig. 4 provides the
qualitative comparisons, where ART could precisely iden-
tify unknown samples and exhibits better bounding box re-
gression results. For semantic segmentation, Tab. 4 reveal
that even in the dense prediction task, ART is capable of sig-
nificantly improving the generalization ability of deep mod-
els. The qualitative results are shown in Fig. 5, where the
predictions given by ART are smoother and contain much
fewer spurious areas than One Ring-S [91] and ART w/o
TUR, especially on the unknown classes (rider and bike).

4.3. Discussion

Ablation study. (1) In Tab. 5, we evaluate the contribu-
tion of the different components of ART. It is evident that
each of these components is reasonably designed, as the re-
moval of any one of them leads to a commensurate reduc-
tion in accuracy. Note that when LUA is removed, we will
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Figure 4. Qualitative comparisons between OpenDet (top) and ART (bottom).

(a) Target Image (b) Ground Truth (c) One Ring-S (d) ART w/o TUR (e) ART

Figure 5. Visualization of segmentation results for the task GTA5 → Cityscapes. Gray regions indicate the unknown-class pixels.
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Figure 6. (a)-(d) t-SNE visualization [77] of the penultimate layer’s feature on Office-31. (e) Varying the size of known classes on PACS.
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Figure 7. Top: w/o LSCE vs. Bottom: w/ LSCE

make the prediction by following the thresholding mech-
anism in [106]. To isolate the contribution of TUR, We
additionally combine UGD with different TTA and SFDA
methods. Notably, Tent and SHOT achieve inferior perfor-

Table 6. The influence of the order of test data. hs is reported.

ID PACS Office-Home Office-31 Digits Avg.

1 52.5 64.8 78.2 44.4 60.0
2 52.3 64.6 78.9 45.0 60.2
3 52.7 64.9 78.8 44.8 60.3
4 52.2 64.7 78.4 44.7 60.0

mance, and TTT and MEMO bring marginal improvements
compared to the proposed TUR. (2) In fig. 7, we use Grad-
CAM [99] to visualize the results trained w/ and w/o LSCE
on both target known- and unknown-class samples. We can
observe that LSCE makes the network focus on the entire
object rather than a small or inaccurate local region, reveal-
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ing the importance of mitigating the overconfidence issue in
DGCS tasks.
The influence of known classes. With fixed |Cs ∪ Ct|, we
investigate the influence of the number of known classes.
As shown in Fig. 6, ART consistently outperforms the pre-
vious best method in terms of hs especially when the size
is small, indicating that ART can improve the generalization
ability even with very limited known knowledge.
The influence of test order. As TUR is performed online,
we study the influence of the order of test data. The results
in Tab. 6 reveal that TUR is insensitive to the variations of
data order, showing its robustness to the open world.
Feature visualization. We use t-SNE [77] to visualize the
feature learned by ERM, One Ring-S, ART w/o LSCE, and
ART, respectively. The results are displayed in Fig. 6, where
different colors except for gray indicate different known
classes. Points in gray represent all unknown classes. The
features learned by ERM and One Ring-S cannot be reason-
ably separated, where the boundaries between known and
unknown classes are ambiguous to some extent. By con-
trast, ART provides more meaningful embedding features
to distinguish known and unknown samples.

5. Conclusion
We investigate the problem of DGCS, which is realistic

but has been largely overlooked in the literature. Specif-
ically, we present a simple yet surprisingly effective ap-
proach (ART) to regularize the model’s decision boundary
in training and adjust the source-trained classifier’s predic-
tion at test time, endowing the deep model with unknown-
aware ability even without any access to real data in train-
ing. Experiments show that ART consistently improves
the generalization capability of deep networks in different
tasks. We hope our work will motivate future research on
open-world generalization in safety-critical applications.
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