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Figure 1: Be Everywhere - Hear Everything (BEE): Audio reconstruction of a scene with dynamic emitters at arbitrary
listener locations, leveraging inputs from sparse A/V receivers. Please see supplementary materials for sample videos.

Abstract

Fully immersive and interactive audio-visual scenes are
dynamic such that the listeners and the sound emitters move
and interact with each other. Reconstruction of an immer-
sive sound experience, as it happens in the scene, requires
detailed reconstruction of the audio perceived by the lis-
tener at an arbitrary location. The audio at the listener lo-
cation is a complex outcome of sound propagation through
the scene geometry and interacting with surfaces and also
the locations of the emitters and the sounds they emit. Due
to these aspects, detailed audio reconstruction requires ex-
tensive sampling of audio at any potential listener location.
This is usually difficult to implement in realistic real-time
dynamic scenes. In this work, we propose to circumvent the
need for extensive sensors by leveraging audio and visual
samples from only a handful of A/V receivers placed in the
scene. In particular, we introduce a novel method and end-
to-end integrated rendering pipeline which allows the lis-
tener to be everywhere and hear everything (BEE) in a dy-
namic scene in real-time. BEE reconstructs the audio with
two main modules, Joint Audio-Visual Representation, and
Integrated Rendering Head. The first module extracts the
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informative audio-visual features of the scene from sparse
A/V reference samples, while the second module integrates
the audio samples with learned time-frequency transforma-
tions to obtain the target sound. Our experiments indicate
that BEE outperforms existing methods by a large margin
in terms of quality of sound reconstruction, can generalize
to scenes not seen in training and runs in real-time speed.

1. Introduction

It is Friday night, and your favorite jazz band is perform-
ing at the Birdland Jazz Club in New York. Your friends
will be attending but you cannot attend in person. Imagine
that instead, it would be possible to join them virtually, as
in the scenario illustrated in Figure 1. Enabling such an im-
mersive experience requires high-fidelity real-time spatial
audio reconstruction of the scene and could unlock novel
experiences in applications of virtual reality, mixed reality,
and immersive live-streaming.

While the dynamic aspects of such scenes are the ones
that make them immersive, these same aspects make au-
dio reconstruction a challenging problem. In particular,
for these scenes, sound reconstruction is an outcome of
(i) scene properties related to sound propagation, such as
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room geometry, surface materials, etc., and (ii) actions of
the emitters, such as their positions and emitted sounds at
every time step. Due to these, a possible direct approach for
audio reconstruction at arbitrary listener locations could be
to place a microphone at each such location, e.g., designing
a dense mesh of microphones. Such a solution is usually
impractical in realistic scenes. An alternative approach to
deal with multiple moving emitters at each time could be
to track the moving emitters and to design high-end equip-
ment to collect clean emitter sounds of each emitter so that
they can be integrated and synthesized for each possible lo-
cation of the listener. With known emitter locations, this
approach can utilize common audio reconstruction tech-
niques to render the Room Impulse Response (RIR) for each
emitter-listener pair, then perform convolution of the emit-
ter sound with the corresponding RIR, and integrate the out-
comes to obtain the reconstructed audio at arbitrary listener
location [13, 27, 12, 21, 15, 29, 4, 22, 23, 24, 16, 17]. While
this approach is plausible, beyond the requirement to design
novel equipment, it also implies an extensive computational
cost of the integration, which is expected to increase with
the number of emitters.

Due to the above described challenges, both approaches
are generally impractical and warrant the development of
methods that synthesize the audio for an arbitrary listener
location from a sparse set of fixed sensors. Indeed, recently
developed neural sound synthesis methods have been shown
to synthesize audio through generative neural network mod-
eling conditioned on A/V samples from sensors for a single
listener location [28, 25, 8, 9, 6, 10, 30]. While promising,
they appear to depend on the training samples on which the
network has been trained on, since scene properties that de-
termine sound propagation are not explicitly captured dur-
ing training. This restricts the reconstruction accuracy and
the generalization to various dynamic scenes.

To address these limitations, in this work, we propose
a novel neural sound reconstruction and synthesis system
that leverages samples from a sparse set of fixed A/V sen-
sors that sample the audio (waveforms captured by micro-
phones) and in addition the visual information (egocen-
tric images captured by cameras) at any given time. Our
proposed end-to-end integrated audio rendering pipeline
is capable to render high-quality audio and generalize the
audio reconstruction to arbitrary listener locations, effec-
tively allowing the listener to be everywhere and hear ev-
erything (BEE). BEE contains two modules, namely, the
Joint Audio-Visual Representation module (JAVR) and In-
tegrated Rendering Head (IRH). JAVR learns and repre-
sents the properties of the scene by projecting visual sam-
ples into a world coordinate system and obtains a 3D visual
feature volume for the acoustic propagation space of the
scene. Through this space the A/V receivers and the listen-
ers are associated and then correlated by injecting audio fea-

tures into the 3D visual representation and employing cross-
attention. This constitutes the audio-visual representation
of the scene. The target listener sound is synthesized by the
IRH module within BEE, which learns time-frequency (TF)
transformations after integrating the audio-visual features
generated from JAVR and the received audio samples on
different levels through two decoupled branches.

In summary, our main contributions in this work are
as follows: 1) We develop an end-to-end integrated ren-
dering pipeline, named BEE, to address audio reconstruc-
tion at arbitrary listener locations for dynamic scenes by
sparse audio-visual samples. 2) BEE constructs an effective
Joint Audio-Visual Representation module that can learn
an audio-visual representation of the scene. Such repre-
sentation along with an Integrated Rendering Head module
implicitly untangles the contribution of each emitter to the
sound at an arbitrary listener location. 3) Experiments on
the SoundSpaces dataset [7] with Replica and Matterport3D
scenes demonstrate that BEE outperforms existing methods
by a large margin in quality, ability to generalize to various
scenes, and runs in real-time.

2. Related Work
Audio Scene Reconstruction. Most traditional audio scene
reconstruction methods reconstruct the sound at arbitrary
listener locations by convolving the sound waveform of
each emitter with the corresponding Room Impulse Re-
sponse (RIR) and then summing the outcomes of each emit-
ter. Conventional RIR modeling can be divided into two
categories: 1) Wave-based methods which aim to solve the
acoustic wave equation using numerical techniques [13, 27,
12, 21]. 2) Geometry-based methods [1, 3, 15, 29, 4, 20]
which treat sound propagation as optic rays and determine
the path of sound propagation according to energy atten-
uation. Recent methods utilize deep learning approaches
to generate spatial RIRs for arbitrary emitter-receiver pairs.
Methods such as IR-GAN [22] and fast-RIR [23] learn a
deep generative model, while other methods such as IR-
MLP [24] and NAF [16] learn an implicit neural function to
represent RIR. Few-shotRIR [17] introduced a transformer-
based method to infer RIRs based on a sparse set of im-
ages and echoes observed by receiver sensors and showed
generalization to unseen scenes. These RIR-based methods
require explicit location and sound waveform of each emit-
ter and the computational cost typically increases linearly
with the number of emitters. The location and the source
sound waveform of each emitter might be difficult to ob-
tain without special scene setup. Our approach, in costrast,
utilizes the sparse audio-visual samples to build the audio-
visual representation of the scene, and then learns audio re-
construction at listener locations. As such it can handle un-
known numbers, locations, and source sound waveforms of
emitters, and is generalizable over unseen scenes.
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Audio-Visual Sound Synthesis. Our task can also be con-
sidered as an audio-visual guided sound synthesis at ar-
bitrary listener locations. Popular sound synthesis meth-
ods such as WaveNet [28] build an autoregressive model
to synthesize the target sound conditioned on all previous
sounds. WarpNet [25] learns an end-to-end neural synthe-
sis approach to synthesize high-quality binaural audio from
mono audio. Additional works propose to use generative
adversarial networks to synthesize the target sound [8, 9].
While these sound synthesis methods succeed in directly
generating the target sound, they do not incorporate aspects
related to sound propagation in the scene, i.e., the geometry
structure, the materials of the scene, and the correlation of
the given audio which indicates the condition of emitters.
The synthesis quality of these methods is thus dependent on
provided training samples and typically difficult to general-
ize to unseen scenes. Recently, audio-visual guided meth-
ods [6, 10, 30] demonstrated advanced quality of sound syn-
thesis. Given visual and audio input, the methods aim to as-
sociate the visual with audio features to reverberate the in-
put sound [6], generate stereophonic audio [10, 30] or per-
form audio separation tasks [30]. These methods rely on
visual and audio samples from a single sensor and overlook
associating the audio and visual features in the 3D scene
space. As a result, such approaches do not perform well on
audio reconstruction tasks in scenes with complex layouts.

3. Methods

3.1. Overview

In this paper, we introduce the novel task of audio re-
construction at arbitrary listener locations based on audio-
visual samples by A/V sensors sparsely placed in the 3D
scene. Specifically, given a scene, N sparsely distributed
A/V reference receivers {Mi|i = 1, 2, ..., N} (e.g., N = 4)
are placed in fixed locations. Each receiver Mi can continu-
ously obtain one binaural sound waveform Si and one ego-
centric RGB-D view Ii at location (xi, yi, hi) with orienta-
tion θi. The view Ii is captured by a pre-calibrated camera
with parameters Ci = ([Ri|ti],Ki), where [Ri|ti] is the
extrinsic matrix and Ki is the intrinsic matrix. Listeners
Lk can be positioned at arbitrary location (xk, yk, hk) with
orientation θk.

Our proposed framework, BEE, synthesizes
the target binaural sound Sk for Lk, based on
the audio-visual samples from the N receivers
{Mi = (Ii, Si, Ci, (xi, yi, hi), θi)|i = 1, 2, ..., N}. As il-
lustrated in Figure 2, BEE consists of two modules: 1) Joint
Audio-Visual Representation (JAVR) module (Section 3.2)
and 2) Integrated Rendering Head (IRH) (Section 3.3).
JAVR is applied first and learns a joint audio-visual feature
embedding Q̃ik for each receiver-listener pair (Mi, Lk)
w.r.t their pose information (locations and orientation

Figure 2: Overview of BEE framework which contains
two modules, Joint Audio-Visual Representation (JAVR)
module and Integrated Rendering Head (IRH). JAVR
projects all images observed from reference A/V receivers
to 3D scene space and integrates the obtained visual feature
volume with received audio clips with respect to locations
and orientations of receivers and target listener L. IRH ren-
ders the sound at L by integrating the audio-visual feature
embeddings of all receiver-listener pairs from JAVR.

angles). Based on the audio-visual feature embeddings
Q̃ik. IRH follows JAVR and learns to transform and
integrate {Si|i = 1, 2, ..., N} from the reference receivers
to synthesize the output sound Sk for Lk. We describe the
training details of BEE in Section 3.4.

3.2. Joint Audio-Visual Representation (JAVR)

JAVR extracts the audio-visual features for each (Mi,
Lk) pair in four steps: 1) Deployment of 3D visual en-
coder to build a visual feature volume from {(Ii, Ci)|i =
1, 2, ..., N} for the acoustic propagation space P of the
scene; 2) Enhancement of visual features of P using spa-
tial locations of Mi and Lk; 3) Encoding audio samples
{Si|i = 1, 2, ..., N} to binaural audio features through the
Binaural Audio Encoder; 4) Learning the audio-visual fea-
tures on P and extract the feature embedding Q̃ik w.r.t each
(Mi, Lk) pair. These steps are illustrated in Figure 3 (a) and
we describe them further below.
3D Visual Encoder. The 3D Visual Encoder projects pix-
els of given RGB-D views {Ii|i = 1, 2, ..., N} to a world
coordinate system to form 3D visual features volume for
the acoustic propagation space P of the scene. As a first
step, a CNN backbone is applied Ii to extract image features
Fi ∈ RW×H×C . Compared to Ii, Fi contains fewer pixels
and aggregates contextual visual information at each pixel.
Therefore, the encoder effectively projects pixel locations
in Fi instead of Ii to the world coordinate system. Specifi-
cally, we associate each pixel location z ∈ RW×H in Fi to
the corresponding pixel location ẑ in Ii and then multiply
ẑ with the inverse of the intrinsic matrix Ki to transform ẑ
to the coordinate system of Ci camera. We then multiply
the obtained coordinate with the inverse of the camera pose
[Ri|ti] to project it to the 3D world coordinate system, de-
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Figure 3: Structure of BEE modules. (a) JAVR includes four sub-modules that extract audio-visual features: 3D Visual
Encoder, Spatial Enhanced Visual Representation, Binaural Audio Encoder and Audio-Visual Spatial Enocoder. (b) IRH
transforms Si with the learned time-frequency (TF) weights for the synthesis of the target sound Ŝ. For training, Ŝ is
supervised by S directly.

noted as π−1
i (ẑ) ∈ R3. In the next step, each pixel-aligned

feature in Fi is associated with a point in the world coordi-
nate system. Altogether the features form a 3D visual fea-
ture volume V, where V(π−1

i (ẑ)) = Fi(z). Due to the
sparse distribution of the receivers V is sparse as well and
hence we propose to fill it with SparseConvNet [11] which
obtains a denser visual feature volume V′.
Spatial Enhanced Visual Representation. The acoustic
propagation path depends on the locations of the emitter
and the listener. Therefore, to learn a reliable transforma-
tion from the reference sound Si to the target sound Sk, it is
necessary to focus on different regions of the space P that
correspond to the locations of the receiver-listener pair (Mi,
Lk). To attain this, we introduce the Spatial Enhanced Vi-
sual Attention module. In this module, we first obtain the
location-aligned visual feature V′

i and V′
k for Mi and Lk

from V′ respectively. Bilinear interpolation is applied if the
location is fractional. Then, for each point Pj within P,
we take V′

i and V′
k as query embeddings to compute the

correspondence scores sij and skj w.r.t. V′
j according to

slj =
(W1lV

′
l + b1l)(W2jV

′
j + b2j)

⊤
√
C

, (1)

where l = {i, k}, C is the channel dimension of V′ and W
represents linear projection layers. We multiply V′ with the
point-wise scores sij and skj and sum the two new weighted
feature volumes and V′ to obtain the Spatial Enhanced vi-
sual feature volume Ṽik for the pair (Mi, Lk).
Binaural Audio Encoder. Since the waveform information
includes both emitter locations and the corresponding emit-
ted sounds, we include audio features in the framework.
Given the binaural sound waveform set {Si|i = 1, 2, ..., N}
obtained from N reference receivers, we build a Binaural
Audio Encoder to extract the binaural audio features from

Si. Specifically, we first transform the original Si to com-
plex spectrogram Ŝi ∈ C2×F×T by applying the Short-
Time Fourier Transform (STFT), where F is the number
of frequency bins and T is the number of overlapping time
windows. We then utilize a 2D convolutional layer se-
quence followed by linear layers to extract high-level audio
features Ai ∈ R2×C′

from both channels of Ŝi, where C ′

is the feature channel dimension.
Audio-Visual Spatial Encoder. We integrate the obtained
visual and audio representation on the acoustic propaga-
tion space P, and aggregate the audio-visual feature embed-
ding for each receiver-listener (Mi, Lk) pair. The integra-
tion is done by first generating pose feature embedding for
(Mi, Lk) w.r.t. each point Pj within the space P. Specif-
ically, we compute the location vector from Pj to Mi and
Lk, denoted as d⃗ji and d⃗jk respectively, and concatenate
them with the orientation angles of Mi and Lk (θi and θk).
By mapping the combined pose vector (d⃗ji, d⃗jk, θi, θk) to a
higher dimension through the sinusoidal encoding followed
by a linear layer, we can obtain the pose feature embed-
ding E(i, j, k). After this, E(i, j, k) is concatenated with
the corresponding visual feature Ṽik(Pj) and the binau-
ral audio feature Ai to form the audio-visual feature as
Qik(Pj) = {Ṽik(Pj),Ai,E(i, j, k)} at the point Pj . By
gathering Qik(Pj) of all the points Pj within the space P,
we build an audio-visual feature volume Qik. As a final
step, a stack of convolution layers followed by linear layers
is learned to aggregate an audio-visual feature embedding
Q̃ik ∈ Rd out of Qik. Q̃ik is taken as the audio-visual
representation of the space P w.r.t the pair (Mi, Lk).

3.3. Integrated Rendering Head

Given a set of audio-visual feature embeddings {Q̃ik|i =
1, 2, ..., N} generated by the JAVR module, the Integrated
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Rendering Head (IRH) module renders the target sound Sk

for the listener Lk according to three steps, as described
below and illustrated in Figure 3 (b).

In the first step, more comprehensive features are ag-
gregated by a Cross-Attention module which enhances the
audio-visual feature of each receiver-listener pair with other
pairs. Specifically, each Q̃ik is taken as a query embed-
ding to calculate the attention score w.r.t. {Q̃mk|m =
1, 2, ..., N ;m ̸= i}, similar to the Equation 1. The en-
hanced feature Q̂ik is the weighted sum of Q̃mk with the
calculated attention scores.

In the second step, two decoupled branches are deployed
to predict the transformation weights from each Si to Sk.
For higher fidelity, we convert the waveform of Si to a spec-
trogram through Short-Time Fourier Transform (STFT),
and predict the time-frequency (TF) transformation weights
for the frequency band f and time window t. Since bin-
aural audio features contain information on emitters and
source sounds, we first inject high-level audio-visual rep-
resentation feature Q̂ik to the audio features Ai, and then
decode the complex binaural TF weights out of the joint
features through a transposed convolutional network. The
second branch utilizes MLP network to predict TF magni-
tude transform weights, that depends on the visual and spa-
tial relationship than the detailed observed sounds. Specif-
ically, we encode f and t with the sinusoidal encoding
and concatenate the encoded embeddings with Q̂ik as in-
put of MLP. The final complex binaural TF weight matrix
Wik ∈ R4×F×T for each pair (Mi, Lk) is the product
of the binaural weights and magnitude weights, where we
transform each binaural complex feature channel of Wik

into a 2-channel real matrix.
In the third step, the spectrogram of each input sound

S̃i is multiplied with the corresponding spectrogram trans-
formation weights ik. The average of the obtained newly
transformed spectrograms is the output as the final predicted
spectrogram for the target listener Lk. The inverse STFT
operation then outputs the rendered target sound waveform
Ŝk represented as

Ŝk = ISTFT(
1

N

N∑
i=1

(WikS̃i)),Wik = Ψ(Q̂ik,Ai, f, t). (2)

3.4. Training

We use an end-to-end training strategy to train our pro-
posed framework, where all the components and modules
are optimized jointly by minimizing the discrepancy be-
tween the rendered sound Ŝk for the target listener Lk

and the corresponding ground truth sound Sk. The Mean
Squared Error (MSE) loss is combined with the STFT
loss [2] to regulate our model in both time and frequency
domains. Specifically, the MSE loss Lmse is defined as
∥Sk − Ŝk∥22, and STFT loss includes conversion of the

sound waveform into the frequency-time domain, and then
is computed as the sum of two terms: the spectral con-
vergence loss Lsc = ∥|Sk|−|Ŝk|∥2

∥|Sk|∥2
and the magnitude loss

Lmag = ∥|Sk| − |Ŝk|∥1 The total loss is formulated as

Lstft = Lsc + Lmag,Ltotal = Lstft + λLmse. (3)

4. Experiments

4.1. Datasets and Metrics

Datasets Setting. We evaluate our model on
SoundSpaces [7], a realistic acoustic simulation platform
for audio-visual embodied AI research. In this dataset,
we use AI-Habitat simulator [19] with SoundSpaces audio
on Replica scenes [26] and Matterport3D scenes [5]. The
scenes consist of real-world indoor spaces, e.g., apartments
and offices. For each scene, SoundSpaces computes an
axis-aligned 3D bounding box of the scene, samples loca-
tion points from a 2D square grid that slices the bounding
box in the horizontal plane, and provides dense pairs of
binaural RIRs for different head orientations generated by
geometric sound propagation methods.
Metrics. We use three main standard metrics to evalu-
ate audio reconstruction performance (the lower, the bet-
ter): 1) L1 distance of STFT spectrogram (STFT) of the
left and right channels; 2) Deep Perceptual Audio Met-
ric (DPAM) [18]: deep learning based perceptual quality
metric that is well-calibrated with human judgments; 3) En-
ergy Envelope Error (ENV) [10]: the envelope of the sig-
nals which measures the Euclidean distance between the
envelopes of the ground-truth left and right channels and
the predictions.

4.2. Implementation Details

The visual-audio information from the scene is obtained
by four A/V reference receivers on the midpoints of four
edges of the smallest rectangle containing the room floor
plane, with orientation to the interior. At each reference re-
ceiver a 128 × 128 egocentric RGB-D image is rendered,
the received sound Si is constructed and the target listener
sound Sk is constructed by convolution of emitted sound
clips with the corresponding binaural RIRs and their sum-
mation. Since there is typically noise in real setting, we
add simulated binaural isotropic ambient noise with a 0− 5
dB signal-to-noise ratio (SNR). Since our model requires
continuous sound streams, we use a sliding window with
a length of 598ms to clip the sound waveforms. For each
time step, the window is moved forward by 1/24s, i.e., 24
fps and the coefficient λ is set to 20 to balance the values
of the loss functions. Adam optimizer [14] is used for op-
timization with exponentially decaying rate, starting from
5e−5 for 15 epochs.
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Seen Scenes Unseen Scenes
Method Visual Transform STFT ↓ DPAM ↓ ENV ↓ STFT ↓ DPAM ↓ ENV ↓
Replica: 12 seen scenes, 6 unseen scenes
Nearest ✗ ✓ 1.614 0.992 0.257 1.686 0.993 0.277
Mean ✗ ✓ 1.600 1.039 0.265 1.618 1.036 0.275
Interpolation ✗ ✓ 1.575 1.039 0.256 1.614 1.033 0.267
AViTAR [6] ✓ ✗ 0.181 0.334 0.163 0.199 0.327 0.184
Few-shotRIR [17] ✓ ✗ 0.233 0.449 0.227 0.245 0.436 0.239
Mono2Binaural [10] ✓ ✓ 0.194 0.376 0.156 0.236 0.364 0.177
APNet [30] ✓ ✓ 0.164 0.263 0.154 0.185 0.253 0.176
BEE (Ours) ✓ ✓ 0.151 0.215 0.133 0.177 0.221 0.160
Matterport3D: 54 seen scenes, 25 unseen scenes
Nearest ✗ ✓ 4.851 1.047 0.837 5.029 1.064 0.874
Mean ✗ ✓ 3.174 1.068 0.611 3.456 1.078 0.650
Interpolation ✗ ✓ 3.475 1.066 0.658 3.521 1.081 0.669
AViTAR [6] ✓ ✗ 0.516 0.610 0.595 0.509 0.625 0.548
Few-shotRIR [17] ✓ ✗ 0.597 0.476 0.731 0.591 0.500 0.694
Mono2Binaural [10] ✓ ✓ 0.533 0.440 0.545 0.582 0.492 0.529
APNet [30] ✓ ✓ 0.500 0.352 0.537 0.515 0.393 0.528
BEE (Ours) ✓ ✓ 0.425 0.274 0.455 0.438 0.348 0.458

Table 1: Testing results comparison on the SoundSpaces Dataset with Replica and Matterport3D scenes. Visual and
Transform indicate using visual information and learning transformation of input sounds to render target sounds respectively.

4.3. Baselines

Non-learning baselines. 1) Nearest: The output sound of
the reference receiver closest to the location of the target
listener; 2) Mean: The average of all received sound wave-
forms from reference receivers {Si|i = 1, 2, ...N}; 3) In-
terpolation: Linear interpolation of {Si|i = 1, 2, ...N} by
merging N sounds with the location-relevant weights. The
weight of each receiver is the inverse proportion of the dis-
tance to the listener and normalization through Softmax.
Existing audio-visual sound synthesis solutions. 1)
Visual Acoustic Matching (AViTAR) [6]: AViTAR re-
synthesizes the audio to match the target room acous-
tics given an image and one audio clip as input; 2)
Mono2Binaural [10]: Mono2Binaural learns to decode the
monoaural soundtrack into its binaural counterpart by in-
jecting visual information about object and scene config-
urations; 3) Associative Pyramid Network (APNet) [30]:
APNet associates the visual features and the audio features
to boost the performance on stereophonic audio generation
and audio source separation tasks; 4) Few-shotRIR [17]:
a transformer-based method that infers RIRs based on a
sparse set of observed images and echoes. Among these
methods, APNet and Mono2Binaural learn complex masks
to transform the input audio spectrograms (Transform). To
adapt these methods to our task, we inject the pose infor-
mation of the receiver-listener pairs into the audio-visual
features, generate binaural spectrograms for target listeners,
and train with the same strategies as BEE.

4.4. Main Results Comparison

We compare BEE with baseline approaches on Replica
and Matterport3D scenes and report the results in Table 1.

For Replica scenes, we randomly select 12 scenes rang-
ing from 9.5m2 to 141.5m2 for training and the remain-
ing 6 scenes as unseen scenes. For Matterport3D, we se-
lect 54 scenes with an average size over 100m2 as train-
ing scenes and 25 other scenes as unseen scenes. Each
Matterport3D scene contains multiple individual rooms and
complex layouts. We sample emitter-receiver-listener pairs
at each training scene for training, and test both seen and
unseen scenes respectively on new emitter-receiver-listener
pairs and source sound clips. Transform indicates trans-
forming the input audio to the target audio.

Comparison with non-learning baselines. As Table 1
shows these three baselines perform significantly less ac-
curate than the learning-based methods on sparse A/V
sensors-based scene audio reconstruction task.

Comparison with existing audio-visual based methods.
While these methods are more accurate than non-learning
methods, we observe a significant accuracy gain for BEE
vs. other learning methods, especially on Matterport3D
scenes that are of larger scale and of more complex lay-
outs. Compared with AViTAR, which directly generates tar-
get sound based on audio-visual features without Trans-
form, BEE outperforms AViTAR by 13.9%, 44.3%, 16.4%
on STFT, DPAM, ENV metrics respectively. While Trans-
form assists Mono2Binaural and APNet to achieve better
accuracy on both datasets, BEE achieves higher accuracy
than these methods. Compared with APNet, the second-best
method in Table 1, BEE enhances the accuracy by achieving
STFT, DPAM, and ENV metrics better by 14.95%, 12.6%
and 9.1% respectively on Matterport3D.
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Variants Module STFT ↓ DPAM ↓ ENV ↓
w/o. 3DAV Enc. JAVR 0.465 0.373 0.512
w/o. Vis Atten. JAVR 0.454 0.363 0.478
w/o. Integrate IRH 0.509 0.400 0.554
w/o. AV UpConv IRH 0.490 0.424 0.470
w/o. Mag Branch IRH 0.626 0.393 0.518
Full Model - 0.438 0.348 0.458

Table 2: Ablations on Matterport3D unseen scenes.

4.5. Ablation Study

Joint Audio-Visual Representation. To verify the contri-
bution of the Joint Audio-Visual Representation module in
Section 3.2, we implement two variants that remove Audio-
Visual Spatial Encoder (w/o. 3DAV Enc.) and the Spatial
Enhanced Visual Representation module (w/o. Vis Attn.)
respectively. As observed from the first two rows of the ab-
lations in Table 2, BEE boosts the accuracy of STFT, DPAM
and ENV by integrating the obtained visual and audio rep-
resentation on the acoustic propagation feature space with
respect to each spatial point within the space. Particularyly
notable is 10.5% improvement on ENV metric. w/o. Vis At-
ten. underperforms BEE on all the metrics, demonstrating
the contribution of The Spatial Enhanced Visual Represen-
tation module to the audio reconstruction accuracy by en-
hancing visual features for each receiver-listener pair with
their corresponding spatial locations.
Integrated Rendering. Considering N reference receivers
at different locations, Integrated Rendering Head (IRH) in
Section 3.3 first utilizes a Cross-Attention module at the be-
ginning to learn an integrated audio-visual feature embed-
ding w.r.t each reference receiver and performs a weighted
average over the input sounds at the end to fully incorpo-
rate the observed information from the A/V sensors. Abla-
tions in Table 2, removing the Cross-Attention module and
directly supervising each rendered sound without averag-
ing them (w/o. Integrate), indicate the necessity of inte-
grated rendering strategies by significantly inaccurate met-
rics. With these strategies, BEE boosts the accuracy of
STFT, DPAM and ENV by 13.9%, 13% and 17.3%.
Decoupled Spectrogram Weights Branches. IRH compo-
nent of BEE introduces two decoupled branches to generate
the final spectrogram transformation weights, utilizing dif-
ferent audio-visual feature combinations. To further inves-
tigate the effectiveness of these two branches, we introduce
two variants: w/o. AV UpConv and w/o. Mag Branch, which
removes the Transposed Convolutional Layer branch and
the MLP-based Magnitude TF weights prediction branch
respectively. As shown in Table 2, UpConv branch is advan-
tageous for perceptual quality (DPAM) than the Magnitude
branch, while the Magnitude branch achieves higher accu-
racy on STFT and ENV. This can be interpreted as follows.
UpConv branch starts from the high-level low-resolution
features of input audio to gradually generate high-resolution

Components 3D Vis Enc JAVR IRH Total
Speed (ms/sample) 16.00 18.40 11.94 30.34

Table 3: Speed Analysis. BEE can run at a real-time speed.

target spectrogram weight masks. This improves the qual-
ity of the generated results by incorporating dependence on
the detailed input audio contents. However, in addition, de-
pendence on the comprehensive audio-visual scene repre-
sentation and spatial relationship is needed to infer the time
delay and sound energy changes from sensors to listeners.
BEE handles both of these aspects by deploying decoupled
UpConv and Magnitude branches.

4.6. Speed Analysis

To define real-time operation, we focus on the ability to
render audio output within specified time constraints of ex-
ceeding the input sound frame rate of 24fps (frame per sec-
ond). We use one GeForce RTX 2080 Ti for speed test-
ing and report the results in Table 3, with values averaged
for 500 samples. For each sample, BEE takes 30.34ms
(around 33fps) for rendering, achieving real-time for infer-
ence. Among the 30.34ms, the 3D Visual Encoder in JAVR
takes 16ms, while other components take 14.24ms in total.
Since BEE does not require emitter information as input, as
long as the count of reference A/V sensors remains fixed,
rendering time complexity remains consistent.

4.7. Qualitative Results

In Figure 4 we visualize some of BEE results for qual-
itative interpretation. We show: 1) loudness maps, and 2)
generated waveforms & spectrograms. In comparison with
other audio-visual sound synthesis methods, BEE generates
more reliable loudness maps consistent with scenes layouts
and better reconstructs the continuous change of the loud-
ness in the scene while navigating through it for both seen
and unseen scenes. This is observed by plotting the cumu-
lated loudness error of all the spatial points in a scene. BEE
achieves a significantly lower accumulated loudness map
error for both seen and unseen scenes. Furthermore, other
methods have significant gaps in waveform generation and
additional noise in the generated spectrograms. Notably,
compared to the second-best method APNet, BEE achieves
a reduction of 0.14 DPAM and 0.03 ENV error, which en-
hanced waveform accuracy significantly, as depicted in the
waveform plots.

4.8. Human Subject Study

To further evaluate the perceptual quality of the gen-
erated sound, we conducted a human subject study with
250 responses from more than 50 different people evalu-
ating generated sound on SoundSpaces Dataset. For each
sample, the listener is navigated through a scene with ran-
dom emitters and emitted sounds. Participants are shown
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Figure 4: Qualitative Examples Comparison. Top (a,b): Loudness maps of seen and unseen scenes respectively. Grey
speakers represent the emitters. The curve plots represent accumulated loudness error for all navigatable points in the scenes
(lower is better - zero curve is GT). Bottom(c): visualizes generated waveforms and spectrograms and compares BEE with
previous methods (Green: GT; Red: Prediction).

Methods Mono2Binaural [10] APNet [30] BEE (Ours)
Votes 29.6% 26.4% 44%

Table 4: Human Subject Study. BEE is preferred over the
other two methods by a large margin.

the visual observation at each listener point, the naviga-
tion routes on the scene layout, and the ground truth target
sound. Three generated audio samples by BEE, APNet and
Mono2Binaural respectively are provided for participants to
choose the sample that sounded most similar to the ground
truth. As Table 4 indicates, BEE is preferred by participants
over the other two methods achieving 44% preference ratio,
higher by 14.4% than the second-best method.

4.9. Discussion

Non-learning baselines such as Nearest, Mean, and In-
terpolation are ineffective in handling random noise in
audio samples or in warping audio samples based on
scene properties. Learning baselines such as AViTAR,
Mono2Binaural, and APNet integrate audio and visual fea-
ture maps with pose information to synthesize target sound,
but designed to infer spatial relationships, emitter actions,
and scene properties from a single A/V sensor. Few-
shotRIR integrates audio-visual information from sensors,
but it does not use the observations from all sensors in full.

In contrast, BEE incorporates JAVR module to explicitly
model the 3D visual volume and to integrate audio-visual
features with respect to sensor and target listener poses, al-
lowing for scene property capture and representative audio-

visual feature learning. The IRH module enhances high-
level audio-visual representation for each receiver-listener
pair with other pairs, utilizing two branches to generate re-
liable binaural and magnitude transformation weights based
on different levels of audio-visual features. Moreover, BEE
does not rely on explicit input of emitter locations or emit-
ted sound waveforms which can be challenging to obtain
without special scene setup in real practice. In this case,
receivers are not directly associated with emitters, allow-
ing handling of unknown numbers, locations, and source
sounds of emitters in dynamic scenes.

In summary, here we propose a real-time generalizable
end-to-end integrated rendering pipeline (BEE), which
reconstructs the audio of a scene at an arbitrary location of
the listener according to inputs from A/V receivers sparsely
placed in the scene. To reconstruct the audio, BEE utilizes
a Joint Audio-Visual Representation module to extract the
informative audio-visual features of the scene, and then
integrates audio samples with the learned time-frequency
transformations using the Integrated Rendering Head. Our
experiments indicate that BEE outperforms existing meth-
ods in all metrics and the results appear to be generalizable
to unseen scenes.
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