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Abstract

Computer vision-based walking assistants are prominen-
t tools for aiding visually impaired people in navigation.
Blind road segmentation is a key element in these walking
assistant systems. However, most walking assistant systems
rely on visual light images, which is dangerous in weak illu-
mination environments such as darkness or fog. To address
this issue and enhance the safety of vision-based walking
assistant systems, we developed a thermal infrared blind
road segmentation neural network (TINN). In contrast to
conventional segmentation techniques that primarily con-
centrate on enhancing feature extraction and perception,
our approach is geared towards preserving the inherent
radiation characteristics within the thermal imaging pro-
cess. Initially, we modelled two critical factors in ther-
mal infrared imaging - thermal light atmospheric trans-
mission and thermal inertia effect. Subsequently, we use
an encoder-decoder architecture to fuse the feathers ex-
tracted by the two modules. Additionally, to train the net-
work and evaluate the effectiveness of the proposed method,
we constructed a large-scale thermal infrared blind road
segmentation dataset named TBRSD consists 5180 pixel-
level manual annotations. The experimental results demon-
strate that our method outperforms existing techniques and
achieves state-of-the-art performance in thermal blind road
segmentation, as validated on benchmark thermal infrared
semantic segmentation datasets such as MFNet and SO-
DA. The dataset and our code are both publicly available
in https://github.com/chenjzBUAA/TBRSD or
http://xzbai.buaa.edu.cn/datasets.html.

1. Introduction
As of 2020, the estimated number of blind individu-

als worldwide was 43.3 million, and 295 million people
∗Corresponding author.

Figure 1. Thermal infrared imaging is influenced by two key fac-
tors: atmospheric transmission and thermal inertia effect. All ob-
jects with a temperature above absolute zero emit thermal infrared
radiation, and the intensity of this radiation that is detected by the
camera is affected by atmospheric transmission. Once the inci-
dent radiation reaches the thermal microbolometer, the resulting
intensity measurement is also affected by the thermal inertia ef-
fect. Thus, we modeled the two effects and incorporated these
models into our blind road segmentation method, which allows us
to more accurately identify and segment thermal images of blind
roads, even in challenging environmental conditions.

had moderate to severe vision impairment. Between 1990
and 2020, the global number of people who were blind in-
creased by 50.6%, while the number of individuals with
moderate to severe vision impairment rose by 91.7%. Pro-
jections indicate that by 2050, the number of blind individ-
uals will increase to 51 million, and the number of people
with moderate to severe vision impairment will rise to 474
million [3]. Individuals with visual impairments often ex-
perience difficulty with navigation when engaging in social
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activities and interactions due to the complex outdoor en-
vironment. To help tackle this problem, a variety of sup-
portive tools and assistants have been developed to promote
outdoor navigation and enhance the use of technology for
those with visual impairments [11].

Since the 1960s, walking assistants have been introduced
to help people with mobility issues with tasks such as nav-
igation and location. These assistants help individuals with
visual impairments detect and locate obstacles around them
through the use of sensors that perceive the surrounding en-
vironment [4, 17, 39].

Visual assistance technology has spurred the develop-
ment of various walking assistants to help mitigate the mo-
bility obstacles of visually impaired individuals [14]. Vari-
ous methods have been proposed to assist visually impaired
individuals to walk on blind roads, such as visual guiding
using image segmentation [1, 13, 12, 29, 26, 5, 19, 37].

Semantic segmentation methods can be utilized to seg-
ment blind road. Convolutional neural networks (CNNs)
have shown great performance improvements in semantic
segmentation [2, 6, 18, 28, 38]. Vision Transformers (ViTs)
have recently emerged as a competitive alternative. ViT-
s offer strong expressivity and long-distance information
interaction with dynamic feature aggregation through self-
attention operations [40, 34, 8, 7, 16]. Furthermore, datasets
containing visual images with sidewalks have been intro-
duced to offer assistance to individuals with visual impair-
ments, exemplified by projects like SideGuide and Mapil-
lary Vistas [24, 22].

However, most semantic segmentation methods rely on
visual images, which can be inadequate in weak illumina-
tion environments like darkness or fog. Therefore, thermal
infrared semantic segmentation has been proposed as a so-
lution to this problem [15, 31, 21, 23, 35].

In spite of the extensive utilization of thermal infrared
images across various applications, the influence stemming
from the thermal imaging characteristics of objects and
backgrounds has frequently been disregarded by prevailing
processing techniques. The prevalent practice of interpret-
ing thermal infrared images solely as grayscale images fails
to comprehensively capture the intricate thermal nuances.

While conventional segmentation methodologies pre-
dominantly center around refining feature extraction and
perception, the precision of these techniques is frequently
compromised due to the introduction of information disor-
der through the thermal imaging process. To address this
limitation, we identify two pivotal factors significantly im-
pacting thermal infrared imaging - atmospheric transmis-
sion and the thermal inertia effect - and incorporate them
into the thermal infrared image processing pipeline.

Our specific proposition involves a network that capital-
izes on these effects to enhance the efficacy of blind road
segmentation in thermal infrared imaging. As a result, our

method outperforms in the domain of thermal infrared blind
road segmentation, rectifying the limitations previously en-
countered.

To summary, our main contributions are as follows:

• We model the two critical factors in thermal infrared
imaging - atmospheric transmission and thermal iner-
tia effect - and incorporate them into the segmentation
task for the first time. we present a thermal blind road
segmentation network that effectively leverages these
effects.

• We construct the first public large-scale thermal in-
frared blind road segmentation dataset, which contains
5180 images. All images are with pixel-level annota-
tions. The dataset is publicly available.

• Our method achieves state-of-the-art performance on
both our own thermal infrared blind road segmentation
dataset TBRSD and the benchmark thermal infrared
semantic segmentation datasets MFNet [10] and SO-
DA [15].

2. Related Work
2.1. Walking Assistant Systems

Assisting visually impaired individuals to navigate safe-
ly on foot is a challenging task. While traditional tools such
as guide dogs [32] and white canes [36] have been useful,
their effectiveness is limited by factors such as speed, cover-
age, and capacity. In recent years, visual assistance method-
s have been proposed to address these limitations, with the
goal of improving the mobility and independence of visual-
ly impaired individuals. One such method is visual guiding,
which uses image segmentation techniques to assist indi-
viduals in walking on blind roads. In particular, researchers
such as Alvarez et al. have used an illumination-invariant
feature space and road class-likelihood to construct a classi-
fier for road detection [1], while Horne et al. have designed
a semantic labeling method to assist with path navigation
[13, 12]. Tang et al. proposed a blind roads segmentation
method using Gaussian vectors and multi-color spaces, but
it has shown poor performance in complex environments
[29]. To address these limitations, Peng et al. designed
a blind roads segmentation method based on a color his-
togram and gray level co-occurrence matrix, which has bet-
ter illumination shielding effects but requires longer compu-
tation times [26]. Cao et al. proposed a lightweight seman-
tic segmentation network to quickly and accurately segmen-
t blind roads and crosswalks. The method use depthwise
separable convolution to improve the speed of network seg-
mentation, and use a dense atrous spatial pyramid pooling
module and context feature fusion module to ensure seg-
mentation accuracy [5].
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Figure 2. We construct the first public large-scale thermal blind road segmentation dataset TBRSD. Here are (a) some samples of original
images and pixel-level annotations from TBRSD and (b) types of blind road materials present in the dataset. (c) The distribution of the
training and testing sets in TBRSD, represented by a histogram. The horizontal axis indicates the area of blind road in an image, and the
vertical axis indicates the number of images with that area.

2.2. Thermal Image Segmentation

Thermal image segmentation is a technique that involves
learning thermal infrared image features in dedicated mod-
ules to obtain accurate segmentation results. Edge infor-
mation is used to handle ambiguous object boundaries and
imaging noise, which improve the performance of segmen-
tation quality [15] . [31] proposed a thermal infrared pedes-
trian segmentation algorithm based on a conditional genera-
tive adversarial network (IPS-cGAN). The IPS-cGAN gen-
erator is based on the Unet network, but with two modifi-
cations to make it better suited for thermal infrared pedes-
trian segmentation. In RT-SegRBM-Net [21], a novel ap-
proach is proposed for real-time segmentation of vehicles
in UAV-based thermal images. This approach combines the
Gaussian-Bernoulli Restricted Boltzmann Machine (GB-
RBM) and convolutional neural network to achieve accu-
rate and efficient segmentation results. Feature Transverse
Network (FTNet) [23] is a convolutional neural network
architecture that can be trained end-to-end. Employing
an encoder-decoder structure along with an edge guidance
component, FTNet is designed to perform accurate pixel-
wise classification. To address the challenge of thermal
image segmentation in nighttime driving scenes, Xiong et
al. proposed the Multi-level correction network (MCNet)
[35]. This approach leverages a multi-level attention mod-
ule (MAM) to effectively capture the contextual informa-
tion in thermal images, enabling more accurate segmenta-

tion results.

3. Thermal Blind Road Segmentation Dataset
We collect a large-scale thermal blind road segmentation

dataset named TBRSD. TBRSD consists of 5180 frames
with manually pixel-level segmentation annotation.

The Thermal camera used in our dataset is the Zen-
muse XT, equipped with an uncooled vanadium oxide mi-
crobolometer for thermal imaging. The camera has a spec-
tral range of 7.5-13.5 µm, a pixel spacing of 17µm, and a
focal length of 13mm.

Over 450,000 frames were meticulously captured by the
camera across various geographical points in northern, cen-
tral, and eastern China, each representing distinct urban ar-
chitectures and diverse climatic conditions. The data collec-
tion endeavors were undertaken post 8 pm, specifically dur-
ing periods of low illumination. The dataset encompasses
frames acquired under a gamut of weather scenarios, rang-
ing from sunny and rainy to cloudy and foggy, covering al-
l seasons. All frames maintain a consistent resolution of
480×720 pixels.

These images were captured while walking and hand-
holding the camera, effectively emulating the sensory ex-
perience of individuals with visual impairments. To ensure
accuracy, every pixel-level annotation underwent a compre-
hensive manual process and subsequent verification, em-
ploying visible images taken at the same locations during
daytime. Some samples and pixel-level annotations are giv-
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en in Fig. 2 (a).
Our dataset, TBRSD, contains samples of major types of

materials used in blind road construction, including plastic,
cement, ceramic, and granite, as shown in Fig. 2(b). The
dataset is divided into train, test, and validation sets in a
standard manner, with 2500, 500, and 2180 images, respec-
tively. The distribution of the areas of blind road in the train
and test sets is shown in the histogram in Fig. 2(c). The dis-
tribution of blind road areas in the images follows a normal
distribution and is similar in both the train and test sets.

To the best of our knowledge, TBRSD is the first public
thermal pixel-level dataset for blind road segmentation task.

4. Thermal Imaging Induced Blind Road Seg-
mentation Neural Network

In this work, we propose a novel deep neural network
(TINN) that takes into account two key effects in thermal
imaging, namely the atmospheric transmission of thermal
radiation and the thermal inertia effect. Instead of regarding
thermal images solely as grayscale depictions and focusing
on enhancing feature extraction and perception capabilities,
we have devised an encompassing model that effectively en-
capsulates the two crucial physical phenomena that wield
substantial influence on thermal imaging.

To this end, we first build modules that describe the
transmission of thermal radiation through the atmosphere
in 4.1 and the interaction of obtained thermal radiation with
the imaging sensor in 4.2. These modules enable us to accu-
rately model the thermal imaging process, providing a more
robust foundation for our network to learn from.

Finally, we employ an encoder-decoder architecture in
our network, which is described in 4.3. This architecture
effectively fuses features of the two modules to improve the
accuracy of thermal blind road segmentation.

4.1. Atmospheric Transmission Module (ATM)

Thermal infrared radiation experiences attenuation as it
passes through the atmosphere. This attenuation attributes
to two main factors: absorption and scattering. Specifical-
ly, carbon dioxide and water vapor present in the atmo-
sphere can absorb thermal infrared radiation, while IR ra-
diation can also be scattered diffusely by particles in the
atmosphere. Attenuation of thermal infrared radiation as it
travels through air is described by the Bouguer-Lambert-
Beer law[30] as Fig. 3 shows. This law provides a relation-
ship between the transmittance of radiance, represented by
T , and the distance that the radiation has traveled through
the air, represented by d:

T (λ, d) =
I(λ, d)

I(λ, 0)
= eγ(λ)·d. (1)

Here, γ(λ) = n · (γabs + γsca) represents the total at-
tenuation coefficient, which is primarily composed of two

Figure 3. Attenuation of thermal infrared light traveled through
the air is primarily composed of absorption and scattering. The
transmission is exponentially decreased by the distance d between
the object to the camera.

factors: absorption (γabs) and scattering (γsca). n denotes
the volume concentration of the gas.

For an input image I ∈ RW×H×Channel, The output of
ATM IATM is calculated as IATM = I × e(γabs+γsca)×d,
as shown in Fig. 5(b). Here theW , H and Channel denote
the width, height and channel of the image, respectively. In
our Atmospheric Transmission Module, we set γabs, γsca
and d as trainable parameters, which are initialized as zeros,
zeros and ones, respectively.

The atmospheric transmission and scattering are influ-
enced by the environment. In our method, we adopt the
assumption that each pixel represents a shared atmospheric
parameter within its specific collection range. Consequent-
ly, the ATM module operates on a per-pixel basis in our
approach.

The processes here are all in a pixel-to-pixel manner,
such as dot multiplications and summations. Thus, γabs,
γsca, d and IATM are all in a size of W ×H × Channel.
This enables the network to effectively learn the attenuation
of thermal radiation caused by atmospheric transmission,
leading to improved performance in thermal infrared blind
road segmentation.

4.2. Thermal Inertia Module (TIM)

In Microbolometer Infrared Focal Plane Array (M-
IFPA), the sensor is constantly exposed to incoming electro-
magnetic (EM) radiation emitted by the objects in its field of
view. As the radiation interacts with the sensing material, it
causes a change in the temperature of each individual pixel,
which alters its electrical resistance. This electrical resis-
tance is measured by a Read-Out Integrated Circuit (ROIC)
at regular intervals to determine the temperature values cor-
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Figure 4. The thermal microbolometer detects incident radiation
by measuring the electrical resistance. The incident radiation is
captured by the membrane of the microbolometer. A change in
electrical resistance between the membrane and the substrate de-
termines the recorded intensity, which in turn is used to generate
the final thermal image. This process is impacted by the thermal
inertia effect of the microbolometer. This effect can be modeled
by parameterizing the thermal conductivity, thermal capacitance
and the absorptivity of the microbolometer.

responding to each pixel.
However, if the incoming radiation is continuously

changing, the microbolometer is unable to reach thermal
equilibrium before the ROIC takes the next measurement.
Therefore, the microbolometer must be modeled by taking
into account its time-dependent behavior under varying ra-
diation conditions.

Given the absorptance α(λ) of the microbolometer, the
energy conversion process of the microbolometer can be
expressed using the principle of energy conservation as
[30, 27]:

αΦ = Cth
d∆T

dt
+Gth∆T. (2)

Here, Cth and Gth represent the heat capacitance and
heat conductance of the thermal microbolometer, respec-
tively. Gth takes into account all of the heat exchange
mechanisms, such as conduction, convection, and radiation.
In Eq.2, Φ represents the net radiation power transferred
to the detector, while αΦ represents the net radiant power
transferred to the detector which leads to an increase in the
temperature, ∆T .

In our module, we set the radiations are square-wave
pulses, the temperature difference ∆T exhibits an exponen-
tial rise and decay with a time constant τ . By solving Equa-
tion 2, the temperature response ∆T (t) of the sensor during
the rise period is derived as:

∆T (t) =
αΦ

Gth
(1− e− t

τ ), (3)

with time constant τ = Cth
Gth

.
To model the effect in a neural network, we assume that

the historical radiation are in the decay periods. For the
decay period, the temperature response ∆T (t) of the sensor
is given by:

∆T (t) =
αΦ

Gth
(e−

t
τ ). (4)

τ and α are the time constant and the absorptance of
a thermal detector, respectively. The temperature change
caused by historical radiation in the last period affects the
incoming radiant, resulting in a constant effect on the ob-
tained intensity, which is known as the thermal inertia effect
of each pixel.

To model the thermal inertia effect, we consider the his-
torical radiation and the object radiation as Φ0 and Φ1, re-
spectively. During the exposure time, the object radiation is
in the rise period while the historical radiation is in the de-
cay period. Thus, the obtained intensity can be interpreted
as:

I =

∫ t0+te

t0

[
αΦ1

Gth
(1− e− t

τ ) +
αΦ0

Gth
e−

t
τ

]
dt.

=
α

Gth
Φ1

[
te + τe−

t0
τ (e−

te
τ −1)

]
− ατ

Gth
Φ0e

− t0
τ (e−

te
τ −1).

(5)
Here t0 and te represent the starting time in the historical

radiation when exposure starts and the duration of exposure
to the object radiation, respectively. From Eq. 5 we can
derive the object radiation Φ1 to supply the information for
the neural network. The object radiation Φ1 which is also
the output of TIM ITIM is derived as follows:

ITIM = Φ1 =
I + ατ

Gth
Φ0e

− t0
τ (e−

te
τ − 1)

α
Gth

[
te + τe−

t0
τ (e−

te
τ − 1)

] . (6)

Here, I ∈ RW×H×Channel is the input image. α, Cth,
Gth, t0, te and Φ0 are all trainable parameters initialized
with ones in this module. τ is calculated as τ = Cth

Gth
. Sizes

of α, Cth, Gth, t0, te, τ and Φ0 are all W ×H ×Channel.
Thermal mocrobolometers are assembled on a per-pixel

basis (each pixel corresponds to a microbolometer). Thus,
as shown in Fig. 5(c), the output of TIM ITIM is calculated
on a pixel-to-pixel basis.

4.3. Architecture

The architecture of TINN is illustrated in Fig. 5(a). S-
ince blind roads for the visually impaired are usually lo-
cated in fixed positions within cities, we adopt an encoder-
decoder architecture primarily based on Transformer blocks

1057



Figure 5. Overview of (a) TINN and the two key blocks: (b) the Atmospheric Transmission Module(ATM) module and (c) the Thermal
Inertia Module(TIM). Here the γabs, γsca, d, Cth, Gth, t0, te, α,Φ0 and τ are all trainable parameters. All operations in ATM and TIM
are processed on a pixel-to-pixel basis.

to capture global information effectively. To this end, we
use SegFormer [34] as our backbone.

The underlying concepts of ATM and TIM rely on a step-
by-step progression following a serial structure. Nonethe-
less, in our network, we present ATM and TIM with dis-
crete and approximated descriptions. Consequently, incor-
porating a sequential framework like an enhancement mod-
ule could potentially result in certain inaccuracies. As a
result, we have chosen to adopt a parallel framework to en-
sure both the stability and efficiency of the model, as shown
in Fig. 5(a).

During encoding, the input image I is passed through
the Atmospheric Transmission Module (ATM) to obtain the
information combining thermal transmission effect. Specif-
ically, we compute IATM = I ×

(
e(γabs+γsca)×d

)
, where

× represents dot multiplication, γabs and γsca are the ab-
sorption and scattering coefficients of the atmosphere, re-
spectively, and d is the distance between the camera and the
scene. Afterward, the features go through the 4 hierarchi-
cal transformer blocks as suggested by SegFormer. The 4
multi-level features with different sizes are generated as:

〈F1, F2, F3, F4〉 = Enc(IATM ), (7)

where F1, F2, F3, F4, and Enc denote the four features and
the encoder of SegFormer, respectively.

Additionally, the input image is processed by the Ther-
mal Inertia Module (TIM). In TIM, α, Cth, Gth, t0, te, and

Φ0 are all trainable parameters initialized with ones as sug-
gested in 4.2. τ is calculated by dividing Cth and Gth. The
output of TIM ITIM is generated as in Eq. 6.

The operations performed in TIM are all processed on a
pixel-to-pixel basis. ITIM is a feature representation of the
input image that considers the thermal inertia effect, which
is then denoted as F5 = ITIM in our architecture.

During decoding, the first two dimensions of
F1, F2, F3, F4 and F5 are resized to the same size,
which is 128×128, and the MLP layers transform the
last dimension of F5 to 768. As a result, the size of
F1, F2, F3, F4 and F5 becomes 128 × 128 × 768. The five
features are concatenated and input into the decoder of
TINN, which is an MLP recommended by SegFormer, to
generate the segmentation mask.

For the segmentation task, we utilize a pixel-wise cross-
entropy loss to evaluate individual images. The loss func-
tion is defined as:

Lseg(P,Y) = − 1

n

i∑ j∑
Yi,j logPi,j , (8)

where Pi,j ∈ R and Yi,j ∈ {0, 1} denote the predicted
score and groundtruth label of class j at pixel i, respectively.
n is the total number of pixels in the image.
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5. Experiments
In this section, we describe the experimental evaluation

of our proposed method on our dataset TBRSD in 5.1. We
present a comparison of our results both quantitatively and
qualitatively with existing methods. Furthermore, we con-
duct ablation studies to analyze the individual components
of our proposed method in 5.2.

5.1. Experiment on Thermal Blind Road Segmen-
tation

We conducted an evaluation to assess the effectiveness of
our proposed TINN model on the TBRSD dataset. We used
the intersection over union (IoU ) and weighted F-measure
(Fwβ ) as the evaluation metrics, as suggested in [20], which
are higher the better. TINN is implemented using PyTorch
[25] and trained it for 240,000 iterations using stochastic
gradient descent with an AdamW optimizer and a weight
decay of 0.0001. We used the poly strategy and set the ini-
tial learning rate and power to 0.0002 and 0.9, respectively.
To initialize TINN, we used a model pre-trained on Ima-
geNet [9]. All input images were resized to 512 × 512 for
both training and testing, and the final output was resized
back to the original input resolution.

To ensure a fair comparison and fully demonstrate the
effectiveness of our method, we compared it to 15 state-
of-the-art methods, including both visible and thermal se-
mantic segmentation methods. To eliminate the influence
of pretraining, all methods were initialized with a model
pretrained on ImageNet. Furthermore, we set all methods
to the same or recommended training settings for consisten-
cy in our evaluation. Among the compared methods, five
are based on deep convolution neural networks, including
DeepLab V3+ [6], PSPnet [38], UPerNet [33], FCN [18]
and SegNet [2]. Meanwhile, five methods, SETR [40],
SegFormer [34], Vit-Adapter [7], Mask2Former [8] and
MaskDINO [16], are constructed through transformer mod-
ules. Additionally, three methods, EC-CNN [15], FTnet[23]
and MCNet [35], fall within the domain of thermal semantic
segmentation. Notably, Trans4Trans [37] and EOS [19] are
both tailored to the needs of visually impaired individuals.

Table 1 shows the quantitative comparison with other
methods on TBRSD. The IoU and Fwβ are calculated on
blind road. Furthermore, we provide the parameter counts
for all comparing methods. The count of parameters in our
methodology is subject to the selection of the backbone ar-
chitecture, which remains relatively low in comparison to
transformer-based approaches.

Our method surpasses the existing methods with around
1.3% and 0.6% on IoU and Fwβ . Qualitative comparison
with other method is displayed in Fig. 6. Qualitative results
show that convolutional neural networks may sometimes ig-
nore the target when the background features are similar to
the target. Meanwhile, Transformer-based networks tend to

Table 1. Results of comparing methods on TBRSD.

Method IoU ↑ Fwβ ↑ Params(M)
DeepLab V3+ [6] 0.8695 0.8954 62.7

PSPnet [38] 0.8649 0.8926 68.1
UPerNet [33] 0.8616 0.8905 72.3

FCN [18] 0.8798 0.9145 68.6
SegNet [2] 0.8359 0.8654 29.5
SETR [40] 0.8745 0.9082 318.3

SegFormer [34] 0.8864 0.9376 84.7
Vit-Adapter [7] 0.8796 0.9095 99.8

Mask2Former [8] 0.8795 0.9126 216.0
MaskDINO [16] 0.8867 0.9355 223.0
EC-CNN [15] 0.8642 0.8895 54.5
MCNet [35] 0.8556 0.8864 35.7
FTNet [23] 0.8426 0.8795 33.4

Trans4Trans [37] 0.8525 0.8859 48.3
EOS [19] 0.8649 0.8925 2.36

TINN(ours) 0.8989 0.9439 85.3

exhibit a higher occurrence of over-segmentation phenome-
na. Our method obtains more information at a distance and
extracts more features in the blurry region, which may be
caused by the thermal inertia effect.

5.2. Ablation Studies

In this section, we conducted extensive experiments to
evaluate the effectiveness of each proposed component. We
evaluated the ablated versions of our method on TBRSD, in
order to measure their performance. The detailed results of
each ablated version can be found in Table 2.

Table 2. Ablation studies of components of TINN on TBRSD.

Method IoU ↑ Fwβ ↑
Baseline 0.8864 0.9376

Baseline+ATM 0.8945 0.9421
Baseline+TIM 0.8913 0.9405

Baseline+ATM+TIM (TINN) 0.8989 0.9439

We set SegFormer as our baseline. The model achieved
an IoU of 0.8864 and an Fwβ of 0.9376. The ATM com-
ponent provided a gain of 0.8% IoU and 0.4% Fwβ , while
the TIM component provided a gain of 0.5% IoU and 0.3%
Fwβ . Combining both modules resulted in a gain of 1.3%
IoU and 0.6% Fwβ , which represents the overall perfor-
mance improvement of the two modules together. To visu-
alize the impact of ATM and TIM on the segmentation task,
we apply the the Baseline, Baseline+ATM, Baseline+TIM
and Baseline+ATM+TIM methods in Fig. 7.
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Figure 6. The qualitative comparison between our approach and some existing state-of-the-art methods on TBRSD.

Figure 7. Visual comparison of segmentation results with different
methods in ablation studies.

Figure 8. Visual comparison of probabilities of blind road predict-
ed with different methods in ablation studies. (a) Input image with
the groundtruth mask, (b) Baseline, (c) Baseline+ATM, (d) Base-
line+TIM, (e) Baseline+ATM+TIM.

Furthermore, we visualized the impact of the ablated
methods on the predicted probabilities of blind road in Fig.
8. By observing the results, it becomes evident that the p-
resence of distant objects is more pronounced after apply-
ing ATM, which effectively mitigates the transmission ef-
fect. In another hand, after the implementation of TIM, the
probability of localized predictions is enhanced through the
reduction of the thermal inertia effect.

6. Extended Applications of TINN for Thermal
Semantic Segmentation

To further testify the capacity and potential of our
method on more complicated thermal segmentation tasks,
we perform experiments on two thermal semantic segmen-
tation datasets, MFNet and SODA.

MFNet [10] is a dataset that comprises both RGB and IR
images. It consists of urban scene images, each annotated
with eight categories, namely car, person, bike, curve, car
stop, guardrail, color cone, and bump. In this work, we
evaluate several methods on the thermal subset of MFNet.
Table 3 presents a quantitative comparison of our method
with other state-of-the-art methods on MFNet, where we
calculate the IoU and Fwβ for all categories. Our method
outperforms existing methods by approximately 0.6% and
0.5% in terms of mIoU and Fwβ , respectively.

Table 3. Results of comparing methods on MFNet (thermal sub-
set).

Method mIoU ↑ Fwβ ↑
DeepLab V3+ [6] 0.4980 0.7132

PSPnet [38] 0.4524 0.6941
UPerNet [33] 0.4856 0.7054

SegFormer [34] 0.5068 0.7165
Vit-Adapter [7] 0.5062 0.7106

Mask2Former [8] 0.5130 0.7169
MaskDINO [16] 0.5103 0.7124
EC-CNN [15] 0.4756 0.7106
MCNet [35] 0.4315 0.6945
TINN(ours) 0.5193 0.7226

1060



SODA [15] contains 2168 real and 5000 synthetically
generated thermal images with 21 categories. The real sub-
set is captured by a FLIR camera (SC260), while the syn-
thetic subset consists of thermal images generated from an-
notated RGB images. In our evaluation, we focus on the
real subset and compare the performance of different meth-
ods on this subset.

Table 4. Results of comparing methods on SODA(real).

Method mIoU ↑ Fwβ ↑
DeepLab V3+ [6] 0.6873 0.8265

PSPnet [38] 0.6868 0.8247
UPerNet [33] 0.6745 0.8165

SegFormer [34] 0.6786 0.8096
Vit-Adapter [7] 0.6812 0.8199

Mask2Former [8] 0.6758 0.8056
MaskDINO [16] 0.6632 0.7984
EC-CNN [15] 0.6587 0.7965
MCNet [35] 0.6389 0.7846
TINN(ours) 0.6945 0.8356

Table 4 presents a quantitative comparison of our method
with other state-of-the-art methods on the SODA dataset,
where we evaluate the mIoU and Fwβ metrics among al-
l categories. Our method outperforms existing approaches
by approximately 0.7% and 0.9% inmIoU and Fwβ , respec-
tively.

The two experiments demonstrate the general capacity of
our method for more complicated segmentation tasks such
as thermal semantic segmentation tasks.

7. Conclusion
In this paper, we propose a novel approach that incor-

porates thermal imaging into the construction of a seg-
mentation architecture to tackle the thermal segmentation
task. Our method models two critical factors in the ther-
mal imaging process, namely atmospheric transmission and
thermal inertia, through the atmospheric transmission mod-
ule (ATM) and the thermal inertia module (TIM), respec-
tively. We then integrate the features generated by ATM
and TIM to achieve better segmentation results. We apply
our method to blind road segmentation, which is a crucial
task in walking assistant systems for visually impaired in-
dividuals, where thermal images can improve safety in low-
light environments. To evaluate the effectiveness of our ap-
proach, we collected a large-scale thermal blind road seg-
mentation dataset, TBRSD, and set a benchmark to assess
the quality of our method. The experimental results show
that our method achieves promising performance on this
task. Additionally, ablation studies demonstrate the impact
of ATM and TIM on the segmentation results. Finally, we

conducted experiments on the benchmark thermal datasets
MFNet and SODA, demonstrating that our method achieves
state-of-the-art performance compared to existing methods.

Limitation and future work The main limitation of
our method is that it is currently designed based on a sin-
gle backbone. In the future, we can explore incorporating
multiple structures for real-world applications. Additional-
ly, our dataset lacks auxiliary information like depth. We
can expand our dataset to include additional information in
these areas.
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