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Figure 1. CuNeRF is the first zero-shot Medical Image Arbitrary-Scale Super Resolution framework. After training on an LR medical
volume (a) itself, CuNeRF can build the corresponding continuous volumetric representation (b), which is able to achieve (c) Free-
viewpoint slice synthesis: yielding novel-view medical slices from the arbitrary viewpoints, and (d) Arbitrary-scale super-resolution:
upsampling medical images at arbitrary scales in a continuous domain. Project page is available at NarcissusEx.github.io/CuNeRF.

Abstract

Medical image arbitrary-scale super-resolution (MI-
ASSR) has recently gained widespread attention, aiming
to supersample medical volumes at arbitrary scales via a
single model. However, existing MIASSR methods face
two major limitations: (i) reliance on high-resolution (HR)
volumes and (ii) limited generalization ability, which re-
stricts their applications in various scenarios. To over-
come these limitations, we propose Cube-based Neural Ra-
diance Field (CuNeRF), a zero-shot MIASSR framework
that is able to yield medical images at arbitrary scales
and free viewpoints in a continuous domain. Unlike exist-
ing MISR methods that only fit the mapping between low-
resolution (LR) and HR volumes, CuNeRF focuses on build-
ing a continuous volumetric representation from each LR
volume without the knowledge of the corresponding HR
one. This is achieved by the proposed differentiable mod-
ules: cube-based sampling, isotropic volume rendering, and
cube-based hierarchical rendering. Through extensive ex-

*Corresponding author.

periments on magnetic resource imaging (MRI) and com-
puted tomography (CT) modalities, we demonstrate that
CuNeRF can synthesize high-quality SR medical images,
which outperforms state-of-the-art MISR methods, achiev-
ing better visual verisimilitude and fewer objectionable ar-
tifacts. Compared to existing MISR methods, our CuNeRF
is more applicable in practice.

1. Introduction

Medical imaging techniques such as computed tomogra-
phy (CT) and magnetic resonance imaging (MRI) are criti-
cal tools in assisting clinical diagnosis. However, the acqui-
sition of high-quality medical slices is a resource-intensive
process, which requires subjects to be exposed to consider-
able ionizing radiations for a long time, increasing the life-
time risk of cancer [21]. To reduce the burden on subjects,
a feasible approach is to reconstruct high-resolution (HR)
medical volumes from low-resolution (LR) ones.

To tackle medical image super-resolution (MISR) chal-
lenges, early studies employed optimization methods [12,
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Figure 2. Difference between existing supervised MISR (a), zero-shot MISR (ZSMISR) (b) and CuNeRF (c). Visually, supervised MISR
methods need to collect considerable LR-HR pairs for training, while ZSMISR and our CuNeRF only train the model on each test volume
itself. However, given a test volume, ZSMISR methods can only upsample medical images at a specific scale (one-for-one), while our
CuNeRF can handle arbitrary upsampling scales (one-for-all).

40] and interpolation methods [18]. Subsequently, a series
of methods [8, 43, 47, 5, 36] have adopted convolutional
neural networks to learn the LR-HR mappings. Recently,
medical image arbitrary-scale super-resolution (MIASSR)
methods [28, 41] have received widespread attention in the
MISR community, aiming to employ a single model to up-
sample medical volumes at arbitrary scales. Although these
methods achieve acceptable HR results, they still have two
major issues: (i) Existing MIASSR methods rely on the su-
pervision from HR volumes, yet high-quality HR volumes
are not always available; (ii) These methods may be suscep-
tible to the distribution gap between training and test data,
producing non-existent details. These drawbacks limit the
application scenarios of existing MIASSR methods.

To address the above-mentioned limitations, we present
a zero-shot MIASSR framework – Cube-based NeRF
(CuNeRF), which aims to yield arbitrary upsampling im-
ages after training on a test LR volume itself (see Figure 2).
Specifically, we draw inspiration from the neural radiance
field (NeRF) [23] to estimate the continuous volumetric rep-
resentation from discrete samples (LR volumes) instead of
fitting the mapping between LR and HR volumes. Since
directly applying NeRF on medical volumes may result in
grid-like artifacts (see Figure 3, detailed explanation is pro-
vided in Section 4.1), our CuNeRF tackles such aliasing is-
sues via the proposed differentiable modules: cube-based
sampling, isotropic volume rendering, and cube-based hi-
erarchical rendering. As shown in Figure 1, CuNeRF can
build a continuous mapping between the coordinate and the
corresponding intensity value in the training data, which is
capable of generating medical slices at arbitrary scales and
free viewpoints in a continuous domain. Comprehensive
experiments on the MSD Brain Tumour (MRI) [33] and
KiTS19 (CT) [13] datasets show that CuNeRF yields im-
pressive performance in 3D and volumetric MISR at various

upsampling scales, outperforming state-of-the-art methods.
The main contributions are summarized:

• To the best of our knowledge, CuNeRF is the first
zero-shot MIASSR framework that can continuously
upsample medical volumes at arbitrary scales.

• We address the hole-forming issues via the proposed
techniques: cube-based sampling, isotropic volume
rendering, and cube-based hierarchical rendering.

• Extensive experiments on CT and MRI modalities for
3D MISR and volumetric MISR show CuNeRF favor-
ably surpasses state-of-the-art MIASSR methods.

2. Related Works
In this section, we first review implicit neural representa-

tion and then introduce some impressive progress in medi-
cal image super-resolution. Recent surveys [39, 19] provide
a comprehensive review of super-resolution methods.

2.1. Implicit Neural Representation

Learning implicit neural representations (INRs) from
discrete samples to form a continuous function has been a
long-standing research problem in computer vision for nu-
merous tasks. A recent trend in this field is to map dis-
crete representations to coordinate-based continuous neural
representations through implicit functions formed by neural
networks, such as multi-layer perceptron (MLP). Chen et
al. [4] proposed a method to learn the INR of 2D images us-
ing the local implicit image function. Subsequent work [6]
extended this [4] to apply in the video domain. Currently,
most 3D view-synthesis methods are based on the neural
radiance fields (NeRF) [23] framework. NeRF can model a
volumetric radiance field to render novel views with impres-
sive visual quality using standard volumetric rendering [15]
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and alpha compositing techniques [29]. However, NeRF
has the drawback of requiring massive training views and
lengthy optimization iterations to learn the correct 3D ge-
ometry. Several follow-up works have attempted to opti-
mize NeRF’s training procedures, such as reducing the re-
quired training views [44, 10, 35], accelerating convergence
and rendering speed [25]. Other works aim to adapt NeRF
to various domains, such as generative modeling [31, 26],
anti-aliasing [2], unbounded representation [3], and RGB-
D scene synthesis [1]. Recently, some researchers employ
INR-based methods to reconstruct medical images from
discrete-sampled data [34, 46, 7, 9], more details can be
seen in the recent survey [24].

2.2. Medical Image Super Resolution

Medical image super-resolution (MISR) is an important
task in medical image processing, which aims to recon-
struct high-resolution (HR) medical slices from correspond-
ing low-resolution (LR) ones. Initially, some conventional
methods like [12, 40] and widely-used interpolation meth-
ods like bicubic and tricubic interpolations [18] were em-
ployed in the early research. Inspired by [11], recent studies
have shifted their focus towards using deep learning-based
super-resolution networks in the medical domain. Lim et al.
[20] employ deep learning-based super-resolution networks
to upsample medical images. Some studies upsample each
2D LR medical slice to acquire the corresponding HR one,
such as [8, 43, 47]. On the other hand, Chen et al. [5] and
Wang et al. [36] use 3D DenseNet-based networks to gen-
erate HR volumetric patches from LR ones. Yu et al. [45]
build a transformer-based MISR network to address volu-
metric MISR challenges. Recent studies have been focus-
ing on medical image arbitrary-scale super-resolution (MI-
ASSR) [41, 28], which aims to upsample medical slices at
arbitrary scales by a single model. Inspired by Meta-SR
[14], Peng et al. [28] deals with volumetric MISR on the
z-axis at integer scales. Wu et al. [41] propose ArSSR,
an INR-based method that can upsample MRI volumes at
arbitrary scales in a continuous domain. Wang et al. [37]
propose a weakly-supervised framework that uses unpaired
LR-HR medical volumes for optimization. However, these
methods deeply rely on the HR medical volumes, which
limits the application scenarios.

3. Preliminary: NeRF
Neural radiance field (NeRF) [23] aims to build the con-

tinuous mapping from (x,d) to (c, σ), where x = (x, y, z)
and d = (θ, ϕ) denote spatial location and viewing direc-
tion, while c and σ represent the content color and volume
density, respectively. NeRF’s techniques can be summa-
rized as follow:
Ray sampling. NeRF first constructs the ray r(t) = o +
td that emits from the center of projection o and passes

through the materials along the viewing direction d. Sub-
sequently, NeRF samples N points along the ray from near
plane tn to far plane tf predefined. For each sampling point
r(tk), NeRF employs a positional encoding function γ(·)
to map the location xk and view direction d into higher di-
mensional space as:

γ(ρ) = ρ

L−1⋃
i=0

(sin(2iρ), cos(2iρ)), where L ∈ N. (1)

where ρ denotes an arbitrary vector and L is a hyperparam-
eter set to 10 as default.
Volume rendering. The pixel color C(r) can be modeled
as the integral of the corresponding ray r based on Beer-
Lambert Laws as:

C(r) =

∫ tf

tn

σ(r(t))c(r(t),d)dt

exp(
∫ t

tn
σ(r(s))ds)

, (2)

where c(·) and σ(·) denote the color and volume density
functions. In practice, NeRF employs a multi-layer percep-
tron (MLP) FΘ to estimate these two functions. For each
sampling point r(tk), MLP FΘ predicts the corresponding
color ck and volume density σk by:

(ck, σk) = FΘ(γ(xk), γ(d)). (3)

Given the estimated results of the N sampling points from
tn to tf , we can approximate the volume rendering integral
using numerical quadrature as introduced by [22]:

Ĉ(r) =

N∑
i=1

1− exp(−σi(ti+1 − ti))

exp(
∑i

j=1 σj(tj+1 − tj))
ci, (4)

where Ĉ(r) is the predicted color of the pixel.
Hierarchical volume rendering. NeRF also refine the re-
sult by allocating samples proportionally to their expected
volume distribution based on the coarse estimations. NeRF
simultaneously optimizes two MLPs, i.e., the coarse one F c

Θ

and the fine one F f
Θ. Specifically, NeRF first samples Nc

points and obtain the coarse output Ĉc(r) by Eq 4, which
can be rewrited as Ĉc(r) =

∑Nc

i=1 wici. A piecewise-
constant PDF related to the sampling points along the ray
can be produced by ŵ = wi/

∑Nc

j=1 wj . NeRF then sam-
ples Nf points from this distribution by inverse transform
sampling (ITS) and computes the fine outputs Ĉf (r) using
all Nc + Nf sorted sampling points. Let R represent the
batch, and these two MLPs can be optimized by the follow-
ing rendering loss:

L =
∑
r∈R

[
∥g.t.− Ĉc(r)∥22 + ∥g.t.− Ĉf (r)∥22

]
, (5)

where g.t. denotes the ground truth of the rendering pixels.
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Figure 3. Visual examples of 3D MISR at ×2.5 factor between
ArSSR [41], NeRF† [23] and our CuNeRF on MSD [33] dataset.
Heatmaps at the bottom visualize the difference between the re-
sults and the HR image. Visually, NeRF† yields grid-like arti-
facts, and ArSSR produces non-existent details. By contrast, our
CuNeRF achieves better visual verisimilitude and fewer artifacts.

4. Method
In this section, we first analyze the limitations of NeRF

for rendering medical volumes and elaborate on our mo-
tivations. Subsequently, based on our findings, we pro-
pose cube-based NeRF (CuNeRF), a novel yet efficient
method to deal with “zero-shot” medical image arbitrary-
scale super-resolution (MIASSR), which extends NeRF’s
application scenarios in the medical domain. Specifically,
we first normalize the medical volumes into the range of
[−1, 1] by volumetric normalization, and then train the
model via proposed differentiable modules: cube-based
sampling, isotropic volume rendering, and cube-based hi-
erarchical rendering. During training, CuNeRF is building
a coordinate-intensity continuous function whose input is a
3D location x=(x, y, z) and the output is the correspond-
ing pixel value c. After optimization, CuNeRF can predict
pixels at any spatial position within the range. As a result,
CuNeRF is capable to render medical slices at free view-
points and arbitrary scales by feeding the corresponding
plane equations. Figure 5 depicts the overall framework of
our CuNeRF, and the subsequent techniques are described
in the following subsections.

4.1. Analysis & Motivation

As shown in Figure 3, NeRF’s sampling strategy may not
be suitable for directly applying to medical volumes, which
may produce grid-like artifacts in the results. To explain
this limitation, we provide an example of NeRF’s model-
ing strategies applied to medical volumes in Figure 4 (a).
Visually, NeRF is trained to model the volumetric space
along the ray emitted by each training pixel. Since medi-
cal volumes only contain three orthogonal slices, which dif-
fers from multi-view photos collected by conventional cam-
eras, and thus NeRF’s modeling techniques cannot cover the
entire representation fields, leaving some “holes” (i.e., un-
modeled space) within the regions between adjacent train-

(a) NeRF (b) CuNeRF (Ours)
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Figure 4. Visualization of the sampling strategies between NeRF
[23] (a) and CuNeRF (b) applied on medical volumes. Visually,
NeRF only samples the rays corresponding to each training pixel,
which cannot cover the whole representation fields, leaving some
“holes” (i.e., unmodeled space within between adjacent training
pixels. To address this issue, CuNeRF samples cubes centered by
each training pixel, and therefore the “holes” are well-covered by
the spatial overlaps.

ing pixels. Consequently, NeRF may produce sub-optimal
results while rendering the contents within the holes. As
shown in Figure 3, NeRF†1 produces grid-like artifacts in
upsampling medical volumes, which demonstrates NeRF
may struggle to render high-quality HR medical volumes
from the corresponding LR ones.

To address the hole-forming issues caused by NeRF’s ray
sampling, we introduce cube-based sampling, which sam-
ples cubes (3D volumetric space) instead of rays (1D space)
to fill the hole regions between adjacent training pixels by
the spatial overlaps, as demonstrated in Figure 4 (b). To
adapt cube-based sampling, we further propose isotropic
volume rendering and cube-based hierarchical rendering
modules. These modules will be introduced in the following
subsections.

4.2. Volumetric Normalization

To build the continuous volumetric representations for
the given medical volumes, we first normalize the whole
volumetric space H×W×L into an ℓ∞ open ball as:

B(x̂o, 1) = {x̂ : ∥x̂− x̂o∥∞ < 1}, (6)

where x̂o is set to (0, 0, 0) as the center xo = (H2 ,
W
2 , L

2 )
of the medical volume. To adapt the positional encoding
γ(·) introduced in Eq 1, each positional coordinate xt =
(xt, yt, zt) within the medical volume is transformed into
the field coordinate x̂t = (x̂t, ŷt, ẑt). The normalization
function N (·) is formulated as:

x̂t =

(
2(xt − H

2 )

H + 2P
,
2(yt − W

2 )

W + 2P
,
2(zt − L

2 )

L+ 2P

)
, (7)

where P is a hyperparameter as the padding size.

1NeRF† is trained on three-orthogonal views.

21188



Cube-based Sampling Isotropic 

Volume Rendering

Cube-based

Hierarchical Rendering

U[     ]

c(   )dc(   )d

P[     ]

c(   )dc(   )d

P[     ]

c(   )d

U UniformU Uniform P PDFP PDF
Coarse

Output

Coarse

Output

Sampling

Region

Sampling

Region
D

    -norm

Distance
D

    -norm

Distance

(a) (b) (c)
Coarse

Estimation

Coarse

Estimation

Fine

Estimation

Fine

Estimation

Fine

Output

Fine

Output

Figure 5. The overall framework of our CuNeRF. To synthesize a pixel (red circle) with the spatial position xt, (a) CuNeRF first uniformly
samples N points as a point set {x̂i}Ni=1 within the cube space (purple cube) centered by xt. Then, CuNeRF obtains the coarse estimation
(blue cube) by feeding the sampling points into an MLP FΘ to produce the set of corresponding pixel intensity {ci}Ni=1 and volume density
{σi}Ni=1. (b) Subsequently, assuming σ of each sampling point is only related to the distance with the cube center xt, CuNeRF computes
the coarse output of the target pixel via volume integral. (c) Finally, CuNeRF resamples the points under the probability density function
(PDF) of coarse estimation to acquire the fine estimation (orange cube) of the cube. The fine output is generated by the same procedures
as (b). Since these two rendering functions are differentiable, CuNeRF can be optimized by minimizing the rendering loss in Eq 13. The
fine output is the final rendering result of the target spatial position xt.

4.3. Cube-based Sampling

Implicit neural representation methods aim to build the
continuous representation of medical volumes. However,
NeRF suffers from hole-forming issues, which may leave
some unmodeled spaces in their representation fields, and
thus synthesizes grid-like artifacts in upsampled results. To
circumvent the holes forming in the representation fields,
we propose a novel sampling strategy: cube-based sam-
pling, which samples cubes (3D volumetric space) instead
of rays (1D space). Specifically, for the spatial position
x̂t, CuNeRF samples a set of points within the cube space
B(x̂t,

l
2 ). Each point x̂i is chosen under the uniform distri-

bution U by:

x̂i ∼ U
[
B(x̂t,

l

2
)

]
, (8)

where l denotes the edge length of the cube. We employ the
group of these N sampling points to approximate the cube
space. Due to the spatial overlaps between adjacent cubes,
the representation fields can be well-covered by employing
the proposed cube-based sampling in optimization. As a
result, the representation fields can be densely modeled with
the same sampling time as NeRF [23].

4.4. Isotropic Volume Rendering

As introduced in 3, the pixel color related to the ray r is
computed by an integral in Eq 2. Intuitively, the pixel color
C(x̂t, l) related to the cube space B(x̂t,

l
2 ) can be computed

by the following triple integral as:

C(x̂t, l) =

∫∫∫
B(x̂t,

l
2 )

σ(x̂, ŷ, ẑ)c(x̂, ŷ, ẑ)dx̂dŷdẑ

exp(
∫ x̂

x̂n

∫ ŷ

ŷn

∫ ẑ

ẑn
σ(x, y, z)dxdydz)

, (9)

where (x̂n, ŷn, ẑn) = (x̂t− l
2 , ŷt−

l
2 , ẑt−

l
2 ) denotes the ini-

tial location of the triple integral while c(·) and σ(·) repre-
sent the color and volume density functions. However, since
NeRF samples N points to approximate the volume render-
ing integral of the ray using numerical quadrature in Eq 4, it
is required to sample N3 points to model the cube with the
same density, leading to massive computational costs.

Inspired by CRF [17] that assigns the nearby pixels with
similar potentials, we assume the volume density σ of each
point x̂ within the cube B(x̂t,

l
2 ) is only related to the ℓp

distance r = ∥x̂ − x̂t∥p between the centroid and itself.
Hence, the volumetric distribution of the cube is isotropic
towards the value of r. The above triple integral can be
converted into the spherical coordinate system by:

C(x̂t, l) = 4π

∫ r̂

0

r2σ(x̂t, r)c(x̂t, r)dr

exp(4π
∫ r

0
s2σ(x̂t, s)ds)

, (10)

where r̂ = ∥( l
2 ,

l
2 ,

l
2 )∥p denotes the max distance of r

within the cube. The derivation detail of Eq 10 is shown
in the supplementary materials. Given N sampling points
by the proposed cube-based sampling, CuNeRF first sorts
these points by the distance r. Subsequently, the integral of
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the cube is approximated via numerical quadrature rules:

Ĉ(x̂t, l)=4π

N∑
i=1

r2i (1− exp(−σi(ri+1−ri)))

exp(4π
∑i

j=1 r
2
i σj(rj+1−rj))

ci, (11)

where Ĉ(x̂t, l) denotes the predicted color of x̂t.

4.5. Cube-based Hierarchical Rendering

To refine the results, CuNeRF allocates sampling points
proportionally to their expected volume distribution within
the cube. Similar to NeRF, CuNeRF also simultaneously
optimizes the coarse and fine MLPs. As obtaining the
coarse output Ĉc(x̂t, l), CuNeRF first samples Nf numbers
of r using ITS. Subsequently, for each r, we use the hier-
archical sampling function ζp(·) to select important points:

x̂f = ζp(r, φ, θ), (12)

where φ and θ are the randomly sampled spherical co-
ordinates, and ζp(·) converts the ℓp spherical coordinates
(r, φ, θ) to the Cartesian coordinates x̂. If p ̸= ∞, we allow
x̂f can beyond the cube space B(x̂t,

l
2 ). After obtaining

fine outputs Ĉf (x̂t, l) at Eq 11 using the sorted union of
Nc + Nf sampling points, CuNeRF can be optimized in
each batch R by the proposed adaptive rendering loss:

LA=
∑
x̂t∈R

[
λ∥g.t.−Ĉc(x̂t, l)∥22+∥g.t.−Ĉf (x̂t, l)∥22

]
, (13)

where λ = ∥g.t.−Ĉf (x̂t, l)∥
1
2 is an adaptive regularization

term to alleviate the overfitting brought by the “coarse” part.

4.6. Medical Slice Synthesis

After optimization, CuNeRF can predict the pixels at any
spatial coordinates within the representation fields. There-
fore, CuNeRF can represent medical slices with free view-
points and arbitrary scales by feeding the corresponding
plane coordinates. Detailed techniques are described in the
following, and we show some examples in Section 5.2.
Free-Viewpoint Rendering. To render a medical slice with
the given position x̂ and viewpoint d, we first construct a
base plane Po at x̂o. Subsequently, we employ the transla-
tion matrix MT to move slices from x̂o to x̂. Finally, since
the viewpoint d can be represented as rotating ϕ degrees
around a certain axis n⊥, we can obtain the rotation matrix
MR via Rodrigues’ rotation formula [30]. Thus, the target
plane Pt can be calculated as:

Pt = MTMRPo. (14)

The target medical slices can be obtained by feeding the
points sampled within Pt into our CuNeRF.
Arbitrary-Scale Rendering. To render a medical slice
with the given sampling scale δ, we first follow the above
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Figure 6. The architecture of MLP. For a given coordinate x̂, it is
first encoded by γ(·) in Eq 1 as input features. Then, we pass it
through 9 fully-connected layers, each having 256 channels with a
ReLU. We concatenate the input features to the 4th and 8th hidden
layers as the skip connections. Finally, we downscale the feature
channels to predict a volume density σ and pixel intensity c.

process to obtain the target plane Pt. Then, we calculate the
scale matrix MS based on δ, and sample the points under
the translation MSPt. By feeding the sampling points into
our CuNeRF, we can obtain the desired medical slices.

5. Experiments

In this section, we conduct extensive experiments and
in-depth analysis to demonstrate the superiority of our
CuNeRF in representing high-quality medical images at ar-
bitrary scales. For fair comparisons, the hyperparameters
and model settings are consistent in all experiments.

5.1. Experimental Details

Datasets. We comprehensively compare our CuNeRF
and the existing advances in 2 different modalities: CT
and MRI. More specifically, we select T1-weighted MRI
volumes from the Medical Segmentation Decathlon (MSD)
[33] while we also take CT volumes from the 2019 Kid-
ney Tumor Segmentation Challenge (KiTS19) [13] datasets,
respectively. All MRI volumes have the same dimension
of 240×240×155. The image size of each CT slice is
512×512, while the number of CT slices is different.

In experiments, we resize all the CT volumes into 5123.
All the MRI and CT volumes are normalized into [0, 1].
The degradation strategy is the nearest-neighbor interpola-
tion. For the compared supervised methods [41, 28, 45],
we select 50 LR-HR MRI pairs to finetune the pre-trained
model of [41], and also select 150 LR-HR CT pairs to
train[28, 45]. The evaluation set consists of 80 medical vol-
umes, including 40 CT and 40 MRI volumes. Note, follow-
ing the ZSSR settings reported in [32, 39], we train NeRF†

and our CuNeRF on each LR test volume itself (see Figure
2), while the HR volumes are only used for evaluations.
Multi-Layer Perceptron Architecture. Figure 6 depicts
MLP’s architecture, where the input is a 3D location x̂ =
(x̂, ŷ, ẑ) encoded by γ(·) and the output is a 2D union of
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Table 1. 3D MISR comparisons on MSD [33] dataset. Bold and underline texts indicate the best and second best performance.
×2 ×2.5 ×3 ×4 ×5 ×6 ×8

PSNR↑ SSIM↑ PSNR↑ SSIM↑ PSNR↑ SSIM↑ PSNR↑ SSIM↑ PSNR↑ SSIM↑ PSNR↑ SSIM↑ PSNR↑ SSIM↑
Conventional methods

Bicubic 33.75 0.9469 30.84 0.9271 30.74 0.9161 28.67 0.8721 28.14 0.8687 26.83 0.8521 26.54 0.8376
Supervised MIASSR methods

ArSSR [41] 36.98 0.9690 35.24 0.9398 34.69 0.9199 33.21 0.8910 30.50 0.8624 29.96 0.8543 28.43 0.8353
Zero-Shot MIASSR methods

NeRF† [23] 29.33 0.8472 27.03 0.8392 25.98 0.8220 25.12 0.8088 24.50 0.7767 23.45 0.7549 22.63 0.7275
CuNeRF 39.62 0.9786 37.56 0.9441 36.24 0.9267 35.01 0.9031 34.73 0.8952 33.69 0.8800 31.19 0.8675

pixel intensity c and volume density σ. The parameter size
of the proposed MLP is about 0.58M
Implementation Details. CuNeRF is implemented on top
of [42], a Pytorch [27] re-implementation of NeRF. Our ex-
periments run on a single NVIDIA RTX 3090 GPU with
24G memory. We employ the ℓ2 distance for isotropic vol-
ume rendering and hierarchical cubic rendering while the
edge length l of the cube is set to 1. The hierarchical sam-
pling function ζ2(·) converts (r, φ, θ) to x̂ = (x̂, ŷ, ẑ) by:

x̂ = (r sinφ cos θ, r sinφ sin θ, r cosφ), (15)

where φ ∼ U [0, π] and θ ∼ U [0, 2π], respectively. Let
p = 2 as default, we consider a spherical parameterized as
(x̂, ŷ, ẑ) = ζ2(r, φ, θ), where φ ∈ [0, π], θ ∈ [0, 2π], r > 0.
This change of variables from the Cartesian system gives us
a differential term:

dx̂dŷdẑ= |det(Dζ2)|drdφdθ (16)

=r2 sinφdrdφdθ. (17)

Therefore, the volume rendering function in Eq 10 can be
simplified from Eq 9 as follow:

C(x̂t, l)=

∫ 2π

0

∫ π

0

∫ √
3

2 l

0

σ(x̂t, r)c(x̂t, r)r
2 sinφdθdφdr

exp(
∫∫∫

B(x̂t,r)

σ(x̂t, s)s2sinφ
′dθ′dφ′ds)

(18)

= 4π

∫ √
3

2 l

0

σ(x̂t, r)c(x̂t, r)r
2dr

exp(4π
∫ r

0
σ(x̂t, s)s2ds)

. (19)

For training, we employ Adam [16] as the optimizer with
a weight decay of 10−6 and a batch size of 2048. The max-
imum iteration is set to 250000, and the learning rate is an-
nealed logarithmically from 2×10−3 to 2×10−5. Similar to
NeRF, CuNeRF first samples 64 points for the coarse MLP
F c
Θ and feeds 192 points (the sorted union of 64 coarse and

128 fine points) into the fine MLP F f
Θ. The training time

for each 512×512×512 volume is about 0.8∼3 hours.
For testing, the number of sampling points is set to 16

(8 for coarse MLP and 8 for fine MLP), which can reduce
considerable computational costs. The results are obtained

Table 2. Quantitative comparisons of start-of-the-art methods on
KiTS19 [13] dataset for volumetric MISR. Bold and underline
texts indicate the best and second best performance.

×2 ×4 ×8
PSNR↑ SSIM↑ PSNR↑ SSIM↑ PSNR↑ SSIM↑

Conventional methods
Bicubic 37.75 0.9498 33.76 0.9149 29.03 0.8572

Supervised MISR methods
TVSRN [45] 39.32 0.9790 36.62 0.9532 32.10 0.9163

Supervised MIASSR methods
SAINT [28] 39.47 0.9782 36.61 0.9574 31.78 0.9188

Zero-Shot MIASSR methods
NeRF† [23] 36.50 0.9383 34.14 0.9181 30.56 0.8748
CuNeRF 38.33 0.9663 36.64 0.9480 32.44 0.9216

by feeding all the coordinates of the given plane equations
into our model (seeing details in Section 4.6). The infer-
ence time for rendering a 256×256×256 volume is about 30
secs. Note that we do not use any pre- and post-processing
techniques to improve our results in the experiments.
Evaluation Metrics. We use two quantitative metrics:
Peak Signal-to-Noise Ratio (PSNR) and Structured Simi-
larity Index (SSIM) [38] to measure the image quality of
different methods. Note we report the average SSIM on ax-
ial, coronal, and sagittal planes for volumetric MISR.

5.2. Experimental Results

We compare the proposed CuNeRF with 5 state-of-
the-art methods, including 2 supervised MIASSR meth-
ods: ArSSR [41] and SAINT [28], 1 supervised MISR
method: TVSRN [45], 1 conventional method: bicubic in-
terpolation, and NeRF† [23]. Given a upsampling scale δ,
we evaluate these methods under the following two set-
tings: (i) 3D MISR. Upsampling the donwsampled vol-
ume from H

δ ×
W
δ ×L

δ to H×W×L; (ii) volumetric MISR.
Upsampling the donwsampled volume from H×W×L

δ to
H×W×L. Note that NeRF† and CuNeRF are trained with
the same settings and similar parameter size (±0.02M).
Quantitative Comparison. We report 3D MISR and vol-
umetric MISR based on the increasing upsampled scales in
Table 1 and Table 2, respectively. As demonstrated, for
the 3D MISR challenge on MRI volumes, CuNeRF sur-
passes all the competitors with a consistent preferable per-
formance at various upsampling scales. For volumetric
MISR challenge on CT volumes, CuNeRF achieves compa-
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31.89 / 0.9368 28.62 / 0.6952PSNR/SSIM×2.5 34.16 / 0.8995 35.94 / 0.9534

HR Bicubic SAINT CuNeRF (Ours)NeRF† 

32.19 / 0.822728.87 / 0.7625 30.69 / 0.780326.49 / 0.7312

28.94 / 0.704025.66 / 0.6690 26.47 / 0.645320.22 / 0.5151
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×8.0 PSNR/SSIM

Ground Truth
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Figure 7. Visual comparisons between our CuNeRF and 4 state-of-the-art methods: Bicubic, NeRF† [23], ArSSR [41] and SAINT [28] for
3D MISR and volumetric MISR. The heatmaps on the right of the results visualize the difference related to HR patches.

rable performance to SAINT [28] and TVSRN [45]. Com-
pared to fully-supervised MIASSR methods: ArSSR [41]
and SAINT [28], our CuNeRF is more robust at present-
ing large-scale medical slices and capable to deal with dif-
ferent modalities (CT and MRI), suggesting CuNeRF owns
broader application scenarios. It is also worth noting that
NeRF† achieves comparable performance for volumetric
MISR but fails in 3D MISR. Since volumetric MISR only
aims to acquire the pixels along the z-axis, the experimental
results of NeRF† confirm our motivations.

Visual Comparison. We visualize the rendering results of
CuNeRF and other competitors on MRI (rows 1 and 2) and
CT (rows 3 and 4) modalities in Figure 7. It can be observed
that CuNeRF well represents the medical slices at various
scales. Compared to the exhibited methods, CuNeRF is
most similar to the ground truths, achieving better visual
verisimilitude and reducing aliasing artifacts, especially in
representing large-scale medical slices. Since NeRF† ex-
hibits grid-like artifacts in rendering high-quality medical
slices at larger-valued scales, the visualization results prove
the effectiveness of CuNeRF, which extends NeRF’s capa-
bility to continuously represent medical images.

Free-Viewpoint & Arbitrary-Scale Rendering. As shown

in Figure 8, CuNeRF can synthesize medical images at
continuous-valued scales (a). Moreover, CuNeRF is capa-
ble to yield medical slices with a viewpoint rotating 360
degrees around an arbitrary coordinate axis n⊥. Compared
to existing methods, CuNeRF is capable to provide richer
visual information for clinical diagnosis.

5.3. Ablation Study

In this subsection, we conduct comprehensive experi-
ments to prove the correctness of CuNeRF’s design. We
first carry out ablation studies to investigate the effective-
ness of the proposed modules. Subsequently, we evaluate
the CuNeRF’s performance under different settings.
CuNeRF’s ablation variants. We evaluate against sev-
eral ablations of the proposed CuNeRF with each module:
CuS, IVR and LA represent cube-based sampling, isotropic
volume rendering, and adaptive rendering loss, respectively.
The baseline model here is NeRF†. As reported in Table 3,
the baseline model struggles to deal with 3D MISR issues
(row 1), while adopting CuS instead of ray sampling can
significantly improve the performance (row 2). Compared
to NeRF’s volume rendering function, employing IVR (row
3) can further improve the slice synthesis quality, suggest-
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(a) Arbitrary-scale super resolution

(b) Free-viewpoint slice synthesis

Figure 8. Visualization results at arbitrary scales (a) and free viewpoints (b) within a 1024×1024 range.

Table 3. Comparisons of ablation variants on MSD [33] dataset for
3D MISR. Bold text indicates the best performance.

CuS IVR LA
×2 ×4 ×8

PSNR↑ SSIM↑ PSNR↑ SSIM↑ PSNR↑ SSIM↑
29.33 0.8472 25.12 0.8088 22.63 0.7275

✓ 35.82 0.9244 33.29 0.8703 27.77 0.8398
✓ ✓ 38.15 0.9524 34.27 0.8887 29.34 0.8455
✓ ✓ ✓ 39.62 0.9786 35.01 0.9031 31.19 0.8675

ing IVR can better estimate the volumetric distribution, re-
ducing aliasing artifacts raised by undersampling. Since the
coarse term of NeRF’s rendering loss may affect the opti-
mization, LA (row 4) is able to alleviate this distraction.
CuNeRF under different settings. We evaluate the per-
formance of CuNeRF under different settings: “p=∞” em-
ploys ℓ∞ distance of r, “l=0.5” and “l=2” represent to set
the edge length to 0.5 and 2 pixel distance, respectively. The
default is introduced in Section 5.1, where p=2 and l=1. As
reported in Table 4, the default setting of CuNeRF achieves
consistent outperformance at various scales. In contrast,
employing the ℓ∞ is significantly inferior to default, which
means ℓ2 distance is more suitable to model the continu-
ous representation for medical volumes. Meanwhile, differ-
ent cube edge l acquire comparable performance to default,
suggesting our CuNeRF is a parameter-insensitive method
with good robustness under different experimental settings.

Table 4. Quantitative comparisons of CuNeRF under different set-
tings on MSD [33] dataset for 3D MISR. Bold and underline texts
indicate the best and second best performance.

×2 ×4 ×8
PSNR↑ SSIM↑ PSNR↑ SSIM↑ PSNR↑ SSIM↑

CuNeRF default. 39.62 0.9786 35.01 0.9031 31.19 0.8675
CuNeRF p = ∞ 35.78 0.9348 32.85 0.8853 29.25 0.8433
CuNeRF l = 0.5 38.17 0.9621 35.00 0.9018 31.53 0.8704
CuNeRF l = 2 39.65 0.9723 34.57 0.9011 30.85 0.8608

6. Conclusion
In this paper, we present Cube-based NeRF (CuNeRF),

a zero-shot framework for medical image arbitrary-scale
super-resolution (MIASSR). Instead of learning the map-
ping between LR-HR pairs, CuNeRF learns the continuous
volumetric representation from LR volumes, thus a well-
trained model can yield medical images at arbitrary view-
points and scales in a continuous domain. Extensive ex-
periments demonstrate that CuNeRF outperforms state-of-
the-art methods, yielding better visual effects and reducing
artifacts at various upsampling factors.
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