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Abstract

Transformer has recently gained considerable popu-
larity in low-level vision tasks, including image super-
resolution (SR). These networks utilize self-attention along
different dimensions, spatial or channel, and achieve im-
pressive performance. This inspires us to combine the
two dimensions in Transformer for a more powerful rep-
resentation capability. Based on the above idea, we pro-
pose a novel Transformer model, Dual Aggregation Trans-
former (DAT), for image SR. Our DAT aggregates fea-
tures across spatial and channel dimensions, in the inter-
block and intra-block dual manner. Specifically, we alter-
nately apply spatial and channel self-attention in consec-
utive Transformer blocks. The alternate strategy enables
DAT to capture the global context and realize inter-block
feature aggregation. Furthermore, we propose the adaptive
interaction module (AIM) and the spatial-gate feed-forward
network (SGFN) to achieve intra-block feature aggregation.
AIM complements two self-attention mechanisms from cor-
responding dimensions. Meanwhile, SGFN introduces ad-
ditional non-linear spatial information in the feed-forward
network. Extensive experiments show that our DAT sur-
passes current methods. Code and models are obtainable
at https://github.com/zhengchen1999/DAT.

1. Introduction
Single image super-resolution (SR) is a traditional

low-level vision task that focuses on recovering a high-
resolution (HR) image from a low-resolution (LR) coun-
terpart. As an ill-posed problem with multiple potential
solutions for a given LR input, various approaches have
emerged to tackle this challenge in recent years. Many
of these methods utilize convolutional neural networks
(CNNs) [12, 47, 10, 29]. However, the convolution adopts a
local mechanism, which hinders the establishment of global
dependencies and restricts the performance of the model.

Recently, Transformer proposed in natural language pro-
cessing (NLP) has performed notably in multiple high-level
vision tasks [13, 39, 24, 11, 7]. The core of Transformer
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Figure 1: Visual comparison (×4) on Urban100. CSNLN,
SwinIR, and CAT-A suffer from blurring artifacts.

is the self-attention (SA) mechanism, which is capable of
establishing global dependencies. This property alleviates
the limitations of CNN-based algorithms. Considering the
potential of Transformer, some researchers attempt to ap-
ply Transformer to low-level tasks [20, 44, 42, 9], including
image SR. They explore efficient usages of Transformer on
high-resolution images from different perspectives to miti-
gate the high complexity of global self-attention [13]. For
the spatial aspect, some methods [20, 46, 9] apply local spa-
tial windows to limit the scope of self-attention. For the
channel aspect, the “transposed” attention [44] is proposed,
which calculates self-attention along the channel dimension
rather than the spatial dimension. These methods all ex-
hibit remarkable results due to the strong modeling ability in
their respective dimensions. Spatial window self-attention
(SW-SA) is able to model fine-grained spatial relationships
between pixels. Channel-wise self-attention (CW-SA) can
model relationships among feature maps, thus exploiting
global image information. Generally, both extracting spa-
tial information and capturing channel context are crucial
to the performance of Transformer in image SR.

Motivated by the aforementioned findings, we propose
the Dual Aggregation Transformer (DAT) for image SR.
Our DAT aggregates spatial and channel features via the
inter-block and intra-block dual way to obtain power-
ful representation capability. Specifically, we alternately
apply spatial window and channel-wise self-attention in
successive dual aggregation Transformer blocks (DATBs).
Through this alternate strategy, our DAT can capture both
spatial and channel context and realize inter-block fea-
ture aggregation between different dimensions. Moreover,
the two self-attention mechanisms complement each other.
Spatial window self-attention enriches the spatial expres-
sion of each feature map, helping to model channel depen-
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dencies. Channel-wise self-attention provides the global
information between features for spatial self-attention, ex-
panding the receptive field of window attention.

Meanwhile, since self-attention mechanisms focus on
modeling global information, we incorporate convolution to
self-attention in parallel, to complement Transformer with
the locality. To enhance the fusion of the two branches
and aggregate both spatial and channel information within a
single self-attention module, we propose the adaptive inter-
action module (AIM). It consists of two interaction opera-
tions, spatial-interaction (S-I) and channel-interaction (C-I),
which act between two branches to exchange information.
Through S-I and C-I, the AIM adaptively re-weight the fea-
ture maps of two branches from the spatial or channel di-
mension, according to different self-attention mechanisms.
Besides, with AIM, we design two new self-attention mech-
anisms, adaptive spatial self-attention (AS-SA) and adap-
tive channel self-attention (AC-SA), based on the spatial
window and channel-wise self-attention, respectively.

Furthermore, another component of the Transformer
block, the feed-forward network (FFN) [38], extracts fea-
tures through fully-connected layers. It ignores modeling
spatial information. In addition, the redundant information
between channels obstructs further advances in feature rep-
resentation learning. To cope with these issues, we design
the spatial-gate feed-forward network (SGFN), which in-
troduces the spatial-gate (SG) module between two fully-
connected layers of FFN. The SG module is a simple gat-
ing mechanism (depth-wise convolution and element-wise
multiplication). The input feature of SG is partitioned into
two segments along the channel dimension for convolution
and multiplicative bypass. Our SG module can complement
FFN with additional non-linear spatial information and re-
lieve channel redundancy. In general, based on AIM and
SGFN, DAT can realize intra-block feature aggregation.

Overall, with the above three designs, our DAT can ag-
gregate spatial and channel information through the inter-
block and intra-block dual way to achieve strong feature
expressions. Consequently, as displayed in Fig. 1, our DAT
achieves superior visual results against recent state-of-the-
art SR methods. Our contributions are three-fold:

• We design a new image SR model, dual aggregation
Transformer (DAT). Our DAT aggregates spatial and
channel features in the inter-block and intra-block dual
manner to obtain powerful representation ability.

• We alternately adopt spatial and channel self-attention,
realizing inter-block spatial and channel feature ag-
gregation. Moreover, we propose AIM and SGFN to
achieve intra-block feature aggregation.

• We conduct extensive experiments to demonstrate that
our DAT outperforms state-of-the-art methods, while
retaining lower complexity and model size.

2. Related Work
Image Super-Resolution. Deep CNN-based approaches
exhibit significant efficacy in the field of image SR. SR-
CNN [12] is the pioneering work, which first utilizes CNN
and outperforms traditional approaches. Following this at-
tempt, substantial dedication has been invested in deepen-
ing the layer of the network for better performance. For
instance, RCAN [47] designs residual in residual struc-
ture [16] and builds a 400+ layers model. Besides, attention
mechanisms [48, 30, 29, 3] in terms of spatial or channel
dimensions are adopted to achieve further improvement in
modeling ability. However, it is still hard for the majority
of CNN-based methods to effectively model global depen-
dencies in both spatial and channel dimensions.

Vision Transformer. Transformer demonstrates remark-
able performance in high-level vision tasks [13, 39, 37]. A
series of Transformer-based methods are proposed to im-
prove the efficiency and effectiveness of Transformer for
high-level tasks. Swin Transformer [24] applies local win-
dows to limit the attention scope and shift operations to in-
crease the window interaction. DaViT [11] proposes dual
self-attention to capture global context with linear complex-
ity. Due to the remarkable performance of Transformer, re-
searchers have been exploring the utilization of Transformer
in low-level vision [42, 4, 8, 46]. SwinIR [20] utilizes spa-
tial window self-attention and the shift operation, following
the design of Swin Transformer. Restormer [44] operates
self-attention along channel dimensions and applies the U-
Net architecture [32]. These methods remarkably outper-
form CNN-based methods. It reveals that both spatial and
channel information are important for performance.

Feature Aggregation. Several works have attempted to
aggregate features among different dimensions in multi-
ple vision tasks [43, 48, 35] for performance improvement.
In CNN, researchers apply attention mechanisms on both
spatial and channel dimensions to enhance feature expres-
sions, such as SCA-CNN [6] and DANet [14]. In Trans-
former [13], the spatial self-attention models long-range de-
pendencies between pixels. Some researchers explore in-
troducing channel attention in Transformer [49, 7] to aggre-
gate spatial and channel information. It effectively boosts
the modeling ability of Transformer. In our work, we alter-
nately utilize spatial and channel self-attention to achieve
inter-block feature aggregation. Moreover, we propose
AIM and SGFN to obtain intra-block feature aggregation.

3. Method
In this section, we begin by introducing the architecture

of dual aggregation Transformer (DAT). Subsequently, we
elaborate on the core component of DAT: Dual Aggrega-
tion Transformer Block (DATB). Finally, we analyze dual
feature aggregation across spatial and channel dimensions.
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Figure 2: The network architecture of our method. (a) Dual aggregation Transformer (DAT). (b) Dual spatial Transformer block (DSTB).
(c) Dual channel Transformer block (DCTB). DSTB and DCTB are two consecutive dual aggregation Transformer blocks (DATBs).

3.1. Architecture

The overall network of the proposed DAT comprises
three modules: shallow feature extraction, deep feature
extraction, and image reconstruction, as illustrated in
Fig. 2. Initially, given a low-resolution (LR) input image
ILR∈RH×W×3, we employ a convolution layer to process
it and generate the shallow feature FS∈RH×W×C . Nota-
tions H and W denote the height and width of the input
image, while C represents the number of feature channels.

Subsequently, the shallow feature FS undergoes process-
ing within the deep feature extraction module to acquire
the deep feature FD∈RH×W×C . The module is stacked by
multiple residual groups (RGs), with the total number N1.
Meanwhile, to ensure training stability, a residual strategy
is employed in the module. Each RG contains N2 pairs of
dual aggregation Transformer blocks (DATBs). As depicted
in Fig. 2, each DATB pair contains two Transformer blocks,
utilizing spatial and channel self-attention, respectively. A
convolution layer is introduced at the end of RG to refine
features extracted from Transformer blocks. Besides, for
each RG, the residual connection is employed.

Finally, we reconstruct the high-resolution (HR) out-
put image IHR∈RHout×Wout×3 through the reconstruction
module, where Hout is the height of the output image, and
Wout denotes image width. In this module, the deep fea-
ture FD is upsampled through the pixel shuffle method [33].
And convolution layers are employed to aggregate features
before and after the upsampling operation.

3.2. Dual Aggregation Transformer Block

The dual aggregation Transformer block (DATB) is the
core component of our proposed method. There are two
kinds of DATB: dual spatial Transformer block (DSTB)
and dual channel Transformer block (DCTB), as depicted
in Fig. 2. DSTB and DCTB are based on spatial win-
dow self-attention and channel-wise self-attention, respec-
tively. By alternately organizing DSTB and DCTB, DAT
can realize inter-block feature aggregation between spatial

and channel dimensions. Moreover, the adaptive interac-
tion module (AIM) and the spatial-gate feed-forward net-
work (SGFN) are proposed to achieve intra-block feature
aggregation. Next, We describe the details below.
Spatial Window Self-Attention. The spatial window self-
attention (SW-SA) computes attention within windows. As
displayed in Fig. 3(a), given the input X∈RH×W×C , we
generate query, key, and value matrices (denoted as Q,
K, and V , respectively) through linear projection, where all
matrices are in RH×W×C space. The process is defined as

Q = XWQ,K = XWK , V = XWV , (1)

where WQ,WK ,WV ∈RC×C are linear projections with bi-
ases omitted. Subsequently, we partition Q, K, and V
into non-overlapping windows, and flat each window, which
contains Nw pixels. We denote the reshaped projection
matrices as Qs, Ks, and Vs (all sizes are R

HW
Nw

×Nw×C).
Then, we split them into h heads: Qs=[Q1

s, . . . , Q
h
s ],

Ks=[K1
s , . . . ,K

h
s ], and Vs=[V 1

s , . . . , V
h
s ]. The dimension

of each head is d=C
h . The illustration in Fig. 3(a) is the sit-

uation with h=1, where certain details are omitted for sim-
plicity. The output Y i

s for the i-th head is defined as

Y i
s = softmax(Qi

s(K
i
s)

T /
√
d+D) · V i

s , (2)

where D denotes the relative position encoding [40]. Fi-
nally, we obtain the feature Ys∈RH×W×C by reshaping and
concatenating all Y i

s . The process is formulated as
Ys = concat(Y 1

s , . . . , Y
h
s ),

SW-SA(X) = YsWp,
(3)

where Wp∈RC×C is the linear projection to fuse all fea-
tures. Moreover, following the design of Swin Trans-
former [24], we employ shift window operations by default
to capture more spatial information.
Channel-Wise Self-Attention. The self-attention mech-
anism in the channel-wise self-attention (CW-SA) is per-
formed along the channel dimension. Following previous
works [44, 1], we divide channels into heads and apply at-
tention per head separately. As described in Fig. 3(b), given
input X , we apply linear projection to generate query,
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Figure 3: Illustration of adaptive interaction module (AIM). (a) Adaptive spatial self-attention (AS-SA), SW-SA equipped with AIM. (b)
Adaptive channel self-attention (AC-SA), CW-SA equipped with AIM. (c) Spatial-interaction (S-I). (d) Channel-interaction (C-I).

key, and value matrices, and reshape all of them to size
RHW×C . We denote the reshaped matrices as Qc, Kc, and
Vc. Same as the operation in SW-SA, we divide the projec-
tion vector into h heads. Note that Fig. 3(b) also depicts the
case of h=1 for simplicity. Then the channel self-attention
process of i-th head can be calculated as

Y i
c = V i

c · softmax((Qi
c)

TKi
c/α), (4)

where Y i
c∈RHW×d is the output for the i-th head, and α is a

learnable temperature parameter to adjust the inner products
before the softmax function. Finally, we get the attention
feature Yc∈RH×W×C by concatenating and reshaping all
Y i
c . The process definition is the same as Eq. (3).

Adaptive Interaction Module. Since that self-attention
focuses on capturing global features, we incorporate a con-
volution branch parallel to the self-attention module to in-
troduce locality into Transformer. However, simply adding
the convolution branch cannot effectively couple global and
local features. Moreover, although alternate execution of
SW-SA and CW-SA can capture both spatial and channel
features, information of different dimensions still cannot be
effectively utilized within a single self-attention.

To overcome these issues, we propose the adaptive in-
teraction module (AIM), which acts between two branches,
shown in Fig. 3. It adaptively re-weights features of two
branches from the spatial or channel dimension, according
to the kind of self-attention mechanism. Therefore, the two
branch features can be better fused. Also, both spatial and
channel information can be aggregated in a single attention
module. Based on AIM, we design two new self-attention
mechanisms, named adaptive spatial self-attention (AS-SA)
and adaptive channel self-attention (AC-SA).

Firstly, we operate the parallel depth-wise convolu-
tion (DW-Conv) on value of self-attention (V , defined in
Eq. (1)), to establish the direct connection between self-
attention and convolution. We denote the convolution out-

put as Yw∈RH×W×C . Then, we introduce the AIM to
adaptively adjust two features. Specifically, the AIM is
based on attention mechanisms [17], including two inter-
action operations: spatial-interaction (S-I) and channel-
interaction (C-I). Given two input features, A∈RH×W×C

and B∈RH×W×C , spatial-interaction calculates the spatial
attention map (denoted as S-Map, size is RH×W×1) of one
input (here is B). Channel-interaction infers the channel
attention map (denoted as C-Map, size is R1×1×C). The
operations are illustrated in Fig. 3(c, d), calculated as

S-Map(B) = f(W2σ(W1B)),

C-Map(B) = f(W4σ(W3HGP (B))),
(5)

where HGP denotes the global average pooling, f(·) is the
sigmoid function, and σ(·) represents the GELU function.
W(·) indicates the weight of the point-wise convolution for
downscaling or upscaling channel dimensions. The reduc-
tion ratios of W1 and W2 are r1, C

r1
, respectively. W3 has a

reduction ratio r2, and W4 has an increasing ratio r2. Sub-
sequently, the attention map is applied to another input (here
is A), enabling the interaction. The process is formulated as

S-I(A,B) = A⊙ S-Map(B),

C-I(A,B) = A⊙ C-Map(B),
(6)

where ⊙ denotes the element-wise multiplication. Finally,
with AIM, we design two new self-attention mechanisms,
AS-SA and AC-SA, based on SW-SA and CW-SA, respec-
tively. As depicted in Fig. 3(a, b), for SW-SA, we introduce
channel-spatial interaction between the two branches. For
CW-SA, we apply spatial-channel interaction. Given the in-
put X∈RH×W×C , the process is defined as

AS-SA(X) = (C-I(Ys, Yw) + S-I(Yw, Ys))Wp,

AC-SA(X) = (S-I(Yc, Yw) + C-I(Yw, Yc))Wp,
(7)

where Ys, Yc, and Yw are the outputs of SW-SA, CW-SA,
and DW-Conv defined above. Wp is the projection matrix
the same as Eq. (3). Besides, we collectively refer to AC-SA
and AS-SA as adaptive self-attention (A-SA) for simplicity.
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Figure 4: Illustration of spatial-gate feed-forward network.

With AIM, our proposed AS-SA and AC-SA have two
advantages over SW-SA and CW-SA. Firstly, better cou-
pling of local (convolution) and global (attention). Con-
volution aggregates locality information in the neighbour-
hood, while self-attention models long-range dependen-
cies. However, considering the feature misalignment be-
tween the two branches, simple addition is not convincing
enough. Through adaptive interaction, the outputs of the
two branches can be adaptively adjusted to fit each other,
thus achieving better feature fusion. Secondly, stronger
modeling ability. For AS-SA, the complementary clues im-
prove its channel-wise modeling ability, through channel-
interaction. For AC-SA, the representation capability is
boosted by additional spatial knowledge, through spatial-
interaction. Furthermore, through adaptive interaction,
global information can flow from self-attention to the con-
volution branch. It enhances the output of convolution.
Spatial-Gate Feed-Forward Network. The feed-forward
network (FFN) [38] has a non-linear activation and two lin-
ear projection layers to extract features. However, it ig-
nores modeling spatial information. Besides, the redundant
information in channels hinders feature expression com-
petence. To overcome the above limitations, we propose
the spatial-gate feed-forward network (SGFN), introducing
spatial-gate (SG) to FFN. As shown in Fig. 4, our SG mod-
ule is a simple gate mechanism, consisting of depth-wise
convolution and element-wise multiplication. Along the
channel dimension, we divide the feature map into two parts
for convolutional and multiplicative bypass. Overall, given
the input X̂∈RH×W×C , SGFN is computed as

X̂ ′ = σ(W 1
p X̂), [X̂ ′

1, X̂
′
2] = X̂ ′,

SGFN(X̂) = W 2
p (X̂

′
1 ⊙ (WdX̂ ′

2)),
(8)

where W 1
p and W 2

p represent linear projections, σ denot-
ess the GELU function, and Wd is the learnable parame-
ters of the depth-wise convolution. Both X̂ ′

1 and X̂ ′
2 are in

RH×W×C′
2 space, where C ′ denotes the hidden dimension

in SGFN. Compared with FFN, our SGFN is able to capture
non-linear spatial information and ease the channel redun-
dancy of fully-connected layers. Moreover, different from
previous works [22, 5, 36], our SG module utilizes depth-
wise convolution to maintain computational efficiency.
Dual Aggregation Transformer Block. Our dual aggrega-
tion Transformer block (DATB) is equipped with the adap-
tive self-attention (A-SA) and the spatial-gate feed-forward
network (SGFN). Given the input Xl−1∈RH×W×C of the

l-th block, the block is defined as
Xl

′ = A-SA(LN(Xl−1)) +Xl−1,

Xl = SGFN(LN(Xl
′)) +Xl

′,
(9)

where Xl is the output features, and LN(·) is the Layer-
Norm layer. Since A-SA includes AS-SA and AC-SA, there
are two types of DATB, dual spatial Transformer block
(DSTB) and dual channel Transformer block (DCTB).
DSTB applies AS-SA, while DCTB adopts AC-SA.

3.3. Dual Feature Aggregation

Our DAT is capable of aggregating the spatial and chan-
nel features through the inter-block and intra-block dual
manner to obtain powerful feature representations.
Inter-block Aggregation. DAT alternately adopts DSTB
and DCTB to capture features in both dimensions, and make
use of their complementary advantages. Specifically, DSTB
models long-range spatial context, enhancing the spatial ex-
pression of each feature map. Meanwhile, DCTB can better
build channel dependencies. DCTB models global chan-
nel context, which in turn helps DSTB to capture spatial
features and also enlarge the receptive field. Consequently,
both spatial and channel information flow between consec-
utive Transformer blocks and thus can be aggregated.
Intra-block Aggregation. AIM can complement spatial
window self-attention with channel knowledge, and en-
hance channel-wise self-attention from the spatial dimen-
sion. Moreover, SGFN is able to introduce additional non-
linear spatial information into FFN that only models chan-
nel relationships. Therefore, DAT can aggregate spatial and
channel features in each Transformer block.

4. Experiments
4.1. Experimental Settings
Implementation Details. We build two variants of DAT
with different complexity, called DAT-S and DAT. For DAT-
S, there are 6 residual groups (RGs), and each RG contains
3 pairs of dual aggregation Transformer blocks (DATBs) (3
DSTBs and 3 DCTBs). The attention head number, channel
dimension, and channel expansion factor in SGFN are set
as 6, 180, and 2 for both DSTB and DCTB. For all DSTBs,
we set the window size as 8×16. For DAT, we enlarge the
channel expansion factor to 4 and the window size to 8×32.
Other settings remain the same as DAT-S.
Data and Evaluation. We follow most previous works [15,
20] to train and test our models. Specifically, we apply two
datasets: DIV2K [34] and Flickr2K [21], for training, and
five benchmark datasets: Set5 [2], Set14 [45], B100 [26],
Urban100 [18], and Manga109 [27], for testing. We carry
out experiments under upscaling factors: ×2, ×3, and ×4.
LR images are generated from HR images by bicubic degra-
dation. The evaluation of SR results is performed using two
metrics: PSNR and SSIM [41], which are calculated on the
Y channel (i.e., luminance) of the YCbCr space.
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CW-SA SW-SA Params (M) FLOPs (G) PSNR (dB) SSIM

✓ 16.38 274.54 32.80 0.9340
✓ 16.40 282.76 33.20 0.9379

✓ ✓ 16.39 278.15 33.34 0.9388

(a) Ablation study of alternate strategy.

Baseline DW-Conv AIM Params (M) FLOPs (G) PSNR (dB) SSIM

✓ 16.39 278.15 33.34 0.9388
✓ ✓ 16.47 279.31 33.41 0.9392
✓ ✓ ✓ 16.84 280.61 33.52 0.9400

(b) Ablation study of AIM.

Model SA→Conv Conv→SA AIM

Params (M) 16.65 16.65 16.84
FLOPs (G) 279.96 279.96 280.61
PSNR (dB) 33.43 33.47 33.52
SSIM 0.9401 0.9397 0.9400

(c) Further ablation study of AIM.

Model Params (M) FLOPs (G) PSNR (dB) SSIM

FFN 16.84 280.61 33.52 0.9400
SGFN w/o Conv 14.50 242.39 33.44 0.9390
SGFN w/o Split 17.15 286.55 33.53 0.9404
SGFN 14.66 245.36 33.57 0.9405

(d) Ablation study of SGFN.

Model DCTB DSTB DAT

Params (M) 14.65 14.67 14.66
FLOPs (G) 241.75 248.97 245.36
PSNR (dB) 33.26 33.43 33.57
SSIM 0.9376 0.9391 0.9405

(e) Ablation study of different blocks.
Table 1: Ablation studies. The models are trained on DIV2K and Flickr2K, and tested on Urban100 (×2)

HR Zoom-in CW-SA SW-SA CW/SW-SA

Figure 5: Visualization of different attention strategies.

Training Settings. We train models with patch size
64×64 and batch size 32. The training iterations are
500K. We optimize models by minimizing the L1 loss
through Adam optimizer [19] (β1=0.9 and β2=0.99). We
initially set the learning rate as 2×10−4, and half it at
milestones: [250K,400K,450K,475K]. Furthermore, during
training, we randomly utilize rotation of 90◦, 180◦, and
270◦ and horizontal flips to augment the data. Our model is
implemented based on PyTorch [31] with 4 A100 GPUs.

4.2. Ablation Study

We train models on the dataset DIV2K [34] and
Flickr2K [21] and test them on Urban100 [18] in the ab-
lation study. For a fair comparison, all models have the
same implementation details (e.g., residual group number)
as DAT. The iterations are 300K. Besides, we set the output
size as 3×256×256 to compute FLOPs.
Alternate Strategy. To investigate the effect of the strat-
egy for alternating using SW-SA and CW-SA, we carry out
several experiments, and list results in Table 1a. The first
and second rows of the table mean we replace all attention
modules in DAT with CW-SA or SW-SA, where SW-SA
adopts the 8×8 window size. The third row represents alter-
nately applying two SA in consecutive Transformer blocks
in DAT. Moreover, all models apply the regular FFN [38]
and do not adopt AIM in SA. Comparing the three models,
we can observe that the model utilizing SW-SA outperforms
the model using CW-SA. Furthermore, alternately applying
two SA can get the best performance of 33.34 dB. It indi-
cates that exploiting both channel and spatial information is
crucial to accurate image restoration.

Additionally, we visualize the last feature maps before
upsampling of models with different attention strategies in
Fig. 5. CW-SA, SW-SA, and CW/SW-SA correspond to the
models in the first, second, and third rows of Table 1a, re-
spectively. We observe that alternately utilizing two self-
attention can obtain sharper textures and edges than the
other two models. It further demonstrates that the alternate
strategy can effectively enhance the expression of features.

Adaptive Interaction Module. We verify the effectiveness
of the adaptive interaction module (AIM). Firstly, in Ta-
ble 1b, we conduct a break-down ablation to investigate the
impact of our AIM. The baseline is the model in the third
row of Table 1a, which yields 33.34 dB. Then we intro-
duce a parallel depth-wise convolution (DW-Conv) to self-
attention (both SW-SA and CW-SA). The model obtains a
0.07 dB gain over baseline. Finally, we apply the AIM to
aggregate two branches and advance the PSNR from 33.41
to 33.52 dB. It proves that our AIM can effectively im-
prove Transformer performance. Secondly, we further an-
alyze the adaptive interaction between the two branches in
Table 1c. Specifically, our AIM consists of two direction
interactions: from SA to Conv (denoted as SA→Conv),
and from Conv to SA (denoted as Conv→SA). We con-
duct experiments on three cases: only SA→Conv, only
Conv→SA, and complete two directions (namely, AIM).
The model adopting Conv→SA outperforms the model us-
ing SA→Conv by 0.04 dB. It means aggregating informa-
tion to self-attention has a greater impact on performance.
And applying the complete AIM gets the best performance.
These results align with the analysis in Section 3.2.

Spatial-Gate Feed-Forward Network. To illustrate the
impact of the spatial-gate feed-forward network (SGFN),
we carry out an ablation study in Table 1d. We compare
models using regular FFN [38], SGFN without depth-wise
convolution (denoted as SGFN w/o Conv), SGFN without
split channel operation (denoted as SGFN w/o Split), and
our proposed SGFN. Firstly, compared with FFN, utilizing
SGFN can effectively reduce the parameters (2.18M) and
FLOPs (32.25G) while improving the performance. Sec-
ondly, the performance is severely degraded when we re-
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Set5 Set14 B100 Urban100 Manga109Method Scale PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM

EDSR [21] ×2 38.11 0.9602 33.92 0.9195 32.32 0.9013 32.93 0.9351 39.10 0.9773
RCAN [47] ×2 38.27 0.9614 34.12 0.9216 32.41 0.9027 33.34 0.9384 39.44 0.9786
SAN [10] ×2 38.31 0.9620 34.07 0.9213 32.42 0.9028 33.10 0.9370 39.32 0.9792
RFANet [23] ×2 38.26 0.9615 34.16 0.9220 32.41 0.9026 33.33 0.9389 39.44 0.9783
HAN [30] ×2 38.27 0.9614 34.16 0.9217 32.41 0.9027 33.35 0.9385 39.46 0.9785
CSNLN [29] ×2 38.28 0.9616 34.12 0.9223 32.40 0.9024 33.25 0.9386 39.37 0.9785
NLSA [28] ×2 38.34 0.9618 34.08 0.9231 32.43 0.9027 33.42 0.9394 39.59 0.9789
ELAN [46] ×2 38.36 0.9620 34.20 0.9228 32.45 0.9030 33.44 0.9391 39.62 0.9793
DFSA [25] ×2 38.38 0.9620 34.33 0.9232 32.50 0.9036 33.66 0.9412 39.98 0.9798
SwinIR [20] ×2 38.42 0.9623 34.46 0.9250 32.53 0.9041 33.81 0.9427 39.92 0.9797
CAT-A [9] ×2 38.51 0.9626 34.78 0.9265 32.59 0.9047 34.26 0.9440 40.10 0.9805
DAT-S (ours) ×2 38.54 0.9627 34.60 0.9258 32.57 0.9047 34.12 0.9444 40.17 0.9804
DAT (ours) ×2 38.58 0.9629 34.81 0.9272 32.61 0.9051 34.37 0.9458 40.33 0.9807
DAT+ (ours) ×2 38.63 0.9631 34.86 0.9274 32.63 0.9053 34.47 0.9465 40.43 0.9809

EDSR [21] ×3 34.65 0.9280 30.52 0.8462 29.25 0.8093 28.80 0.8653 34.17 0.9476
RCAN [47] ×3 34.74 0.9299 30.65 0.8482 29.32 0.8111 29.09 0.8702 34.44 0.9499
SAN [10] ×3 34.75 0.9300 30.59 0.8476 29.33 0.8112 28.93 0.8671 34.30 0.9494
RFANet [23] ×3 34.79 0.9300 30.67 0.8487 29.34 0.8115 29.15 0.8720 34.59 0.9506
HAN [30] ×3 34.75 0.9299 30.67 0.8483 29.32 0.8110 29.10 0.8705 34.48 0.9500
CSNLN [29] ×3 34.74 0.9300 30.66 0.8482 29.33 0.8105 29.13 0.8712 34.45 0.9502
NLSA [28] ×3 34.85 0.9306 30.70 0.8485 29.34 0.8117 29.25 0.8726 34.57 0.9508
ELAN [46] ×3 34.90 0.9313 30.80 0.8504 29.38 0.8124 29.32 0.8745 34.73 0.9517
DFSA [25] ×3 34.92 0.9312 30.83 0.8507 29.42 0.8128 29.44 0.8761 35.07 0.9525
SwinIR [20] ×3 34.97 0.9318 30.93 0.8534 29.46 0.8145 29.75 0.8826 35.12 0.9537
CAT-A [9] ×3 35.06 0.9326 31.04 0.8538 29.52 0.8160 30.12 0.8862 35.38 0.9546
DAT-S (ours) ×3 35.12 0.9327 31.04 0.8543 29.51 0.8157 29.98 0.8846 35.41 0.9546
DAT (ours) ×3 35.16 0.9331 31.11 0.8550 29.55 0.8169 30.18 0.8886 35.59 0.9554
DAT+ (ours) ×3 35.19 0.9334 31.17 0.8558 29.58 0.8173 30.30 0.8902 35.72 0.9559

EDSR [21] ×4 32.46 0.8968 28.80 0.7876 27.71 0.7420 26.64 0.8033 31.02 0.9148
RCAN [47] ×4 32.63 0.9002 28.87 0.7889 27.77 0.7436 26.82 0.8087 31.22 0.9173
SAN [10] ×4 32.64 0.9003 28.92 0.7888 27.78 0.7436 26.79 0.8068 31.18 0.9169
RFANet [23] ×4 32.66 0.9004 28.88 0.7894 27.79 0.7442 26.92 0.8112 31.41 0.918
HAN [30] ×4 32.64 0.9002 28.90 0.7890 27.80 0.7442 26.85 0.8094 31.42 0.9177
CSNLN [29] ×4 32.68 0.9004 28.95 0.7888 27.80 0.7439 27.22 0.8168 31.43 0.9201
NLSA [28] ×4 32.59 0.9000 28.87 0.7891 27.78 0.7444 26.96 0.8109 31.27 0.9184
ELAN [46] ×4 32.75 0.9022 28.96 0.7914 27.83 0.7459 27.13 0.8167 31.68 0.9226
DFSA [25] ×4 32.79 0.9019 29.06 0.7922 27.87 0.7458 27.17 0.8163 31.88 0.9266
SwinIR [20] ×4 32.92 0.9044 29.09 0.7950 27.92 0.7489 27.45 0.8254 32.03 0.9260
CAT-A [9] ×4 33.08 0.9052 29.18 0.7960 27.99 0.7510 27.89 0.8339 32.39 0.9285
DAT-S (ours) ×4 33.00 0.9047 29.20 0.7962 27.97 0.7502 27.68 0.8300 32.33 0.9278
DAT (ours) ×4 33.08 0.9055 29.23 0.7973 28.00 0.7515 27.87 0.8343 32.51 0.9291
DAT+ (ours) ×4 33.15 0.9062 29.29 0.7983 28.03 0.7518 27.99 0.8365 32.67 0.9301

Table 2: Quantitative comparison with state-of-the-art methods. The best and second-best results are coloured red and blue.

move the depth-wise convolution in SGFN. It reveals the
significance of spatial information. Thirdly, after remov-
ing the split operation in SGFN, the PSNR value slightly
drops, while the model size and complexity increase a lot.
It proves that the information redundancy in channel fea-
tures impairs the performance of models.
Different Blocks. From the above analyses, we display the
effect of each proposed component. We further compare
our proposed Transformer blocks, DCTB and DSTB, in Ta-
ble 1e. The DCTB and DSTB represent that we replace all
Transformer blocks in DAT with DCTB or DSTB. We can
discover that the models using single-type blocks have sub-
optimal performance. The model adopting DSTB performs
better than the model using DCTB, aligning with the results
presented in Table 1a. Moreover, both DSTB and DCTB
outperform corresponding CW-SA and SW-SA.

4.3. Comparison with State-of-the-Art Methods
We compare our two models, DAT-S and DAT, with the

current 11 state-of-the-art image SR methods: EDSR [21],

RCAN [47], SAN [10], RFANet [23], HAN [30],
CSNLN [29], NLSA [28], ELAN [46], DFSA [25],
SwinIR [20] and CAT-A [9]. Consistent with prior stud-
ies [47, 20], we employ a self-ensemble strategy during test-
ing, denoted by the symbol “+”. Table 2 presents quantita-
tive comparisons, while Fig. 6 provides visual comparisons.

Quantitative Results. Table 2 shows results for image
SR on factors: ×2, ×3, and ×4. With self-ensemble, our
DAT+ outperforms the compared methods on all benchmark
datasets with three factors. Meanwhile, DAT performs bet-
ter than previous methods, except for the PSNR value on
the Urban100 dataset (×4) compared with CAT-A. Specifi-
cally, compared with SwinIR and CAT-A, our DAT achieves
significant gains on the Manga109 dataset (×2), yielding
0.41 dB and 0.23 dB improvements, respectively. Besides,
the small vision model, DAT-S, also achieves comparable
or better performance compared to previous methods. All
these quantitative results indicate that aggregating spatial
and channel information from inter-block and intra-block
can effectively improve image reconstruction quality.
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Urban100: img_015 (×4)

HR Bicubic RCAN [47] SAN [10] RFANet [23]

HAN [30] CSNLN [29] SwinIR [20] CAT-A [9] DAT (ours)

Urban100: img_047 (×4)

HR Bicubic RCAN [47] SAN [10] RFANet [23]

HAN [30] CSNLN [29] SwinIR [20] CAT-A [9] DAT (ours)

Urban100: img_049 (×4)

HR Bicubic RCAN [47] SAN [10] RFANet [23]

HAN [30] CSNLN [29] SwinIR [20] CAT-A [9] DAT (ours)

Figure 6: Visual comparison for image SR (×4) in some challenging cases.

EDSR RCAN SwinIR CAT-A DAT-S DAT DAT-2Method [21] [47] [20] [9] (ours) (ours) (ours)

Params (M) 43.09 15.59 11.90 16.60 11.21 14.80 11.21
FLOPs (G) 823.34 261.01 215.32 360.67 203.34 275.75 216.93
Urban100 26.64 26.82 27.45 27.89 27.68 27.87 27.86
Manga109 31.02 31.22 32.03 32.39 32.33 32.51 32.41

Table 3: Model complexity comparisons (×4). PSNR (dB) on
Urban100 and Manga109, FLOPs, and Params are reported.

Visual Results. We show visual comparisons (×4) in
Fig. 6. In some challenging scenarios, the previous meth-
ods may suffer blurring artifacts, distortions, or inaccurate
texture restoration. In contradistinction, our method effec-
tively mitigates artifacts, preserving more structures and
finer details. For instance, in img_015, most compared
methods hardly recover details and generate undesired ar-
tifacts. However, our DAT can restore the correct structures
with clear textures. We can find similar observations in
img_047 and img_049. This is mainly because our method
has a more powerful representation ability by extracting
complex features from different dimensions.

4.4. Model Size Analyses
We further compare our method with several image

SR methods in terms of computational complexity (e.g.,
FLOPs), parameter numbers, and performance at ×4 scale
in Table 3. We set the output size as 3×512×512 to com-
pute FLOPs and evaluate performance with PSNR tested
on Urban100 and Manga109. Compared with CAT-A [9],
our DAT has comparable or better performance with less
computational complexity and model size. Besides, DAT-S

obtains excellent performance with lower FLOPs and pa-
rameters than SwinIR [20]. Moreover, to further reveal the
better trade-off between model size and performance of our
method, we introduce an additional variant model, DAT-2,
which is detailed in the supplementary material.

5. Conclusion
In this paper, we propose the dual aggregation Trans-

former (DAT), a new Transformer model for image SR. Our
DAT aggregates spatial and channel features in the inter-
block and intra-block dual manner, for powerful represen-
tation competence. Specifically, successive Transformer
blocks alternately apply spatial window and channel-wise
self-attention. DAT can model global dependencies through
this alternate strategy and achieve inter-block feature aggre-
gation among spatial and channel dimensions. Furthermore,
we propose the adaptive interaction module (AIM) and the
spatial-gate feed-forward network (SGFN) to enhance each
block and realize intra-block feature aggregation between
two dimensions. AIM strengthens the modeling ability of
two self-attention mechanisms from corresponding dimen-
sions. Meanwhile, SGFN complements the feed-forward
network with non-linear spatial information. Extensive ex-
periments indicate that DAT outperforms previous methods.
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