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Abstract

Weakly supervised object localization (WSOL) aims to
localize objects based on only image-level labels as su-
pervision. Recently, transformers have been introduced
into WSOL, yielding impressive results. The self-attention
mechanism and multilayer perceptron structure in trans-
formers preserve long-range feature dependency, facilitat-
ing complete localization of the full object extent. How-
ever, current transformer-based methods predict bounding
boxes using category-agnostic attention maps, which may
lead to confused and noisy object localization. To address
this issue, we propose a novel Category-aware Allocation
TRansformer (CATR) that learns category-aware repre-
sentations for specific objects and produces correspond-
ing category-aware attention maps for object localization.
First, we introduce a Category-aware Stimulation Mod-
ule (CSM) to induce learnable category biases for self-
attention maps, providing auxiliary supervision to guide
the learning of more effective transformer representations.
Second, we design an Object Constraint Module (OCM) to
refine the object regions for the category-aware attention
maps in a self-supervised manner. Extensive experiments
on the CUB-200-2011 and ILSVRC datasets demonstrate
that the proposed CATR achieves significant and consistent
performance improvements over competing approaches.

1. Introduction

Weakly supervised learning utilizes minimal supervision
or coarse annotations for training. In particular, weakly
supervised object localization (WSOL) aims to locate ob-
jects using only image-level annotations, making it an at-
tractive research area in various applications due to the
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Figure 1. The comparison of different mechanisms for generating
localization maps: (A) The CAM-based mechanism [19, 3] uses
feature maps of the class label, which tends to capture the most dis-
criminative regions in the localization map. (B) The transformer-
based mechanism [8, 5] combines the category-agnostic attention
map with the category-aware feature map, which brings person
noise to the localization map. (C) Our mechanism investigates
category awareness in self-attention maps to generate a category-
aware attention map, which is then coupled with the category-
aware feature map to produce an accurate localization map. The
predicted bounding boxes are in red. Best viewed in color.

elimination of the need for costly bounding box annota-
tions [4, 35, 8, 14, 1].

To tackle the challenge of WSOL with only image-level
labels, most approaches [36, 32, 19, 3, 21, 9] rely on Class
Activation Maps (CAM) [38] to discover discriminative im-
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age regions for localizing potential target objects. How-
ever, these methods tend to grossly underestimate object re-
gions and produce much smaller bounding boxes than the
actual range, as illustrated in Fig. 1 (A). To capture more
object parts, different techniques have been proposed to en-
hance CAM, such as graph propagation [40], data augmen-
tation [33, 15], adversarial erasing [3, 6, 19] and spatial re-
lation activation [32, 37, 9]. Despite their promising suc-
cess, existing approaches still exhibit limited performance
to completely localize objects, owing to the inherent char-
acteristic of convolutional neural networks (CNNs) [22, 5],
i.e., failing to explore the global feature relations properly.

Recently, visual transformers [26] have made significant
breakthroughs in computer vision, demonstrating that pure
transformers can be as effective as CNNs for feature extrac-
tion. Gao et al. [8] first combined the semantic-aware to-
kens with the semantic-agnostic attention map to generate a
localization map. Chen et al. [5] and Bai et al. [1] further
explored the local-continuous visual patterns and semantic
similarities of transformers for object localization, respec-
tively. The current transformer-based methods couple the
attention map upon the class tokens with the feature map
of the specific category to generate a localization map, as
illustrated in Fig. 1 (B). The feature map of the specific cat-
egory is obtained according to the ground-truth image-level
class label, while the attention map upon the class tokens
that captures the long-range feature dependency is category-
agnostic (not distinguishable to object classes) and is not
competent to category-aware localization [8]. As a result,
it brings category-agnostic noise to the localization maps,
which affects the generation of bounding boxes.

Based on the above analysis, we propose a simple
but effective framework called Category-aware Allocation
TRansformer (CATR), which employs category informa-
tion to exploit category-aware transformer attention. As il-
lustrated in Fig. 1 (C), our approach focuses on generating
category-aware attention maps, which can effectively learn
the discriminative representation of specific object classes.
Two category-aware maps are combined to generate the lo-
calization maps, which significantly reduces the impact of
background clutter. Specifically, we introduce a Category-
aware Stimulation Module (CSM) into the transformer at-
tention mechanism, which induces a learning bias to asso-
ciate self-attention maps with a specific category. CSM can
be viewed as auxiliary supervision to guide the learning of
more effective transformer representations and establishes
a strong one-to-one connection between the self-attention
maps and the corresponding classes. Moreover, we design
an Object Constraint Module (OCM) to refine object re-
gions for category-aware attention maps in a self-supervised
manner. OCM restricts background clutter and generates
pixel-level pseudo labels guided by the self-attention maps,
which helps to activate precise object regions. Furthermore,

we apply an automatic weighted loss mechanism [16] to ad-
just the loss weights during training. To validate the effec-
tiveness of the proposed CATR, we conduct comprehensive
experiments on challenging WSOL benchmarks. The con-
tributions of this work are as follows:

• We propose the Category-aware Allocation Trans-
former (CATR) for weakly supervised object localiza-
tion, which significantly enhances the category aware-
ness of self-attention maps among long-range feature
dependency.

• We introduce the Category-aware Stimulation Mod-
ule (CSM) to learn a specific category for the self-
attention maps among the different transformer blocks.

• We propose an Object Constraint Module (OCM) to
refine the object regions for category-aware attention
maps in a self-supervised manner.

• CATR achieves new state-of-the-art performance on
the CUB-200-2011 and ILSVRC datasets with 79.62%
and 56.90% Top-1 localization accuracy, respectively.

2. Related Work
CNN-based Methods for WSOL. Most methods rely

on the CAM [38] pipeline, which generates object bound-
ing boxes using the class activation map from a classifica-
tion network. However, due to the lack of localization su-
pervision, it easily becomes trapped in the most discrimi-
native parts rather than the whole object. To address this
issue, some methods use augmentation strategies on im-
ages or features to highlight non-discriminative parts of ob-
jects. For example, Singh et al. [15] hid the image patches
randomly in the training phase to discover different object
parts. Yun et al. [33] proposed to cut and paste the patches
among training images to attend to non-discriminative parts
of objects. Additionally, Zhang et al. [36] and Mai et
al. [19] mined different discriminative regions by two ad-
versary classifiers. Junsk et al. [6] erased discriminative
spatial positions on the feature map to capture the inte-
gral extent of the object. Chen et al. [3] combined eras-
ing and maxout learning strategies to highlight foreground
objects without losing information. Besides the augmenta-
tion strategies, there are some other methods that highlight
the spatial relationships among object parts to obtain inte-
gral regions. Xue et al. [32] utilized a discrepant activation
method to learn complementary and discriminative visual
patterns. Zhang et al. [37] adopted constraints to prompt the
consistency of object features within the same categories.
Pan et al. [21] leveraged structural information incorporated
into convolutional features to distill the structure-preserving
ability of features. Apart from the above works, Xie et
al. [30] proposed a new paradigm that learns a foreground
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Ā1 Ā2 Āl
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Figure 2. The architecture of the proposed CATR. It consists of a vision transformer backbone, a category-aware stimulation module (CSM),
and an object constraint module (OCM). In the inference phase, we add two specific-category supervised maps together, namely Mout and
Mcsm, and multiply them by the category-aware map M∗

ca to generate a localization map Mfuse, as shown in the bottom right.

prediction map to achieve localization. Wu et al. [29] pro-
posed a background activation suppression strategy to learn
foreground prediction maps for object localization. Zhu et
al. [39] modeled WSOL as a domain adaption task, where
the score estimator trained on the source/image domain is
tested on the target/pixel domain to locate objects. Some
other methods, such as Zhang et al. [34], Guo et al. [9] and
Wei et al. [28], divided WSOL into two independent sub-
tasks, including classification and the class-agnostic local-
ization. Such methods are not end-to-end and have sepa-
rated training phases, which may be inefficient for WSOL.

Most of the aforementioned methods rely on convolu-
tional neural networks, which have the inherent limitation
of failing to capture global information and are thus suscep-
tible to focusing on local discriminative object regions [8,
22]. To address this issue, we propose a transformer-based
method for WSOL.

Transformer-based Methods for WSOL. Recent ad-
vancements in computer vision have shown the great po-
tential of transformers for various tasks [13, 7, 31, 11, 2,
12, 24], as they excel in capturing long-range dependencies
and perform better than convolutional neural networks.

Dosovitskiy et al. [7] demonstrated that a pure trans-
former performs exceptionally well on image classification
tasks when applied directly to sequences of image patches.
In the context of weakly supervised object localization,
transformer-based models have also shown promising re-
sults. For instance, Gao et al. [8] combined semantic-aware
tokens with the semantic-agnostic attention map, which
could use both semantic and positioning information from
a visual transformer to find objects. Chen et al. [5] high-
lighted local details of global representations using learn-
able kernels and cross-patch information guided by the

class-token attention map. Gupta et al. [10] improved lo-
calization maps by incorporating a patch-based attention
dropout layer into the transformer attention blocks. Bai et
al. [1] considered the semantic similarities of patch tokens
and their spatial relationships for WSOL.

However, the above methods directly use the semantic-
agnostic (i.e., category-agnostic) attention maps, which
tend to bring background noise into object localization. In
this paper, we propose to inject category-aware information
into these semantic-agnostic attention maps, which allows
for pinpointing specific objects.

3. Methodology
In this section, we first provide an overview of the pro-

posed Category-aware Allocation TRansformer (CATR),
followed by detailed descriptions of the Category-aware
Stimulation Module (CSM) and Object Constraint Mod-
ule (OCM). We then incorporate the modules with the trans-
former structure into a joint optimization framework, as il-
lustrated in Fig. 2.

3.1. Framework Overview

Consider an input image I ∈ RH×W×M , where H , W ,
M denote its height, width, and the number of channels,
respectively. We first split I into w × h patches, which
are then flattened and linearly projected into a sequence of
patch tokens Tp ∈ RN×D, where D is the dimension of
each patch and N = w × h. An extra learnable class token
Tcls ∈ R1×D is then prepended to the tokens, together with
a position embedding Tpos ∈ R(N+1)×D, to form the input
sequence X ∈ R(N+1)×D, which is fed into the transformer
encoder with L consecutive transformer blocks.

To allocate the semantic information, the proposed CSM
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is applied to all the self-attention maps, resulting in a feature
map Xcsm ∈ RC×w×h, where C is the number of classes.
An auxiliary classification loss Lcsm is further added fol-
lowing Xcsm to promote category awareness. Subsequently,
we apply OCM to all the self-attention maps to refine the
object regions and obtain the object constraint loss Locm.

Denote Xout ∈ R(N+1)×D as the output feature map, we
discard the class token and apply a convolutional layer to it,
as in [8], resulting in the feature map X̄out ∈ RC×w×h.
Finally, we generate the class probability distribution ŷ for
classification prediction by applying a global average pool-
ing layer. With the corresponding image-level one-hot en-
coding label y, the classification loss function is as follows:

Lcls = −
C∑
i

yi log

(
eŷi∑C
j e

ŷj

)
. (1)

During training, we apply an automatic weighted mecha-
nism [16] to dynamically balance the importance of differ-
ent modules. The overall training loss can be defined as:

L =
1

2λ2
1

Lcls + log(1 + λ2
1) +

1

2λ2
2

Lcsm + log(1 + λ2
2)

+
1

2λ2
3

Ls
ocm + log(1 + λ2

3) +
1

2λ2
4

La
ocm + log(1 + λ2

4),

(2)

where λ1-λ4 are learnable parameters initialized to 1.
During testing, we first obtain an object map Mout ∈

Rw×h from X̄out based on the predicted class. Similarly,
we obtain another object map Mcsm ∈ Rw×h from Xcsm.
The final localization map is then computed by:

Mfuse = M∗
ca ⊗ (Mout +Mcsm) , (3)

where ⊗ denotes element-wise multiplication. M∗
ca is a

category-aware attention map generated from self-attention
maps, as described in Sec. 3.3. Mfuse is then resized to
the same size as the original image using linear interpola-
tion. Finally, the predicted box is obtained by finding the
tight bounding box covering the largest connected area in
the foreground pixels, as done in previous works [38, 8].

3.2. Category-aware Stimulation Module

To mitigate the impact of category-agnostic attention
maps in the localization map generation stage, we pro-
pose to inject category-aware information into the trans-
former. Assuming that the attention matrix of the multi-
head attention module in a transformer block as Aam ∈
RL×S×(N+1)×(N+1). Note that L represents the number
of transformer blocks and S denotes the number of heads
in the multi-head attention mechanism. We extract and re-
shape the class-token attention vector from Aam to obtain

Im
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tt
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n

m
ap

Figure 3. Visualization of attention maps in the transformer. The
ground-truth bounding boxes are in red.

an attention map Ā ∈ RL×S×w×h, which aggregates the
feature representation of all transformer blocks and heads.
However, Ā acquires information from different represen-
tation subspaces at various positions in the input image, en-
compassing all regions of interest in the image. This makes
it difficult to locate a specific object, as shown in Fig. 3.
For instance, the first-column sample reveals that both the
fish and people are activated, despite the ground-truth label
being solely assigned to the fish. This is because Ā lacks
category supervision during training. To cope with this is-
sue, we propose CSM to optimize Ā.

Specifically, we reshape Ā into XA ∈ R(LS)×w×h and
apply a CNN-based encoder-decoder to extract more pre-
cise semantic information for distinguishing different in-
terest regions. The encoder part comprises a max-pooling
operation with stride 2 and two 3 × 3 convolutional lay-
ers, which generate a downsampled feature map Xe ∈
RG×w

2 ×h
2 . Note that we set the number of feature channels

to G. The decoder then upsamples Xe and concatenates it
with the input feature map XA. The concatenated features
pass through two 3 × 3 convolutional layers to obtain the
output feature map Xd. Next, we add an auxiliary classi-
fication head following Xd to promote category awareness.
The classification head comprises a 1×1 convolutional layer
and a global average pooling layer, and produces the output
feature map Xcsm ∈ RC×w×h and the class probability dis-
tribution ŷc. The loss of the CSM is formulated as:

Lcsm = −
C∑
i

yi log

(
eŷ

c
i∑C

j e
ŷc
j

)
. (4)

Here, yi denotes the ground-truth label of class i, and C
denotes the number of classes.

3.3. Object Constraint Module

CSM incorporates category information into the
category-agnostic attention maps, thereby reducing the
background interference of the localization maps. Then, for
generating precise attention maps on the basis of CSM, we
propose the Object Constraint Module (OCM) to refine the
object regions, which leverages the discriminative power of
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attention maps and generates pseudo labels to supervise the
attention maps in a self-supervised manner.

OCM consists of noise suppression and object awaken-
ing mechanisms that restrict the background clutter of the
attention maps and enhance object regions, respectively.
The joint objective function for OCM training is optimized
with two loss terms: the noise suppression loss Ls

ocm and
the object awakening loss La

ocm. The overall loss for OCM
is formulated as:

Locm =
1

2λ2
3

Ls
ocm + log(1 + λ2

3)

+
1

2λ2
4

La
ocm + log(1 + λ2

4).

(5)

Noise suppression mechanism. We employ the average
operator to the attention map Ā ∈ RL×S×w×h along both
the block and head dimensions. We acquire the category-
aware attention map M∗

ca ∈ Rw×h, which is formulated as:

M∗
ca =

1

LS

L∑
l

S∑
s

Ā(l,s). (6)

Since long-range dependency is preserved in M∗
ca, we treat

values below the p-percentile as background clutter, and
suppress them to zero. The loss function for noise suppres-
sion is defined as:

Ls
ocm =

1

hw

h∑
i

w∑
j

M̄∗
ca(i,j), (7)

M̄∗
ca(i,j) =

{
0, if M∗

ca(i,j) > Φp (M
∗
ca) ,

M∗
ca(i,j), otherwise,

(8)

where Φp(·) denotes a function that finds p-th percentile
from the given values. Specifically, M∗

ca is flattened and
ranked in ascending order, and the p-th percentile value is
selected as the threshold for noise suppression.

Object awakening mechanism. To learn the favorable
object regions, a key step is to derive reliable attention
pseudo labels as supervision. We first split the attention
map Ā along the block dimension to obtain Āl ∈ RS×w×h

in the l-th block. Then, we apply a 1 × 1 convolutional
layer to derive a new feature map Xl ∈ R1×w×h, which
approximates the spatial distribution of the object in each
block. Given that different blocks learn diverse represen-
tations, we concatenate the new feature maps from the K
transformer blocks and pass them through a 3× 3 convolu-
tional layer with a sigmoid activation function, resulting in
a pixel-level pseudo map Mocm ∈ Rw×h. This pseudo map
further supervises the category-aware attention map during
training. The activation loss is formulated as:

La
ocm =

1

hw

h∑
i

w∑
j

(
Mocm(i,j) −M∗

ca(i,j)

)2
. (9)

Methods Backbone Loc. Acc
Top-1 Top-5 GT-known

CAM [38] GoogLeNet 41.06 50.66 55.10
DANet [32] GoogLeNet 49.45 60.46 67.03
ADL [6] InceptionV3 53.04 − −
SPA [21] InceptionV3 53.59 66.50 72.14
FAM [20] InceptionV3 70.67 − 87.25
CAM [38] VGG16 44.15 52.16 56.00
ADL [6] VGG16 52.36 − 75.41
ACoL [36] VGG16 45.92 56.51 62.96
DANet [32] VGG16 52.52 61.96 67.70
MEIL [19] VGG16 57.46 − 73.84
SPA [21] VGG16 60.27 72.50 77.29
FAM [20] VGG16 69.26 − 89.26
ORNet [30] VGG16 67.73 80.77 86.20
BAS [29] VGG16 71.33 85.33 91.00
BGC [14] VGG16 70.83 88.07 93.17
TS-CAM [8] Deit-S 71.30 83.80 87.70
LCTR [5] Deit-S 79.20 89.90 92.40
SCM [1] Deit-S 76.40 91.60 96.60
CATR (Ours) Deit-S 79.62 92.08 94.94

Table 1. Comparison of CATR with the state-of-the-art methods
on the CUB-200-2011 [27] test set.

4. Experiments

4.1. Experimental Settings

Datasets. We evaluate the effectiveness of our proposed
method on two widely-used WSOL benchmarks: CUB-
200-2011 [27] and ILSVRC [23]. The CUB-200-2011
dataset comprises 200 bird categories with 5, 994 training
images and 5, 794 testing images. In contrast, the ILSVRC
dataset is a more extensive dataset that comprises 1, 000
classes with 1, 281, 197 training images and 50, 000 vali-
dation images. We train our model using only the training
set and evaluate it on the validation set, where the bounding
box annotations are solely used for evaluation purposes.

Evaluation Metrics. Following previous methods [38,
5, 29], five evaluation metrics are adopted for evaluation,
including Top-1/Top-5 localization accuracy (Top-1/Top-
5 Loc), GT-known localization accuracy (GT-known Loc)
and Top-1/Top-5 classification accuracy (Top1/Top-5 Cls).
Concretely, Top-1 Loc is the fraction of images with the
correct predictions of classification and more than 50% in-
tersection over union (IoU) with the ground-truth bound-
ing boxes. Top-5 Loc is the fraction of images with class
labels belonging to Top-5 predictions and more than 50%
IoU with the ground-truth bounding boxes. GT-known Loc
is the fraction of images for which the predicted boxes have
more than 50% IoU with the ground-truth bounding boxes.

Implementation Details. We construct our proposed
CATR using the Deit-S backbone [25] pre-trained on
ILSVRC [23] and adopt TS-CAM [8] as our baseline
method. Specifically, we replace the MLP head with a con-
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Methods Backbone Loc. Acc
Top-1 Top-5 GT-known

CAM [38] VGG16 42.80 54.86 59.00
ADL [6] VGG16 44.92 − −
ACoL [36] VGG16 45.83 59.43 62.96
I2C [37] VGG16 47.41 58.51 63.90
MEIL [19] VGG16 46.81 − −
FAM [20] VGG16 51.96 − 71.73
ORNet [30] VGG16 52.05 63.94 68.27
BAS [29] VGG16 52.96 65.41 69.64
BGC [14] VGG16 49.94 63.25 68.92
CAM [38] InceptionV3 46.29 58.19 62.68
ADL [6] InceptionV3 48.71 − −
DANet [32] GoogLeNet 47.53 58.28 −
I2C [37] InceptionV3 53.11 64.13 68.50
GC-Net [18] InceptionV3 49.06 58.09 −
SPA [21] InceptionV3 52.73 64.27 68.33
FAM [20] InceptionV3 55.24 − 68.62
TS-CAM [8] Deit-S 53.40 64.30 67.60
LCTR [5] Deit-S 56.10 65.80 68.70
SCM [1] Deit-S 56.10 66.40 68.80
CATR (Ours) Deit-S 56.90 66.64 69.25

Table 2. Comparison of CATR with state-of-the-art methods on the
ILSVRC [23] validation set.

volutional layer and add a global average pooling layer on
top of it. The input images are resized to 256 × 256 and
then randomly cropped to 224 × 224. We use an AdamW
optimizer [17] with ϵ=1e-8, β1=0.9, β2=0.99 and weight
decay of 5e-4, to train our network. For the experiments on
CUB-200-2011, we train the network for 80 epochs with a
batch size of 128 and a learning rate of 5e-5. For the experi-
ments on ILSVRC, we train the network for 14 epochs with
a batch size of 128 and a learning rate of 5e-4.

4.2. Comparison with State-Of-The-Arts

Quantitative Comparison. Tab. 1 presents a com-
parison between CATR and other methods on the CUB-
200-2011 dataset [27]. The experimental results indi-
cate that CATR outperforms the baseline TS-CAM [8] in
terms of Top-1/Top-5/GT-known Loc metrics, achieving
Top-1 Loc accuracy of 79.62% and GT-known Loc accu-
racy of 94.94%. Furthermore, compared with the CNN-
based state-of-the-art methods (BGC [14] and BAS [29]),
CATR respectively achieves improvements of 8.79% and
8.29% in terms of Top-1 Loc. Additionally, CATR exhibits
2.54% improvement in GT-known Loc compared to the
transformer-based state-of-the-art method LCTR [5], which
further highlights the potential of transformers for WSOL.

Tab. 2 reports the localization accuracy on the ILSVRC
dataset [23]. The proposed CATR surpasses the base-
line TS-CAM [8] by 3.50% and 1.65% in terms of Top-1
Loc and GT-knwon Loc, respectively. Remarkably, CATR
achieves a Top-1 Loc accuracy of 56.90%, outperforming
all transformer-based methods. Compared to the CNN-

Baseline CSM OCM Loc. Acc
Top-1 Top-5 GT-known

(a)
√

74.16 86.42 89.28
(b)

√ √
77.59 90.35 93.22

(c)
√ √ √

79.62 92.08 94.94

Table 3. Comparison of the object localization performance of
CATR using different modules.

G N/A 2 4 8 16 32
Top-1 74.16 72.20 72.80 77.59 75.71 74.18
Top-5 86.42 85.15 85.43 90.35 88.39 88.16
GT-k. 89.28 87.81 88.29 93.22 90.84 90.10

Table 4. Performance analyses of hyperparameter G in CSM. Note
that ‘N/A’ indicates the baseline.

CUB-200-2011 ILSVRC
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U

5
9
.5

5

7
7
.4

7

6
7
.0

9

7
1
.2

7
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Figure 4. Statistical analysis of the IoU between predicted bound-
ing boxes and ground-truth bounding boxes. The median (%) is
displayed in yellow text.

based methods, the proposed CATR achieves state-of-the-
art performance, with only a slightly lower GT-Known Loc
than FAM [20].

Visual Comparison. We compare the localization re-
sults of the proposed CATR and TS-CAM [8] on CUB-200-
2011 [27] and ILSVRC [23] in Fig. 5. Our proposed CATR
consistently generates more accurate and refined localiza-
tion maps that encompass category-aware object regions,
exhibiting sharper and more compact boundaries compared
to TS-CAM. For example, as seen from the second-column
sample in the upper part of Fig. 5, TS-CAM only highlights
the tail part of the blocked bird, while our method accu-
rately captures the entire body except for the occlusions.
Moreover, as evidenced by the sixth-column sample in the
lower part of Fig. 5, TS-CAM focuses exclusively on the
top of the pole, while our method successfully localizes the
entire object regions.

Localization Quality. We present a statistical analysis
of the IoU between predicted bounding boxes and ground-
truth bounding boxes, as depicted in Fig. 4. On the CUB-
200-2011 dataset, we achieve 77.47% median IoU, exceed-
ing the baseline TS-CAM [8] by 17.92%, and correspond-
ingly by 4.18% on ILSVRC. From these results, we can
find that the proposed CATR improves localization quality
on both datasets.
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Figure 5. Visualization comparison with the baseline TS-CAM [8] method on CUB-200-2011 [27] and ILSVRC [23]. The ground-truth
bounding boxes are highlighted in red, the predicted bounding boxes are highlighted in green, and the corresponding IoU values (%) are
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Figure 6. Performance analyses of hyperparameter p in OCM.

4.3. Ablation Study

In this subsection, we perform a series of experiments
to validate the effectiveness of various combinations of the
proposed components on the two datasets.

First, we compare the performance of the proposed ap-
proach using different modules. Note that we re-implement
TS-CAM [8] and take it as our baseline. Tab. 3 shows
that the CSM, which builds a connection between the at-
tention map and the category information, obtains gains of
3.43%, 3.94% in terms of Top-1 Loc and GT-known Loc,
respectively. The model achieves a remarkable Top-1 Loc

K N/A 2 3 4 5 6
Top-1 78.20 76.80 77.36 78.12 78.43 78.56
Top-5 90.82 88.68 89.21 90.76 90.25 90.99
GT-k. 93.61 91.46 91.75 93.54 93.13 93.87

K 7 8 9 10 11 12
Top-1 78.55 78.87 79.62 76.13 74.97 65.55
Top-5 91.27 91.30 92.08 88.47 87.26 76.82
GT-k. 93.78 94.17 94.94 91.06 89.88 79.18

Table 5. Performance analyses of hyperparameter K in OCM.
Note that ‘N/A’ indicates the baseline.

Dataset ALM [16] Loc. Acc
Top-1 Top-5 GT-known

CUB-200-2011 [27] × 79.41 91.80 94.70√
79.62 92.08 94.94

ILSVRC [23] × 56.13 65.99 68.60√
56.90 66.64 69.25

Table 6. Performance analyses of ALM [16].

accuracy of 79.62% when we employ both CSM and OCM.
Next, we perform the sensitivity analysis on all hyperpa-

rameters of CATR through extensive experiments.
Hyperparameter G in CSM. We first investigate the

effect of G in terms of Top-1/Top-5/GT-known Loc met-
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Figure 7. Visualization of the pixel-level pseudo map Mocm.

rics. Here, G represents the number of channels in the en-
coder part of CSM. As shown in Tab. 4, we vary G val-
ues to study the localization performance changes. From
these results, we observe that the best localization accuracy
can be achieved when G = 8. However, setting a larger G
may lead to performance degradation, which we believe is
caused by parameter redundancy.

Hyperparameter p in OCM. We then explore the effect
of the hyperparameter p. Fig. 6 summarizes the experimen-
tal results on CUB-200-2011. We observe that the localiza-
tion accuracy reaches the highest performance at p = 10%
and then degrades. Note that p determines how much back-
ground noise needs to be suppressed. As p gets larger, the
model suppresses more regions, and even suppresses the
foreground. The results in Fig. 6 also support it, the per-
formance drops sharply when p = 70%.

Hyperparameter K in OCM. We further show the ef-
fect of the hyperparameter K, which indicates the num-
ber of attention maps aggregated from top-K transformer
blocks. The experimental results are summarized in Tab. 5.
The best localization accuracy can be achieved when K is
set to 9. A larger K means more self-attention maps, which
give more insights to generate the pixel-level pseudo map.
However, the performance decreased when K exceeded 9,
possibly due to overfitting.

Third, we visualize the pixel-level pseudo map (i.e.,
Mocm) of OCM in Fig. 7. We observe that Mocm con-
tains the class-specific features, which highlight the robust
object regions. Note that these pseudo-maps are generated
based on the self-attention maps in the training phase with-
out any pixel-level supervision. In this case, OCM effec-
tively refines the object regions for the category-aware at-
tention map in a self-supervised manner, resulting in the
precise activation of object regions.

Lastly, we investigate the effects of the automatic
weighted loss mechanism (ALM) [16] on our losses from
two aspects. On the one hand, we present the performance
when the ALM is not used, and λ1-λ4 are fixed to 1 for
training. The results in Tab. 6 demonstrate that using the
ALM can slightly improve localization performance. On
the other hand, we study the changes in four learnable pa-
rameters (i.e., λ1-λ4) in Eq. 2 during the training process.

Epoch
Figure 8. Analyses of loss weights in the training phase.

Please note that these learnable parameters are all initial-
ized to 1. As shown in Fig. 8, we observe that λ2 is con-
sistently the largest during training, even though the losses
weighted by λ1 and λ2 are the same classification loss (i.e.,
the cross-entropy loss). We attribute this to the category-
aware information brought by CSM, which is beneficial to
classification. This finding supports the argument that CSM
establishes the connection between the attention maps and
the specific classes. Moreover, the results suggest that OCM
plays a supporting role in refining the object regions, as the
values of λ3 and λ4 decrease in the training phase.

5. Conclusion

In this paper, we introduce the Category-aware
Allocation TRsanformer (CATR), a novel weakly super-
vised object localization method that leverages the self-
attention mechanism of the transformer to deliver category
information. We first propose a category-aware stimula-
tion module (CSM) that learns the category information
for the self-attention maps, providing auxiliary supervision
to guide the learning of more effective transformer repre-
sentations. Besides, we propose an object constraint mod-
ule (OCM) to refine the object regions for category-aware
attention maps in a self-supervised manner. Extensive ex-
periments conducted on the CUB-200-2011 and ILSVRC
benchmarks demonstrate the effectiveness of the proposed
CATR, outperforming the state-of-the-art methods.
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