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Abstract
Human readers or radiologists routinely perform full-

body multi-organ multi-disease detection and diagnosis in
clinical practice, while most medical AI systems are built
to focus on single organs with a narrow list of a few dis-
eases. This might severely limit AI’s clinical adoption. A
certain number of AI models need to be assembled non-
trivially to match the diagnostic process of a human read-
ing a CT scan. In this paper, we construct a Unified Tu-
mor Transformer (CancerUniT) model to jointly detect tu-
mor existence & location and diagnose tumor characteris-
tics for eight major cancers in CT scans. CancerUniT is
a query-based Mask Transformer model with the output of
multi-tumor prediction. We decouple the object queries into
organ queries, tumor detection queries and tumor diagno-
sis queries, and further establish hierarchical relationships
among the three groups. This clinically-inspired architec-
ture effectively assists inter- and intra-organ representation
learning of tumors and facilitates the resolution of these
complex, anatomically related multi-organ cancer image
reading tasks. CancerUniT is trained end-to-end using a
curated large-scale CT images of 10,042 patients includ-
ing eight major types of cancers and occurring non-cancer
tumors (all are pathology-confirmed with 3D tumor masks
annotated by radiologists). On the test set of 631 patients,
CancerUniT has demonstrated strong performance under
a set of clinically relevant evaluation metrics, substantially
outperforming both multi-disease methods and an assem-
bly of eight single-organ expert models in tumor detection,
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Figure 1. We aim at cancer and non-cancer detection, segmenta-
tion, and diagnosis in eight major organs via CT scan. Seven of
our eight targeted cancers rank the top seven in terms of mortality.

segmentation, and diagnosis. This moves one step closer to-
wards a universal high performance cancer screening tool.

1. Introduction
Cancer, a leading cause of death in the world, contin-

ues to thwart human life expectancy and cause huge soci-
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etal burdens despite significant progress in medical research
[52, 40]. Medical imaging is a powerful tool for detection
and diagnostic examination of cancer and is widely used in
clinical practice everywhere. The daily work of radiologists
in reading and interpreting cancer imaging findings includes
three main clinical tasks: detection, quantification, and di-
agnosis [3]. Since Computed Tomography (CT) body scans
are very common (nearly 80% in all CT exams) [37] and
each CT scan can have hundreds of image slices, the miss-
detection and miss-diagnosis of cancer are the pain points
in the radiology workflow. Human readers statistically tend
to have high specificity but low sensitivity for tagging and
reporting various anomalies or diseases.

Computer-aided detection (CADe) and diagnosis
(CADx) can assist radiologists and oncologists to improve
the tumor detection rate and diagnosis accuracy [14, 3].
With the development of deep learning and Convolutional
Neural Networks (CNNs), CAD algorithms have met
or exceeded expert-level performance in some specific
applications [32, 27, 12, 2]. However, most CAD expert
systems focus on dealing with single organ diseases [45],
e.g., pancreas [76, 71], liver [23, 11], lung [2, 25], or kidney
tumors [19], while radiologists in turn, must be responsible
for all possible diseases and radiologically significant find-
ings [34]. For example, for an abdominal CT examination
that is initially targeted for the gallbladder, even when there
are no clear prior indications (e.g., abdominal pain), all
visible organs in the entire abdomen from CT imaging need
to be carefully inspected by a radiologist. Therefore, the
role of current CAD tools is still (very) limited in clinical
practice, far from functioning as universally as a human
reader. A versatile CAD tool that can perform (many) more
critical medical tasks would be more clinically desirable
and thus is in high demand [39].

Despite notable progress in multi-organ segmentation, it
should be noted that detecting and diagnosing multiple can-
cers is considerably more difficult than segmenting organs
alone due to several factors: (1) tumors have a variety of
types, appearances and size, making it hard to be detected.
(2) tumor detection requires differentiation of tumors from
normal tissue within an organ, which is more challenging
than the differentiation of organs from the background in
organ segmentation. (3) the diagnosis of cancer involves
the fine-grained categorization of tumors, which necessi-
tates a high level of expertise and specialized training. Aim-
ing at solving the universal lesion detection problem in CT
scans, DeepLesion is a recent pioneering publicly available
dataset [62, 61, 59], and despite much follow-up work, most
cancer detection, quantification, and diagnosis solutions de-
rived from DeepLesion dataset [62] are still insufficient in
the following aspects. First, the data size and patient num-
ber of a single disease can be small, and some major can-
cer types (e.g., esophagus, stomach, and colorectum) are

scarce, resulting in relatively high false positive and sub-
optimal detection rates. Second, voxel-level tumor annota-
tion, perhaps as 3D masks (requiring a high level of clinical
expertise and are very tedious to label) are not available,
making the necessary precise 3D quantification difficult (if
not impossible). Third, the pathological gold standard of
confirming tumor types is unavailable and, therefore, im-
possible to distinguish between malignant and benign le-
sions. Recent clinical validations of two multi-disease de-
tection AI systems [36, 57] found that ruling out irrelevant
CAD findings (i.e., false positives and lesions without ad-
equate malignancy assessment) was very time-consuming
and confusing for radiologists. These observations clearly
indicates the essential limitations of applying DeepLesion
dataset [62] to positive clinical impacts.

In this paper, we curate a large (abdominal and chest) CT
image dataset including eight major cancers (from the top
seven cancers with the highest mortality in the world [40]:
lung, colorectum, liver, stomach, breast, esophagus, and
pancreas, plus a public kidney dataset [19]) of total 10,673
patients (Of these, breast cancer has the fewest, with 478
patients; lung cancer has the most, with 2,402 patients. In
addition, there are 1,055 normal controls). All tumor types
(and subtypes) of the seven organs are confirmed by either
surgical or biopsy pathology and recorded as gold standard
labels, where full spectrum of all tumor subtypes are of-
fered for four organs. All confirmed tumors in CT scans are
manually segmented or delineated in 3D by board-certified
radiologists who are specialized in the particular organ or
disease types. To our knowledge, previous datasets with
similar tumor characteristics only cover a single disease at
the scale of hundreds of patients, such as the pancreatic tu-
mor [71] and kidney tumor datasets [19]. The curation of
our new 8-cancer dataset is a major step towards building a
universal multi-cancer imaging reading AI model – with the
hope to reach a performance level comparable with radiolo-
gists specializing in different cancer types – for assisting
radiologists and general clinicians in precision detection,
quantification, and diagnosis. Fig. 1 shows our goal for can-
cer and non-cancer detection, segmentation, and diagnosis
in eight major organs via CT scans.

On the other hand, we propose a new clinically in-
terpretable computing architecture, named Unified Tumor
Transformer (CancerUniT). In general, CancerUniT is a
single unified model that simultaneously solves the tasks
of multi-tumor detection, segmentation and diagnosis in a
semantic segmentation manner. Our motivations are: (1)
the organs, cancers and non-cancer tumors are interrelated
in both appearance similarity and human anatomical con-
straints, e.g., HCC (a major malignant liver cancer) and cyst
(benign lesion) both occur inside the liver with textual and
other visual differences, while HCC and PDAC (a type of
pancreatic cancer) should appear in two different organs
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but their clinical characteristics are both malignant carci-
noma; (2) a unified learning of multi-organs-tumors could
reduce the performance uncertainty and architectural com-
plexity in assembling multiple single models, e.g., different
predictions of the same intended object or finding by multi-
ple models. To collaboratively model such differences and
connections or dependencies, we propose a novel represen-
tation learning method that represents each organ and tumor
as an object query of the Transformer in a semantic hierar-
chy. The object queries are divided into organ queries, tu-
mor detection queries and diagnosis queries, and we estab-
lish a query hierarchy based on the clinical meaning of the
queries. This design will explicitly encourage the queries to
learn the inter-organ and intra-organ relationships to solve
the clinically sophisticated multi-cancer tumor recognition
tasks.

CancerUniT is trained and tested on our curated dataset.
CancerUniT outperforms the DeepLesion model, the en-
semble of single-organ expert models and unified baseline
models (trained on our data). Compared to the DeepLesion
model, CancerUniT has a 29.3% higher sensitivity and a
large margin of 77.5% higher specificity in tumor detection.
Compared to an ensemble of individually trained single-
organ nnUNet models, CancerUniT has an average im-
provement of 6.7% in tumor detection sensitivity, 2.8% in
diagnostic accuracy, and 3.9% in Dice segmentation score
across all the organs; On normal patients, CancerUniT has
an improvement of 22.5% in specificity (ours 81.7% vs.
nnUNet 59.2%); CancerUniT is 4.5 times faster in testing
speed. In comparison to a unified nnUNet model dealing
with all eight organs, CancerUniT leads by 5.3% in lesion
detection sensitivity, 6.7% in diagnostic accuracy, 2.8% in
specificity, and 2.7% in Dice segmentation score. The im-
provements indicate that the different type of tumors have
mutual correlations and the design of CancerUniT success-
fully captures this clinical relationship for enhanced tumor
representation learning. The high performance of Can-
cerUniT also sheds light on its clinical potential for real-
world multi-cancer detection, segmentation, and diagnosis.

2. Related Work
CADe and CADx. CADe normally refers to the

computer-aided localization process of lesions in 2D/3D
medical images and CADx subsequently diagnoses lesions
or findings as either malignant or benign [3] and assign-
ing more potential tumor characteristics. Along with ad-
vances in deep learning, quantitative CADe performances
matching or beyond medical domain experts are reported in
several specialized single-organ clinical applications: breast
cancer screening [32], lung cancer detection [2], retinal dis-
ease referral [12], skin disease diagnosis [27] and so on.

Tumor detection, segmentation, and diagnosis in CT
via CNNs. CNNs have been widely applied to detect, seg-

ment, and diagnose cancers/tumors in CT scans. Lung nod-
ule detection in low-dose CT [43] is the recommended lung
cancer screening protocol where some promising results are
discussed [2, 21, 55, 72]. Image segmentation networks
[29, 8, 35, 24, 74] are well-adopted under the per-pixel clas-
sification setting and a segmentation model is designed to
predict the probability distribution over all possible cate-
gories or labels per pixel (as a structured dense prediction
problem). Segmenting abdominal organs and detecting tu-
mor by segmentation principles [51, 1, 4, 19, 70, 67, 20],
serve a key role towards fully-automated tumor detec-
tion [76, 53, 66, 54], differential diagnosis and report-
ing [71]. Despite their promising performance, these ap-
proaches are often specialized to focus only on a single
organ. Multi-organ segmentation [30, 26, 50, 69, 13, 73]
are emerging, but the degree of difficulty involved in multi-
cancer detection and diagnosis is considerably greater than
that of organ-level. DeepLesion [62] attempts to tackle the
universal lesion detection task in CT scans, but their derived
lesion detection methods [61, 59, 58] and several follow-up
work [63, 31, 60, 42, 41] so far have reported mostly mod-
erate multi-class lesion detection performance. Distinguish-
ing between malignant and benign lesions in multi-class tu-
mor setting is still far from a clinical reality.

Transformers [46] have advanced the state-of-the-art
performance in various computer vision tasks [16, 5, 28, 7,
17, 75, 44], by capturing global interactions between im-
age patches and having no built-in inductive prior. The suc-
cess of Transformer has also been witnessed in medical im-
age detection and segmentation [6, 56, 18]. With the recent
progress in transformers [5, 48], a new variant called mask
Transformers has been proposed, where segmentation pre-
dictions are represented by a set of query embeddings with
their own semantic class labels, generated through the con-
version of query embedding to mask embedding vectors fol-
lowed by multiplying with the image features. The essen-
tial component of mask transformers is the decoder which
takes object queries as input and gradually transfers them
into mask embedding vectors. Recent works [38, 48, 10, 9]
inspire us to represent tumor in the medical domain as the
class query [38] within the Transformer formulation. In this
paper, we propose a novel semantic hierarchical represen-
tation to exploit the relationship in detection, diagnosis and
differentiation among eight main tumors and their sub-types
from a large dataset of CT scans collected from both healthy
subjects and patients with cancers.

3. Method
In this section, we first define the problem of tumor de-

tection, segmentation, and diagnosis from an image seman-
tic segmentation perspective in Sec. 3.1. We then describe
the overview of query-based mask Transformer and how we
integrate it as our segmentation decoder in Sec. 3.2. After
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that, we introduce the proposed Unified tumor Transformer
(CancerUniT) in Sec. 3.3, which represents tumors by a se-
mantic query hierarchy, solving the tumor detection, seg-
mentation, and diagnosis in a unified manner.

3.1. Problem Definition

We focus on three tasks in images, i.e., tumor detection,
segmentation, and diagnosis. Tumor detection aims to lo-
cate the presence of target types of tumors. Tumor segmen-
tation aims to provide per-pixel annotation of the tumor re-
gion. Tumor diagnosis aims to classify the specific tumor
subtype of a detected tumor. We denote so as a set of or-
gans, and st as a set of tumors. Specifically in our dataset,

so {breast, lung, kidney, pancreas, esophagus, liver, stomach, colorectum}

st

{breast cancer, lung cancer, colorectal cancer,
pancreas PDAC, pancreas nonPDAC, liver HCC, liver ICC,

liver metastatis, liver hemangioma, stomach GC,
stomach nonGC, esophagus EC, esophagus nonEC,

kidney tumor/cyst}

We propose to solve these three tasks with a semantic
segmentation framework, in which we assign each voxel in
the CT scan with a semantic label k ∈ so ∪ st and the total
number of classes is K = |so|+ |st| . The tumor detection,
segmentation, and diagnosis are then evaluated based on the
semantic segmentation results.

3.2. Basis: Query-based Mask Transformers

Although Transformers have been used for medical im-
age segmentation as feature extractors, the query-based
mask Transformer [38, 48, 10] decoder is rarely explored
in medical images. Query-based mask Transformer aims to
decode the pixel-level features (usually from a CNN back-
bone) with object queries. Our method is based on this de-
sign and here we provide an overview of its basic compo-
nents. Query initialization. A set of K learnable class
queries (i.e., embeddings) q = [q1, ..., qK ] ∈ RK×d is de-
fined where K is the number of classes and d is the query
dimension. Each class query is initialized randomly and as-
signed to a single semantic class.

Query interaction via Transformer. The queries
are updated through multi-head cross-attention, multi-head
self-attention, and feedforward network [46]. The multi-
head cross-attention between queries and image features is
computed to update queries conditioned on image features.
The multi-head self-attention allows queries to interact with
each other.

Decode queries to segmentation. The class query q is
processed jointly with 3D image features F ∈ Rd×D×H×W

by the decoder. K masks can be generated by computing
the scalar product between L2-normalized image features
F ∈ Rd×D×H×W and class queries q ∈ RK×d. The set of

class masks is computed as:

M = q× F (1)

where M ∈ RK×D×H×W is K mask predictions and will
be followed by a softmax to obtain the final pixel-wise class
probability map in the task of semantic segmentation.

3.3. CancerUniT: Unified Tumor Transformer

We introduce the novel unified tumor transformer (See
Fig. 2), which includes semantic query hierarchy for tu-
mor representation, UNet backbone for feature extraction,
Transformer for query interaction, and dual-task query de-
coding for tumor detection task and cancer diagnosis task.

3.3.1 Query Hierarchy

We propose a novel tumor representation via a semantic hi-
erarchy of queries, including shared, detection, and diag-
nosis queries. By this design, tumors are represented as
queries and a “detection-to-diagnosis hierarchy” is estab-
lished based on the semantic relationship of tumors.

We hereby divide the segmentation targets so ∪ st into
three non-overlapping groups, i.e., m, n, and s. m consists
of m general tumor categories that requires further diagno-
sis. The ith element mi can be further categorized into the
sub-classes of ni with a number of ni sub-classes. s con-
sists the rest of the targets including eight organs and the
four cancers that do not require diagnosis in our data.

Shared query. We define a set of shared query s ∈ Rs×d

to represent the shared classes in both detection task and di-
agnosis task. The shared classes include the 8 organ classes,
and 4 tumor classes without other sub-types.

s so ∪ {lung cancer, breast cancer, colorectal cancer, kidney tumor/cyst}
m {pancreas tumor, liver tumor, stomach tumor, esophagus tumor}

n
{{PDAC, nonPDAC}, {HCC, ICC, metastasis, hemangioma},

{GC, nonGC}, {EC, nonEC)}}

Detection query. We denote A ∈ Rm×d as detection
queries with m specifying the number of queries. Each de-
tection query corresponds to the general tumor class of an
organ, which requires further diagnosis.

Diagnosis query. The cancer diagnosis relies on fine-
grained tumor categorization. Similarly, we denote a fea-
ture embedding B ∈ Rni×d as diagnosis queries with ni

specifying the number of diagnosis classes for tumor mi. A
group of ni diagnosis queries refers to |ni| tumor sub-types
ni occurred in organ i, and totally we have n =

∑|n|
i=1 ni

diagnosis queries in this work.
Detection-to-Diagnosis hierarchy via linear projec-

tion. Inspired by the clinical practice of detection-then-
diagnosis and given the fact that diagnosis queries are sub-
types of detection queries, we aim to build a graph treating
the detection queries as parent nodes and diagnosis queries
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Figure 2. Overview of Unified Tumor Transformer (CancerUniT).
We first represent tumor as queries A and B (i.e. feature embed-
ding), and then build the query hierarchy from A to B via linear
projection FC according to the tumor sub-type relationship. The
tumor queries interact and are updated in a Transformer decoder
with input of UNet features F. Dual-task query decoding is per-
formed to generate semantic segmentation map for two tasks. The
detection task focuses on major tumor classes while diagnosis task
is supervised by fine-grained cancer sub-types. In inference stage,
the dual-task tumor segmentation maps are post-processed sepa-
rately to produce multi-classes tumor instances for tumor detec-
tion and cancer diagnosis.

as children nodes. In this way, the model is able to learn the
hierarchical representation of tumors explicitly.

To build the semantic hierarchical relationship, we
project a detection query Ai ∈ R1×d into diagnosis queries

Bi ∈ R1×nid via a linear projection layer with matrix
Wi ∈ Rnid×d. The detection-to-diagnosis procedure is for-
mulated as:

Bi = Ai ×WT
i (2)

where Bi = [Bi,1,Bi,2, ...Bi,ni
] and the subgroup capacity

ni = |ni| represents the number of subtypes for tumor mi.
The detection queries A are learnable parameters that are
random initialized, while diagnosis queries B are feature
embedding conditioned on detection queries.

3.3.2 Meta Architecture

The proposed architecture includes a UNet backbone for
feature extraction, a Transformer for query interaction, and
a dual-task query decoding stage to generate segmentation
masks. Detailed model instantiation is in Appendix.

nnUNet backbone for feature extraction. We adopt
nnUNet [24] as the backbone to extract multi-scale features
F = [F1,F2,F3,F4] where Fj ∈ Rd×DjHjW j

is the j-th
layer feature map after projecting to number of channel d
and flattening the spatial dimension Dj , Hj , and W j .

Transformer for query interaction. We use the stan-
dard Transformer decoder [46] with input of UNet fea-
tures Fj and queries [Aj ,Bj ,Sj ] at the j-th layer. The
Transformer is stacked by three Transformer layers, each of
which contains a multi-head cross-attention, a multi-head
self-attention, and a feed-forward network. The concate-
nated query [A,B,S] is updated via the cross attention (de-
noted as CA) between the queries and the image feature Fj ,
as well as the query self-attention (denoted as SA). The
query interaction is written as:

Aj ,Bj ,Sj = SA(CA([Aj−1,Bj−1,Sj−1],Fj)) (3)

Dual-task query decoding. As there exists inclusive-
ness for the classes in A and B, it is unlikely to decode them
jointly if we would like to enforce multi-class exclusivity
constraint (e.g. softmax). To better capture the class exclu-
sivity, we propose the dual-task query decoding procedure
that decodes queries [A,S] and queries [B,S] separately to
perform dual-task semantic segmentation. The query de-
coding follows Eq. 1 with a softmax activation, written as:

MA+S = softmax([A,S]× F4)

MB+S = softmax([B,S]× F4)
(4)

where MA+S and MB+S are the decoded voxel-wise se-
mantic map for the detection task and the diagnosis task,
respectively.

End-to-end training. Our method performs both ma-
jor tumor segmentation and tumor subtype segmentation di-
rectly from CT scans, while vanilla methods only output
subtype segmentation maps that are further merged to ma-
jor tumor segmentation maps. In our work, the loss function
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is the combination of cross-entropy loss and Dice loss [33],
which are applied to both detection output MA+S and di-
agnosis output MB+S to enforce the similarity with their
corresponding targets.

Inference. End-to-end inference of dual-task segmenta-
tion is enabled simultaneously. For the detection process,
the tumor segmentation map from MA+S is extracted to
generate tumor instances (i.e. connected components) with
tumor class label i. If the predicted tumor instance has
overlaps with the ground-truth tumor, the patient is detected
with tumor class i. For the diagnosis process, we do simi-
lar tumor instance extraction from MB+S , but each tumor
instance is identified as one specific tumor subtype. The
patient-level cancer diagnosis category is decided by the tu-
mor subtype with the largest connected component.

4. Experiments

4.1. Experiment Setup

Dataset description. Our 8-cancer CT dataset, which
includes seven in-house tumor datasets (collected from
five hospitals), one publicly available kidney tumor dataset
[19], and a normal control dataset, is composed of 10,673
contrast-enhanced CT volumes (all in venous phase, except
for lung and CT angiography being arterial phase), each
from one unique patient. These CT volumes are acquired
before treatment. All cancers (and tumor subtypes) in the
seven in-house datasets are confirmed by pathology, with
four datasets having a full spectrum of tumor subtypes, i.e.,
liver (4 subtypes), stomach (6), esophagus (4), and pan-
creas (9). The normal controls consist of 934 abdominal
CT and 121 CT angiography (CTA) scans. Some of the
datasets for single organs have been involved in our previ-
ous publications for other precision oncology research pur-
poses [71, 65, 66, 67, 22, 49, 15, 64].

Tumors in each organ dataset are manually segmented
slice-by-slice on CT images by radiologists who provide the
data and specialize in the specific disease using either ITK-
SNAP [68] or our in-house developed CT annotation tool
– CTLabler [47]. During annotation, the radiologists also
refer to the other CT phases (e.g., arterial, delay), contrast-
enhanced MRI, and radiology/surgery/pathology reports if
necessary. All organs are segmented/delineated automati-
cally: the breast is by a nnUNet model trained on 213 ad-
ditional breast cancer CT volumes with CTV (clinical tar-
get volume) masks; the other seven organs are by another
nnUNet model trained on the Totalsegmentator dataset [51].
We randomly select 50 CT volumes from each tumor sub-
type (except for the liver tumor subtypes being 15 each, con-
sidering the relatively small liver data size), 50 abdominal,
and 21 CTA volumes to form the test set. The remaining
10,042 CT volumes are used as the training set (Table 1).

Implementation details. All images were resampled

to a spacing of 3 × 0.8 × 0.8mm (Z × X × Y ). In the
training stage, we randomly cropped sub-volumes of size
of 48 × 192 × 192 voxels from CT scans as the input. We
employed the online data augmentation of nnUNet [24],
including random rotation, scaling, flipping, Gaussian blur-
ring, adding white Gaussian noise, adjusting brightness and
contrast, simulation of low resolution, and Gamma transfor-
mation, to diversify the training set. The balanced sampling
strategy was adopted to encourage model to sample differ-
ent datasets and also different organ regions evenly. The
batch size was set to 8, with 1 batch size per GPU on an
8-GPU machine. We adopted the AdamW optimizer and
an initial learning rate of 3e-4. The baseline models were
trained from scratch with 700 epochs, and the number of
iterations per epoch equaled to training dataset size divided
by the batch size. It took 40 GPU days to train a nnUNet
from scratch on our dataset with Nvidia V100 GPUs. Due
to huge cost, CancerUniT was trained based on the pre-
trained nnUNet with a learning rate multiplier 0.1, and we
trained 50 epochs. For fair comparison, we also kept tuning
nnUNet for another 50 epochs besides 700 epochs whereas
no performance improvement was observed.

In the inference stage, we employed the sliding window
strategy, where the window size equals to the training patch
size. In addition, Gaussian importance weighting and test
time augmentation by flipping along all axes were also uti-
lized to improve the robustness of segmentation.

Evaluation metrics. We consider the evaluation metrics
from three aspects, including patient-level, lesion-level, and
dense-level metrics. For patient-level evaluation, sensitivity
and specificity are computed. Lesion-level precision and re-
call (do not consider the tumor type) are computed based on
connected component analysis of tumor predictions. Tumor
segmentation accuracy is assessed by the Dice coefficient.

Baselines. We compare our method to five baselines. (i)
8-nnUNet ensemble: An ensemble of 8 separately trained
nnUNet [24] models. To solve overlapping tumor predic-
tions, we extract the tumor connected components from 8
model predictions and merge them with the priority of tu-
mor size. (ii) nnUNet: A unified nnUNet trained on our
dataset as a multi-organ multi-tumor segmentation task. (iii)
TransUNet: A leading Transformer model TransUNet [6]
on medical image segmentation implemented in the nnUNet
framework [24] and with the same settings as (ii). (iv)
DeepLesion model: A universal lesion detection model [58]
trained on the DeepLesion dataset [62]. (v) LENS (train
on our data): A leading medical lesion detection algorithm
LENS [58] trained on our dataset.

For a fair comparison, all segmentation-based models
adopt fair data augmentations following nnUNet [24] and
the same training techniques, while LENS and DeepLesion
as detection-based methods adopt augmentations and train-
ing techniques following LENS [58]. All the models are
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Table 1. Dataset description. A-F denote six different hospitals.
Cancers Full spectrum tumors Normal controls TotalBreast CRC Kidney Lung Pancreas Esophagus Stomach Liver Abdomen CTA

Hospitals A A public A,B C B,D,E A C A F
Subtypes BC CRC KT LC PDAC nonPDAC EC nonEC GC nonGC HCC ICC Meta Heman - -

Train 428 746 249 2352 1315 727 1185 105 1117 273 284 31 99 147 884 100 10042
Test 50 50 50 50 50 50 50 50 50 50 15 15 15 15 50 21 631
Total 478 796 299 2402 1365 777 1235 155 1167 323 299 46 114 162 934 121 10673

Table 2. Patient-level tumor detection results. Sensitivity (%) and specificity (%) are reported. “DeepLesion model” is trained on DeepLe-
sion dataset [61]) using the detection-based algorithm LENS [58]; “LENS (trained on our data)” is trained on our new 8-cancer dataset.

Model
Sensitivity (%) Specificity (%)

Br. Crc. Kid. Lung Pan. Eso. St. Liv. Average Abd. CTA Average
8-nnUNet ensemble 96.0 74.0 94.0 74.0 93.0 83.0 92.0 86.7 86.6 80.0 9.5 59.2

DeepLesion model [62] 78.0 38.0 86.0 76.0 82.0 34.0 30.0 88.3 64.0 6.0 0.0 4.2
LENS (train on our data) [58] 82.0 62.0 76.0 50.0 89.0 72.0 72.0 75.0 72.3 70.0 52.4 64.8

nnUNet [24] 90.0 82.0 92.0 94.0 94.0 76.0 91.0 85.0 88.0 92.0 47.6 78.9
TransUNet [6, 24] 94.0 86.0 94.0 94.0 94.0 81.0 94.0 88.3 90.7 94.0 47.6 80.3

Ours 94.0 92.0 94.0 94.0 95.0 89.0 93.0 95.0 93.3 96.0 47.6 81.7

Table 3. Class-agnostic lesion instance-level detection results. We
treat eight types of tumors as one class. The numbers of FN, TP,
FP lesions, precision and recall are reported. The total number of
ground-truth lesions in the test set is 767. Note one patient might
have several lesions in the 560 patients with tumors, and a ground-
truth lesion might be matched with multiple TP components.

Model FN TP FP Precision Recall
8-nnUNet ensemble 209 568 1060 34.9% 72.8%

DeepLesion model [62] 376 649 5345 10.8% 51.0%
LENS (train on our data) [58] 267 602 875 40.8% 65.2%

nnUNet [24] 223 557 585 48.8% 70.9%
TransUNet [6, 24] 169 648 726 47.2% 77.9%

Ours 192 592 508 53.8% 75.0%

trained to be converged.

4.2. Main Results

Patient-level tumor detection per organ. This task
aims at the evaluation of whether the model can correctly lo-
calize and identify an existing tumor (agnostic of subtypes)
or generate false positive tumor predictions in the normal
controls. For example, if a patient has a tumor annotated
in the liver, a true positive prediction means that the model
predicts a liver tumor that overlaps (Dice > 0) the ground-
truth tumor annotation. We report the sensitivity for each
organ and the specificity for normal controls in the test set.

As shown in Table 2, our model outperforms all the base-
line models in terms of average sensitivity and specificity.
Compared to the 8-nnUNet ensemble, our model has sub-
stantial improvement in the sensitivity of detecting colorec-
tum (+18%), lung (+20%), and liver (+8%) tumors, and the
overall specificity (+21%). We also observe improvements
in these organs of other unified models, i.e., nnUNet and
TransUNet, which demonstrate that the unified training of
multi-organ multi-tumor segmentation will benefit almost
every separate task, except for breast tumor (-2%). With-

out seeing other organs and tumors, the separately trained
models have many more false positives than unified mod-
els, with a much lower specificity of 59.2%.

Without seeing our data, the DeepLesion [62] model has
a moderate average sensitivity (64.0%) and low specificity
(4.2%), hardly applicable to the real clinical scenario under
such a high false positive rate. After training on our data
with a leading lesion detection algorithm LENS [58], the
sensitivity for colorectum, esophagus, and stomach, as well
as the specificity are substantially improved; nevertheless,
these are still lower than the segmentation-based models.
These comparisons demonstrate that solving the tumor de-
tection task as semantic segmentation is superior to using
object detection methods.

Class-agnostic lesion-level tumor detection. In lesion
or tumor-level evaluation, we combine all lesions into one
class and extract the lesion instances from the segmenta-
tion masks of ground-truth and predictions to compute the
overall precision and recall. If a predicted lesion instance
mask overlaps a ground-truth lesion, we count this predic-
tion as true positive. As shown in Table 3, our approach
has the highest precision and recall among all the methods.
Both the DeepLesion models and the 8-nnUNet ensemble
models have a large number of false positives, resulting in
low precision. Similar to patient-level results, semantic seg-
mentation algorithms generally do better than object detec-
tion methods. Our model outperforms the unified nnUNet
model by approximately 5% in precision and 4% in recall.

Tumor segmentation. This task focuses on the tumor
segmentation quality, where our model still ranks as the top
in segmentation Dice score per organ, as shown in Table 4.
Here, we still ignore the subtype of the tumor and treat the
tumors in the same organ with the same label. We only com-
pare our model with the segmentation baselines, not the de-
tection models (DeepLesion and LENS). Similar to tumor
detection, the second best is the TransUNet model, and the
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Table 4. Voxel-level tumor semantic segmentation results (in Dice coefficient %).

Model Breast Colorectum Kidney Lung Pancreas Esophagus Stomach Liver average
8-nnUNet ensemble 0.623 0.474 0.728 0.415 0.690 0.661 0.420 0.703 0.589

nnUNet [24] 0.661 0.515 0.736 0.548 0.695 0.597 0.418 0.676 0.601
TransUNet [6, 24] 0.700 0.530 0.738 0.540 0.700 0.621 0.444 0.691 0.620

Ours 0.702 0.533 0.739 0.515 0.702 0.652 0.435 0.743 0.628

Table 5. Patient-level cancer diagnosis. The sensitivity (%) for each tumor subtype is reported. We categorize tumor subtypes as two
classes of cancer and non-cancer tumors for pancreas, esophagus, and stomach datasets; and consider four major subtypes for liver dataset.

Model
Pancreas Esophagus Stomach Liver

Average
PDAC nonPDAC avg EC nonEC avg GC nonGC avg HCC ICC Meta Heman avg

8-nnUNet ensemble 88.0 74.0 81.0 92.0 32.0 62.0 94.0 28.0 61.0 80.0 60.0 46.7 86.7 68.3 68.1
nnUNet [24] 92.0 76.0 84.0 94.0 12.0 53.0 96.0 18.0 57.0 69.0 69.0 33.3 80.0 62.8 64.2

TransUNet [6, 24] 94.0 78.0 86.0 94.0 22.0 58.0 96.0 18.0 57.0 60.0 80.0 40.0 80.0 65.0 66.5
Ours 90.0 84.0 87.0 94.0 36.0 65.0 82.0 48.0 65.0 60.0 80.0 40.0 86.7 66.7 70.9

Table 6. Ablation study on the representation of tumor queries.
Average detection sensitivity (%) and specificity (%), and voxel-
level tumor Dice scores are reported.

Sensitivity Specificity Dice
Plain 89.5 76.1 0.605

Parallel 90.1 78.9 0.608
Hierarchy (Ours) 93.3 81.7 0.628

Table 7. Efficiency comparison. CancerUniT is 4.5x faster and
8x lighter than the assembly of single-tumor expert models (8-
nnUNet).

Model Speed Params
8-nnUNet ensemble 187s 246.24M

DeepLesion model [62] 17s 70.94M
LENS (train on our data) [58] 17s 70.94M

nnUNet [24] 22s 30.78M
TransUNet [6, 24] 25s 38.53M

Ours 42s 30.87M

unified nnUNet is better than its single counterpart. The
improved performance of our model and TransUNet model
illustrates that enhancing the CNN feature extraction with
attentions will benefit multi-tumor segmentation. This ob-
servation is in line with our assumption that our query-based
Transformer better explores the similarity between the inter-
organ tumors, thus mutually improving the pixel-level tex-
ture differentiation of all tumors.

Tumor diagnosis. Our third evaluation focuses on the
diagnostic ability to differentiate different types of tumors
on the four organs, i.e., pancreas, esophagus, stomach, and
liver, where we have tumor subtypes including cancer and
non-cancer. As shown in Table 5, our method achieves the
highest overall diagnosis performance of 70.9%. Different
from previous tumor detection and segmentation results, the
single expert model is the second best (68.1%), demonstrat-
ing its strong baseline performance on the diagnosis on sin-
gle organs. The unified nnUNet model has a substantial

Pred BreastBreast

Pred LungLung

Pred ECEsophagus

Pred Liver MetaLiver

A. UniT can handle multiple CT Protocols

Pancreas Pred PDAC

Kidney Pred Kidney

Pred GCStomach

Pred CRCColorectum

B. Organs & Tumors Segmentation

Figure 3. (A) Our model can handle multiple CT protocols repre-
senting the real-world clinical practice. (B) An example of the 3D
masks of 8 organs and a breast tumor; and examples of 8 types
of tumors being detected, segmented, and diagnosed by our Can-
cerUniT.

performance drop (-4%) compared to its separately trained
counterpart. We hypothesize that this is due to the difficulty
of multi-task training. With only voxel-wise supervision, a
vanilla unified nnUNet is hard to well recognize numerous
subtypes of tumors for accurate diagnosis. In contrast, our
model is capable of exploiting the relationship between dif-
ferent tumor diagnosis tasks with our query hierarchy, thus
maintaining high performance and even improving over the
single expert models.

Ablation study. We perform the ablation study on
the representation of tumors (Table 6). We compare the
other two representations: (1) parallel representation: the
detection queries and diagnosis queries are organized as
two groups in parallel, without structural connection. (2)
plain representation: only diagnosis queries are used in our
framework, while the prediction for a major tumor mi in
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the detection branch is directly obtained by merging several
subtypes of tumors ni in the diagnosis branch.

Efficiency. We compare the efficiency among various
models in both inference speed and model size (number of
parameters) as illustrated in Table 7. CancerUniT is 4.5x
faster and 8x lighter than the assembly of single-tumor ex-
pert models.

Visual results in Fig. 3 shows that our model can han-
dle multiple CT protocol, and is capable to detect, segment,
and diagnose 8 types of major cancers. Generalizability to
public dataset is shown in Supplementary.

5. Conclusion
In this paper, we propose a single unified tumor Trans-

former (CancerUniT) model to detect, segment and diag-
nose eight common cancers using 3D CT scans, for the
first time. CancerUniT is a query-based Transformer and
offers a novel clinically inspired hierarchical tumor repre-
sentation, with a dual-task query decoding stage for seg-
mentation mask generation. We curate a large collection
of CT scans with high clinical quality from 10,673 pa-
tients, including eight major types of cancers and occurring
non-cancer tumors (pathology-confirmed and manually an-
notated). Extensive quantitative evaluations have demon-
strated the promising performance of our new model. This
moves one step closer to a universal high performance can-
cer screening AI tool.
Acknowledgments. Jieneng Chen and Alan Yuille in this
project were partially funded by a 2023 Patrick J. McGov-
ern Foundation award.
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