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Abstract

While the transferability property of adversarial exam-
ples allows the adversary to perform black-box attacks (i.e.,
the attacker has no knowledge about the target model), the
transfer-based adversarial attacks have gained great atten-
tion. Previous works mostly study gradient variation or
image transformations to amplify the distortion on critical
parts of inputs. These methods can work on transferring
across models with limited differences, i.e., from CNNs to
CNNs, but always fail in transferring across models with
wide differences, such as from CNNs to ViTs. Alternatively,
model ensemble adversarial attacks are proposed to fuse
outputs from surrogate models with diverse architectures
to get an ensemble loss, making the generated adversar-
ial example more likely to transfer to other models as it
can fool multiple models concurrently. However, existing
ensemble attacks simply fuse the outputs of the surrogate
models evenly, thus are not efficacious to capture and am-
plify the intrinsic transfer information of adversarial exam-
ples. In this paper, we propose an adaptive ensemble attack,
dubbed AdaEA, to adaptively control the fusion of the out-
puts from each model, via monitoring the discrepancy ra-
tio of their contributions towards the adversarial objective.
Furthermore, an extra disparity-reduced filter is introduced
to further synchronize the update direction. As a result, we
achieve considerable improvement over the existing ensem-
ble attacks on various datasets, and the proposed AdaEA
can also boost existing transfer-based attacks, which fur-
ther demonstrates its efficacy and versatility. The source
code: https://github.com/CHENBIN99/AdaEA

1. Introduction

Deep neural networks (DNNs), including convolutional

neural networks (CNNs) [10, 36, 15] and vision transform-

ers (ViTs) [6, 26, 19], have brought impressive advances to

the state-of-the-art across various machine-learning tasks.

At the moment, however, they are found to be vulnerable to

(a) Transfer-based attack (b) Ensemble attack (c) AdaEA (Ours)

Decision 
boundary-1

Decision boundary-2

Decision 
boundary-1

Decision boundary-2

Decision 
boundary

A
ve

ra
ge

 A
SR

 (%
)

CNNs ViTs

Decision boundary 
of target model

Decision boundary 
of target model Decision boundary 

of target model

CNNs ViTs CNNs ViTs

Clean image Adversarial example

17.66

2.02

18.54

8.74

A
ve

ra
ge

 A
SR

 (%
)

28.94

35.98

A
ve

ra
ge

 A
SR

 (%
)

Attack direction Surrogate attack direction

Figure 1. Overview of different attack schemes and performance.

(a) Transfer-based methods strengthen the critical parts in images

to improve the attack transferability, but fail to transfer across

DNNs with wide differences due to the limited adversarial in-

formation. (b) Model ensemble attacks integrate multiple surro-

gate models for finding the more transferable attack, but exist-

ing works generally neglect the individual characteristics of each

model, leading to under-optimal results. (c) Our AdaEA performs

adaptive ensemble by amplifying the transferable information in

each surrogate model and achieves remarkable improvements.

adversarial examples [25], i.e., adding imperceptible hand-

crafted perturbations to the original inputs can lead to wrong

prediction behavior of DNNs. This discovery arises severe

security hazards in the deployment of DNNs. More impor-

tantly, some well-designed adversarial examples can trans-

fer across models. That is, an adversarial example crafted

from a surrogate model can also disturb other models. This

property of adversarial examples, known as tranferability,

allows the adversary to attack a target model without know-

ing its interior, thus poses a more realistic threat to black-
box applications (i.e., the architectures and parameters are

inaccessible to users).

To set up the first step for improving model robustness

and prevent potential threats from black-box attacks, the re-

search on improving the transferability of adversarial exam-

ples has attracted wide attention in recent years. The attack
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transfer success rates vary depending on the difference be-

tween the surrogate and target models, the more similar the

surrogate and target models are, the higher transfer success

rate can be achieved. Thus a bunch of works have been

proposed to improve the transferability of adversarial exam-

ples by maximizing the perturbation on critical parts that are

shared among DNNs. The mainstream strategies include

maximizing information from important neurons [37, 30],

increasing input diversity [32, 1], and incorporating mo-

mentum [4, 29] into iterative-based attack. Despite their ef-

fectiveness, these methods always fail in transferring across

models with wide architecture differences (i.e., CNNs and

ViTs), as shown in Figure 1 (a).

Similar to traditional ensemble methods which draw on

the wisdom of multiple weak learners with diverse predic-

tions to improve the overall accuracy, a line of research pro-

poses to utilize an ensemble of surrogate models to gener-

ate adversarial examples that can successfully attack all the

surrogate models. Intuitively, the approach can improve the

transferability of adversarial examples as it can potentially

capture intrinsic transferable adversarial information since

the adversary can fool several models with wide differences

concurrently. Moreover, such an ensemble could also be

easily incorporated with existing transfer-based adversarial

attacks without confliction. Several model ensemble based

methods have been explored [18, 11], however, most of

them only equally fuse the outputs (i.e., logits or losses)

of all models to get an ensemble loss for applying gradient-

based attack, which may limit the potential capability of the

model ensemble attacks, as shown in Figure 1 (b). Although

a recent work [33] noticed the gradient variances among the

surrogate models, the ensemble is still under-optimal due to

the ignorance of individual characteristics of each model.

In this paper, we focus on the model ensemble adver-

sarial attack for improving the transferability of adversar-

ial examples. We first observe that simply averaging the

outputs of ensemble models ignore the advantages of each

model, where the transferable information captured from

one model can be smoothed by another model during the

fusion process, thus leading to the under-optimized results.

To cope with this problem, we propose to adptively en-

semble the outputs of each model via the adaptive gradi-

ent modulation (AGM) strategy. Specifically, we define the

adversarial ratio to evaluate the contribution discrepancy

among the surrogate models to the overall adversarial ob-

jective, which is then exploited to adaptively modulate the

gradient fusion, offering more efforts on the amplification

of transferable information in the generated adversarial ex-

amples. Moreover, the ensemble gradient may greatly dif-

fer or even oppose with the individual gradient of surro-

gate models, which has been proven to have a correlation

with the overfitting problem in ensemble [33]. Hence, we

further introduce a disparity-reduced filter (DRF) where a

disparity map is computed to reduce the variances among

surrogate models and synchronize the update direction. Fi-

nally, the adversarial transferability could be enhanced by

applying the above two mechanisms, as demonstrated in

Figure 1. We term the proposed method as adaptive esnem-

ble attack (AdaEA), and perform extensive experiments on

diverse datasets to validate that our AdaEA can consistently

outperform the existing methods. To sum up, the key con-

tributions of this work are three-fold:

• We propose an adaptive ensemble adversarial attack,

dubbed AdaEA, which offers a more comprehensive

ensemble attack for a broad class of models with wide

architecture differences, such as CNNs and ViTs.

• Our AdaEA views the ensemble attack from the gra-

dient optimization perspective, and controls the opti-

mization process via AGM strategy as well as reducing

the disparity by DRF to synchronize the optimization

direction.

• The proposed AdaEA can not only largely enhance the

ensemble effectiveness compared to existing ensemble

methods, but also consistently improve the attack per-

formance when incorporated with the existing transfer-

based gradient attacks.

2. Related Works
2.1. Adversarial Attacks

Since Szegedy et al. [25] first reported the existence of

adversarial examples, extensive efforts have been devoted to

highlighting the vulnerability of DNNs. An adversarial at-

tack usually produces adversarial examples by adding a per-

turbation δ to an original input image x with the objective

that can make the model discriminative loss L maximized,

i.e., argmaxx+δ L(f(x + δ), y). To make the perturbation

imperceptible, the perturbation δ is subject to a constraint S ,

which is defined as S = {‖δ‖p ≤ ε} by the given �p-norm

distance and the maximum strength ε.

Gradient-based adversarial attacks. To optimize the at-

tack objective, the gradient information are usually used to

maximize the model loss. Goodfellow et al. [8] designed a

Fast Gradient Sign Method (FGSM) to produce strong ad-

versarial examples based on the investigation of CNN linear

nature. Wang et al. [28] and Madry et al. [21] further broke

the one-step generation of perturbation in FGSM into itera-

tive generation and proposed I-FGSM and Projected Gradi-

ent Descent (PGD) attack. While these attacks can exhibit

high attack success rate on the white-box models, they usu-

ally reveal low transfer rate to black-box models since the

gradients information is hard to approximate.

Transfer-based adversarial attacks. To improve the

transferability, existing works try to maximize the distor-

tion on the critical parts of inputs. Wang et al. [30]
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Figure 2. Visualization of the cosine similarity between the gradi-

ents produced from different models. Note that the gradients are

closer when the model architectures are more similar.

and Zhang et al. [37] investigated the distortion on fea-

tures based on the importance of neural in the DNNs.

Xie et al. [32] and Dong et al. [5] incorporated the FGSM

with either input diversity or translation-invariant strategies

to produce diverse input patterns for generation of adver-

sarial examples. Gao et al. [7] proposed the PI-FGSM

which generates patch-wise perturbation rather than pixel-

wise, that is beneficial for black-box attack. Although these

attacks can achieve transferability improvements over the

primordial gradient-based attacks, they can hardly transfer

to the new architecture of DNNs, i.e., the ViT family.

Model ensemble attacks. Ensemble attack methods usu-

ally craft adversarial examples by performing a weighted

linear sum of the multiple white-box attacks in parallel.

Liu et al. [18] directly averaged the predictions of multiple

modes to get an ensemble loss for applying gradient-based

attack. Dong et al. [5] further fused the logits and losses

of ensemble models. Xiong et al. [33] noticed the vari-

ance among the ensemble models and proposed a stochastic

variance-reduced ensemble (SVRE) attack to improve the

attack generalization. While improvements being achieved,

the ensemble is still under-optimal due to the less investiga-

tion in the individual advantages of each model.

2.2. Adversarial Defenses

As the counterpart of adversarial attack, enormous ef-

forts have been proposed to defend against adversarial ex-

amples, which generally fall into two categories. The first

is referred to as adversarial training [21, 2, 38, 27, 23,

14, 35], which is regarded as the most reliable and effec-

tive method. Its key idea is to leverage the online gener-

ated adversarial examples into the training dataset so that

the model can prefer more robust features during learn-

ing [21]. To improve the defense efficiency, state-of-the-

art methods further propose to incorporate curriculum at-

tack generation [2], early stopping [38], and ensemble

schemes [27, 23, 14, 35]. The second line of adversarial

defense is input transformation-based methods, which aim

to eliminate the adversarial information from adversarial

examples by preprocessing. Many state-of-the-art defense

methods for defending against adversarial examples have

been proposed, including denoising images with high-level

representation [17], randomly resizing [31] and smooth-

ing [12], compressing input image [13, 9, 34, 20] and pu-

rifying the input images using neural network [22]. In this

paper, we employ these state-of-the-art defenses to evaluate

the effectiveness of our attack method.

3. Methodology
3.1. General Overview

Improving the transferability of adversarial examples

aims to make an adversarial example generated from

a white-box surrogate model stay adversarial to hold-

out black-box models. Typically, using a gradient-based

method to iteratively find the optimal perturbation for a

white-box model can be given by:

xadv
t+1 = xadv

t + α sign(∇xadv
t

L(f(xadv
t ), y)), (1)

where sign(·) is the sign function, α is the step size, and

∇xadv
t

L denotes the gradient of the loss function L w.r.t.

xadv
t . Note that xadv

1 is set to be x, and the final adversarial

example is obtained by xadv
T , T is the iteration number. In-

tuitively, it can achieve high attack successful rate under the

white-box setting, where ∇xadv
t

L is known. However, when

transferred to a black-box model in which the ∇xadv
t

L is

unknown, the attack successful rate would be dropped since

the gradients are diverse in different models, as shown in

Figure 2. In particular, when the model architectures sig-

nificantly differ, such as ViTs and CNNs, the gradients are

extremely different, leading to a lower transfer attack rate.

To make the generated adversarial examples adversarial

to a broad class of models, the ensemble attack is an effec-

tive strategy to enhance the attack transferability. The basic

idea is to utilize the outputs of multiple white-box models

to obtain the averaged model loss, and then the gradient-

based attack is applied to generate the adversarial example.

It transforms Eq. (1) into the following representation:

xadv
t+1 = xadv

t + α sign(∇xadv
t

L(
K∑

k=1

wkfk(x
adv
t ), y)), (2)

where wk is the ensemble weights for k-th surrogate model

fk, ∀wk ≥ 0 and
∑K

k=1 wk = 1; and K is the number

of surrogate models. Existing ensemble methods gener-

ally average the logits [18], predicted probabilities [5], or

losses [5] of surrogate models to obtain the ensemble loss

for generating gradient information. However, such sim-

ple ensemble ignores the individual variance across the sur-

rogate models, thus significantly limits the overall attack

4491



Surrogate models

BiT-50BiT-50BiT-50

DeiT-B
Tr

an
sf

or
m

e
r l

ay
er

Tr
an

sf
or

m
e

r l
ay

er

DeiT-B
Tr

an
sf

or
m

e
r l

ay
er

Tr
an

sf
or

m
e

r l
ay

er

DeiT-B
Tr

an
sf

or
m

e
r l

ay
er

Tr
an

sf
or

m
e

r l
ay

er

WRN101-1WRN101-1
BiT 50

WRN101-1
ResNet-50ResNet-50

WRN101 1
ResNet-50

Swin-B

Tr
an

sf
or

m
e

r l
ay

er

Tr
an

sf
or

m
e

r l
ay

er

Swin-B

Tr
an

sf
or

m
e

r l
ay

er

Tr
an

sf
or

m
e

r l
ay

er

Swin-B

Tr
an

sf
or

m
e

r l
ay

er

Tr
an

sf
or

m
e

r l
ay

er

ViT-B

Tr
an

sf
or

m
e

r l
ay

er

Tr
an

sf
or

m
e

r l
ay

er

ViT-B

Tr
an

sf
or

m
e

r l
ay

er

Tr
an

sf
or

m
e

r l
ay

er

ViT-B

Tr
an

sf
or

m
e

rl
ay

er

Tr
an

sf
or

m
e

rl
ay

er

ViT-B

Tr
an

sf
or

m
e

r l
ay

er

Tr
an

sf
or

m
e

r l
ay

er

Logits

Ensemble models

Gradients

Cosine 
Similarity

Cosine 
Similarity

AveragingAveragingAveragingAveraging BinarizingBinarizingBinarizingBinarizing

Disparity-reduced filter (DRF)

Softm
ax

{

 f1

fK 

s1,1 s1,2 s1,K

sK,1 sK,2 sK,K

}

Adaptive gradient modulation (AGM)

Gradient disparity

w1

wK

{
}

{
}

Logits

Add

Gradient ensemble

Ensemble Gradient

Perturbation

Ite
ra

te

Adversarial 
example

Clean image

Figure 3. An overview of our AdaEA. The gradients obtained from CNNs and ViTs are feed into the AGM and DRF to get the ensemble

gradient for generating adversarial examples with gradient-based attack.

performance. Let us take Figure 2 as an example again, as

the gradients vary across different models, directly equally

merging the outputs of models would lead to under-optimal

results since the adversarial information captured by each

model is not evaluated and amplified.

3.2. Adaptive Ensemble Adversarial Attack

In this work, we focus on the model ensemble methods

following Eq. (2). Instead of directly averaging the out-

puts of surrogate models as the previous works, we pro-

pose AdaEA equipped with AGM and DRF mechanisms

to amend the gradient optimization process for boosting

the transferable information in the generated adversarial

examples. Specifically, AGM first modulates the gradient

of each ensemble model by the defined adversarial ratio
which identifies the contribution discrepancy of each sur-

rogate model to the overall adversarial object, and then the

DRF further synchronizes the gradient update direction by

filtering out the disparity part of ensemble gradients. An

overview of AdaEA is shown in Figure 3.

Adaptive gradient modulation. After obtaining the out-

puts fi(x) and gradient information gi from each surro-

gate model fi by feeding the input image, i.e., gi =
∇xadv

t
L(fi(xadv

t ), y), we propose to adaptively modulate

the model ensemble via monitoring the discrepancy of their

contributions to the adversarial attack objective. Specifi-

cally, for the i-th ensemble model fi, we evaluate the po-

tential adversarial transferability in the gi by testing the at-

tack performance of adversarial examples generated from

gi on other models, which we define as adversarial ratio,

and then adjust the ensemble weight based on the adversar-

ial ratio of each model. Here we first conduct the testing

process by computing:

sk,i = −1y · log
(
softmax

(
pk[x

adv
t + α sign(gi)]

))
, (3)

where pk(·) denotes the logits output from fk, and 1y is

the ground truth logits. sk,i can be considered as the k-th

model loss on the adversarial example generated by using

the gradient from i-th model. We then define the adversarial

ratio ρi as:

ρi =
β

K − 1

∑K

k=1,k �=i

sk,i
sk,k

, (4)

where β denotes a hyperparameter that controls the effect of

ensemble weighting, which is further discussed in Sec. 4.3.

Note that a higher value of ρi denotes a better transfer at-

tack of adversarial example generated from gi, implying

that gi contains more transferable adversarial information.

By doing so, we can figure out which model can provide

more generic adversarial information and adaptively assign

a higher ensemble weight. Thus, according to the adver-

sarial ratio of each model, we use a softmax function to

normalize the ensemble weight of each model by:

w∗
1 , w

∗
2 , ..., w

∗
K = softmax(ρ1, ρ2, ..., ρK). (5)

With the obtained w∗
i , the output of each surrogate model

with more potential adversarial transferability information

is amplified in the ensemble gradient of Eq. (2), thus lead-

ing to a higher transfer attack success rate on the hold-out

black-box models.

Disparity-reduced filter. As discussed, the gradient opti-

mization direction of surrogate models vary tremendously

in a big range, sometimes the gradients walk towards di-

rection against each other and the result leads to an over-

fit to the ensemble model [33]. To solve the problem

and synchronize the update direction, we introduce an ex-

tra disparity-reduced filter to reduce the gradient variances

among surrogate models. We first apply the cosine similar-

ity to evaluate the deviation of gradients in surrogate mod-

els, and compute the disparity map di by averaging the sim-

ilarity score with gradients of other models, which can be

described as follows:

d
(p,q)
i =

1

K − 1

∑K

k=1,k �=i
cos

(−→g (p,q)
i ,−→g (p,q)

k

)
, (6)

where cos(·) denotes cosine similarity function, −→g (p,q)
i and

−→g (p,q)
k denote the vector extracted from the position (p, q)

4492



through channels of gradient gi and gk, respectively. The

final disparity map d for ensemble gradients is obtained by

averaging all the di. We then clean the disparity part in the

ensemble gradient by using a filter B as:

B(p, q) =

{
0, if d

(p,q)
i ≤ η

1, otherwise
, (7)

where η is the tolerance threshold for the disparity filtering.

By filtering out the disparity part of the ensemble gradients,

the gradient optimization direction can be synchronized. To

this end, the ensemble gradient can be obtained by rewriting

Eq. (2) as:

gt+1 = ∇xadv
t

L(
∑K

k=1
w∗

kfk(x
adv
t ), y)⊗B, (8)

where ⊗ denotes the element-wise multiplication. Hence,

the disparity among the surrogate models can be sup-

pressed. We provide more discussions about DRF in terms

of both qualitative and quantitative analysis in the supple-

mentary material. The overall AdaEA procedure is shown

in Algorithm 1.

4. Experiments

4.1. Experimental Setting

Datasets. We conduct experiments on CIFAR-10, CIFAR-

100 and ImageNet datasets [16, 3] which are widely used in

both classification and adversarial attack tasks [33, 18].

Networks. We choose target models from both branches

of CNNs and ViTs for the black-box attack task, in-

cluding ResNet-50 (Res-50) [10], WideResNet-50 (WRN-

50) [36], BiT-M-R50×1 (BiT-50) [15] and BiT-M-R101

(BiT-101) [15] in CNN branch; and ViT-Base (ViT-B) [6],

DeiT-Base (DeiT-B) [26], Swin-Base (Swin-B) [19] and

Swin-Small (Swin-S) [19] in ViT branch. As for surrogate

models, we choose ResNet-18 (Res-18) [10], Inception v3

(Inc-v3) [24], ViT-Tiny (ViT-T) [6] and DeiT-Tiny (DeiT-

T) [26] in the later experiments by default.

Comapred methods. Two pioneering ensemble attack

methods, i.e., Ens [18] and SVRE [33], are employed as

baselines to compare with our AdaEA. All the ensemble

methods follow the same ensemble settings in experiments.

Implementation details. For the baselines and our AdaEA,

we use the I-FGSM with 20 iterations under l∞ constraint as

the basic attack method, and set ε = 8/255 and α = 2/255
during the adversarial example generation. As for hyperpa-

rameter, we set η = −0.3 in DRF and β = 10 in AGM.

The inner update time in SVRE is set to be 4 following its

default setting. All the experiments were implemented us-

ing Pytorch on an Intel Xeon Sliver and a NVIDIA A6000

GPU with 48GB graph memory.

Algorithm 1 The AdaEA algorithm

Input: Input (x, y), a list of K surrogate models. Maxi-

mum range of perturbation ε, the step size of iter-

ation attack α, and the number of iterations in the

inner gradient-based attack T .

Output: Adversarial example xadv .

1 xadv
1 ← x

2 for t ← 1 to T do
3 # Calculating the gradients of all K models

4 gk ← ∇xadv
t

L(fk(xadv
t ), y)

5 # Performing adaptive gradient modulation

6 Compute the adversarial ratio ρi of each model using

Eqs. (3)-(4)

7 Compute the weight w for each model using Eq. (5)

8 # Performing disparity-reduced filter

9 Compute the disparity map d using Eq. (6)

10 # Ensemble the gradient

11 Compute the gradient genst+1 using Eqs. (7)-(8).

12 # Updating adversarial example

13 xadv
t+1 ← Clipε

x{xadv
t + α sign(genst+1)}

14 end for
15 xadv ← xadv

T

4.2. Main Results

General attack performance. We first compare the gen-

eral attack performance of AdaEA with existing ensemble

methods on the naturally trained models under the black-

box setting on CIFAR-10/100 and ImageNet. Table 1 re-

ports the attack results on a broad class of black-box mod-

els, including both CNNs and ViTs. As we can see, SVRE

can slightly improve the attack performance by reducing

gradient variance across models compared to the baseline

Ens. The improvements in terms of average success rates

are around 3% on CIFAR datasets. In contrast, our AdaEA

can improve the attack transfer rate by a large margin, where

we achieve more than 15% averaging improvements over

SVRE on CIFAR-10, demonstrating the effectiveness of our

AdaEA in finding and amplifying the intrinsic adversarial

information of inputs via the AGM-DRF strategies.

Combinations with transfer-based attacks. We then at-

tempt to test the integration of the existing transfer-based

attacks in our AdaEA. We additionally use FGSM, MI-

FGSM [4], and DI2-FGSM [32] as the base attacks for

ensemble, and summarize the results in Table 2. The re-

sults show that the attack success rate significantly im-

proves combined with our AdaEA regardless of base at-

tacks. Specifically, for FGSM and I-FGSM, using our

AdaEA improves the average transfer success rate around

20%. For MI-FGSM and DI2-FGSM attacks, our method

also achieves consistently improvements over the existing

ensemble attacks by a large margin, further indicating the
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Table 1. The black-box attack success rate (%) against eight naturally trained models. The bolded numbers indicate the best results and Δ
represents the improvements over the baseline.

Dataset Attack Res-50 WRN101-2 BiT-50 BiT-101 ViT-B DeiT-B Swin-B Swin-S Average (Δ)

CIFAR-10

Ens 50.42 26.85 21.83 17.61 11.59 26.15 22.61 35.42 26.56

SVRE 54.08 28.47 23.28 19.06 13.83 31.00 25.17 40.17 29.38 (+2.82)

AdaEA 61.54 38.07 33.36 28.99 31.77 59.72 45.90 61.38 45.09 (+18.53)

CIFAR-100

Ens 80.13 67.89 60.79 44.78 45.46 69.50 64.40 77.14 63.76

SVRE 82.06 68.68 62.59 46.30 48.11 73.63 67.94 80.49 66.23 (+2.47)

AdaEA 82.19 70.02 65.28 48.63 60.20 82.83 75.21 84.41 71.10 (+7.34)

ImageNet

Ens 52.90 58.10 56.86 48.27 39.94 51.38 25.95 37.66 46.38

SVRE 53.10 57.84 56.90 48.38 40.03 52.06 25.54 37.26 46.39 (+0.01)

AdaEA 53.10 58.33 58.57 50.06 46.13 58.05 29.37 41.30 49.36 (+2.98)

Table 2. The attack success rate (%) of adversarial examples generated by ensemble attacks based on different attack methods on CIFAR-

10. The bolded numbers indicate the best results and Δ represents the improvements over the baseline.

Base Attack Res-50 WRN101-2 BiT-50 BiT-101 ViT-B DeiT-B Swin-B Swin-T Average (Δ)

FGSM [8]

Ens 21.32 16.22 12.58 10.69 7.17 10.68 8.30 15.23 12.77

SVRE 26.05 20.61 21.26 18.87 17.84 22.23 17.66 25.99 21.31 (+8.54)

AdaEA 32.96 31.41 34.35 32.57 38.40 45.83 35.82 43.78 36.89 (+24.12)

I-FGSM [28]

Ens 50.42 26.85 21.83 17.61 11.59 26.15 22.61 46.93 28.00

SVRE 51.92 27.50 22.90 18.29 13.30 30.74 24.84 51.01 30.06 (+2.06)

AdaEA 61.54 38.07 33.36 28.99 31.77 59.72 45.90 70.77 46.27 (+18.27)

MI-FGSM [4]

Ens 55.10 33.89 29.68 25.28 20.96 42.12 31.30 58.20 37.07

SVRE 31.46 21.37 18.53 16.21 15.53 26.86 20.70 33.69 23.04 (-14.03)

AdaEA 66.58 44.45 41.90 37.23 45.96 70.78 53.61 78.00 54.81 (+17.74)

DI2-FGSM [32]

Ens 90.28 67.34 63.06 57.65 51.19 82.44 76.31 91.26 72.44

SVRE 39.30 32.12 29.78 27.41 26.82 36.99 35.35 40.20 33.49 (-38.95)

AdaEA 91.49 74.08 72.26 68.83 66.96 89.23 84.48 95.20 80.32 (+7.88)

promising versatility of our proposed AdaEA.

Attack advanced defense models. We also evaluate

AdaEA on attacking models with various advanced de-

fenses, including adversarial training defenses and input

transformation-based defenses. The results are summarized

in Table 3. For adversarial training defense, we use ad-

versarial trained Inc-v3ens3, Inc-v3ens4 and Inc-v2ens net-

works as the target model following previous works [33,

27]. But unlike they set the surrogate model as the same

architecture as the model used in ensemble training, we set

the experiments under a more challenging scenario where

we use totally different architectures as surrogate models

(i.e., our default settings). As we can see from Table 3, de-

spite the challenge to attack an adversarially trained black-

box model, our AdaEA exhibits the strongest attack per-

formance among the compared methods. For the input

transformation-based defenses, we adopt six popular in-

put transformation-based defenses to test the attack perfor-

mance of each method. From the results in columns seven to

thirteen of Table 3, AdaEA achieves the best results where

it surpasses the baseline by 7.9, 8.27 and 4.93 on the base

I-FGSM, MI-FGSM, and DI2-FGSM attack, respectively.

Visualization of attack performance. To intuitively show

the attack performance, we visualize the heatmaps of clean

image and adversarial examples generated by different en-

semble methods in both white-box and black-box models

in Figure 4. As can be observed in the Figure 4 (b) and

(c), the attention of the white-box models changes on all

the generated adversarial images compared with the clean

image, which indicates that the generated adversarial exam-

ples can effectively trigger the wrong prediction of these

models. However, when transferred to black-box models,

the Ens and SVRE methods fail to mislead the model at-

tention where the heatmaps are similar to the clean image,

as shown in the second to third rows of Figure 4 (d)-(e). In

contrast, thanks to the amplification of potential intrinsic

adversarial information via AGM-DRF schemes in AdaEA,

the generated adversarial example can still fool the atten-

tion of black-box models where the attention is dramatically

changed in Figure 4 (d)-(e).

4.3. Ablation Studies

In this subsection, we conduct a series of ablation exper-

iments to study the effects of key components and hyper-

parameters in our AdaEA.
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Table 3. The robust accuracy (%) against three adversarial training models and six advanced defense methods on CIFAR-10. The results

of input transformation-based defenses are the average results of all target models. The bolded numbers indicate the best results.

Base Attack
Adversarial training defense Input transformation-based defenses

Inc-v3ens3 Inc-v3ens4 Inc-v2ens Avg. R&P Bit-R JPEG ComDefend RS NRP Avg.

I-FGSM

Ens 0.54 0.67 0.55 0.59 18.98 32.75 23.58 83.82 57.44 13.07 38.27

SVRE 0.64 0.79 0.65 0.69 20.56 35.94 26.35 83.77 57.77 12.86 39.54

AdaEA 0.79 0.98 0.79 0.85 26.93 49.67 40.20 84.06 59.65 16.51 46.17

MI-FGSM

Ens 0.73 0.99 0.75 0.82 26.38 43.51 36.10 83.94 58.56 5.11 42.27

SVRE 0.55 0.65 0.66 0.62 16.41 25.39 23.08 83.74 56.67 3.91 34.87

AdaEA 1.14 1.38 1.21 1.24 37.31 60.90 53.74 84.21 61.64 5.41 50.54

DI2-FGSM

Ens 1.47 1.72 1.79 1.66 62.92 76.80 72.54 84.16 60.96 5.30 60.44

SVRE 0.85 1.02 1.01 0.96 30.77 34.46 33.79 83.77 57.75 4.28 40.80

AdaEA 2.27 2.49 2.50 2.42 71.83 82.24 79.99 84.37 64.90 8.92 65.37
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Figure 4. Heatmaps of different inputs in the surrogate models and

black-box models. (a) input images, including clean image and

adversarial examples generated by each attack method. (b)-(e) are

the heatmaps on the surrogate models (Res-18, ViT-T) and black-

box models (WRN50-2, Swin-T), respectively.

On the components of AdaEA. We first examine the ef-

fectiveness of AGM and DRF mechanisms in our AdaEA.

Specifically, we perform four ensemble methods: the naive

ensemble attack, ensemble with AGM, ensemble with DRF,

and our AdaEA involving both AGM and DRF on black-

box attacks. The results are reported in Table 4. As can be

seen, using AGM can effectively enhance the attack trans-

ferability with 12.50% averaging improvements, indicating

its effectiveness in amplification of adversarial information

during gradient ensemble. It is interesting to see that adding

DRF into baseline brings significant improvements on the

transferability to ViTs, i.e., 23.94% −→ 47.57%. This is

due to the wide differences across CNNs and ViTs, reduc-

ing the gradient disparity among the CNNs and ViTs can

provide more stable and better attack performance. In gen-

eral, AGM together with DRF can provide the best trans-

ferability with a large improvements over the baseline, i.e.,
27.29% −→ 44.78% in average.

Table 4. Experimental results of average attack success rate (%)

on the component ablations in AdaEA.

Ens models Method CNNs ViTs All (Δ)

Res-18,

Inc-v3,

ViT-T,

DeiT-T

Ens 29.96 23.94 27.29

+AGM 39.48 40.18 39.79 (+12.5)

+DRF 38.31 47.57 42.42 (+15.13)

AdaEA 40.85 49.69 44.78 (+22.4)
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Figure 5. Ablation study on (a) weighting scale β in AGM and (b)

binarization threshold η in DRF.

On hyper-parameter sensitivity. We study the sensitivity

of our AdaEA to the weighting scale β in Eq. (4) and the bi-

narization threshold η in Eq. (7). We use Res-18 and ViT-T

as the surrogate models for ensemble, and show the curves

of averaging success rate on black-box CNNs, ViTs, and

all the models in Figure 5. As we can see in Figure 5 (a),

a larger value of β leads to better trasferability to ViTs but

lower transferability to CNNs. This suggests that the gradi-

ents of ViTs play a critical role in AGM process, a larger β
can amplify the focus on ViTs. We set β = 10 as the aver-

age attack success rate on all the target models reaches the

peak at β = 10. For the binarization threshold η in Figure 5

(b), the transferability to ViTs gains large improvements by

reducing the disparity as η increases, but the transferability

to CNNs shows a bit drop. The average performance on all

the models increases and reaches the peak at η = −0.3.

4.4. Further Analysis

Since our work is among the first grups to study the ad-

versarial transfer across both CNNs and ViTs, we further
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Table 5. Comparison of average attack success rate (%) between ensemble attack and our AdaEA under different ensemble models on

CIFAR-10. Bolded numbers signify better results.

Ensemble

models
# CNNs # ViTs Attack

CNNs ViTs

Res-50 WRN101-2 BiT-101 Average ViT-B DeiT-B Swin-S Average

Inc-v3,

DeiT-T
1 1

Ens 14.52 8.09 5.73 9.45 3.76 7.18 8.79 6.58

AdaEA 29.02 18.53 19.25 22.27 20.52 36.75 33.09 30.12
Res-18,

Inc-v3, ViT-T
2 1

Ens 43.39 22.83 13.23 26.48 5.12 10.58 21.68 12.46

AdaEA 49.30 27.03 16.51 30.95 8.47 17.71 29.61 18.60
Inc-v3,

ViT-T, Swin-T
1 2

Ens 24.19 12.70 9.34 15.41 6.19 13.07 71.43 30.23

AdaEA 39.07 20.86 16.95 25.63 15.02 33.33 95.66 48.00
Res-18, Inc-v3

BiT-50
3 0

Ens 52.86 31.69 68.21 50.92 4.15 7.08 21.01 10.75

AdaEA 60.27 37.90 72.20 56.79 5.28 9.49 25.97 13.58
ViT-T, DeiT-T,

Swin-T
0 3

Ens 52.70 29.41 27.90 36.67 38.76 71.60 99.00 69.79

AdaEA 50.14 30.05 29.41 36.53 45.92 75.25 97.05 72.74
Res-18, Inc-v3,

ViT-T, DeiT-T
2 2

Ens 50.42 26.85 17.61 31.63 11.59 26.15 35.42 24.39

AdaEA 61.54 38.07 28.99 42.87 31.77 59.72 61.38 50.96
Res-18, ViT-T,

DeiT-T, Swin-T
1 3

Ens 66.79 38.00 26.49 43.76 21.20 47.75 94.53 54.49

AdaEA 71.39 42.88 34.70 49.66 44.45 76.05 98.00 72.83
Res-18, Inc-v3,

BiT-50, ViT-T
3 1

Ens 61.66 37.43 72.86 57.32 9.64 18.64 39.08 22.45

AdaEA 69.91 45.16 76.39 63.82 14.64 27.88 49.15 30.56

analyze the transferability of adversarial examples from the

perspective of surrogate models used during the ensemble

by considering the following questions.

What effect does the number of surrogate models have
on the transferability? We first test the effect of different

numbers of surrogate models on the ensemble attack per-

formance. From Table 5, we can see that as the number

of surrogate model increases, the overall attack success rate

improves from the first row to the bottom row. The ensem-

ble using four surrogate models improves the average suc-

cess rate by around 20% on both CNNs and ViTs over using

two surrogate models, as can been seen in the second and

seventh rows of Table 5. Intuitively, using more surrogate

models can lead to better transferability since more adver-

sarial information can be captured. More importantly, our

AdaEA consistently improves the ensemble attack perfor-

mance regardless the number of ensemble models.

How does different proportions of CNNs to ViTs in
surrogate models affect the overall transferability? As

CNNs and ViTs are two main branches in the family of

DNNs, we investigate the effects of the proportions of

CNNs to ViTs in the surrogate models on the overall trans-

ferability. By observing the second, third, and ninth rows

of Table 5, as the number of CNNs increases in the surro-

gate models, the attack rate on CNNs obviously improves.

But in contrast, the attack success rate on ViTs is not going

higher. This indicates that the ensemble gradient focuses

more on the gradients of CNNs when the CNNs dominate

in the surrogate models. When only CNNs are used as sur-

rogate models in the fifth row of Table 5, the attack has high

success rates on CNNs but reveals a low transfer rate on

ViTs. But interestingly, when the proportion of CNNs to

ViTs becomes 0 : 3 in the sixth row of Table 5, where only

ViTs are used, the ensemble attack still exhibits a high trans-

fer rate to CNNs. The same results can be seen in the fourth

and eighth rows of Table 5 when the ViTs dominate the sur-

rogate models, the transfer to CNNs can still maintain a

high attack success rate. This phenomenon indicates that

it is easier to transfer attacks from ViTs to CNNs compared
with transferring from CNNs to ViTs. We attribute this to

the more complex architecture and global modeling abil-

ity of ViTs, which makes ViTs capable of extracting more

generic adversarial information.

5. Conclusion
In this work we propose AdaEA, an adaptive ensem-

ble adversarial attack that merges the gradients of surrogate

models via monitoring on the contribution of each model to

the overall adversarial objective, for boosting the transfer-

ability of adversarial examples. We show that AdaEA can

effectively enhance the adversarial transferability across

models with a large margin over the existing ensemble

methods under various settings, even those with wide ar-

chitecture differences, e.g., CNNs and ViTs, which demon-

strates the effectiveness of our method in capturing intrinsic

adversarial information of inputs.
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