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Abstract

The rehearsal strategy is widely used to alleviate the
catastrophic forgetting problem in class incremental learn-
ing (CIL) by preserving limited exemplars from previous
tasks. With imbalanced sample numbers between old and
new classes, the classifier learning can be biased. Existing
CIL methods exploit the long-tailed (LT) recognition tech-
niques, e.g., the adjusted losses and the data re-sampling
methods, to handle the data imbalance issue within each
increment task. In this work, the dynamic nature of data
imbalance in CIL is shown and a novel Dynamic Resid-
ual Classifier (DRC) is proposed to handle this challenging
scenario. Specifically, DRC is built upon a recent advance
residual classifier with the branch layer merging to handle
the model-growing problem. Moreover, DRC is compati-
ble with different CIL pipelines and substantially improves
them. Combining DRC with the model adaptation and fu-
sion (MAF) pipeline, this method achieves state-of-the-art
results on both the conventional CIL and the LT-CIL bench-
marks. Extensive experiments are also conducted for a de-
tailed analysis. The code is publicly available1.

1. Introduction

Deep models are prone to forgetting previously learned

knowledge when sequentially fine-tuned on different tasks.

Severe performance degradation on the old tasks can be ob-

served. It is also known as catastrophic forgetting [17, 18].

Class incremental learning (CIL) methods [9, 35] aim to

handle this issue and equip deep models with the capacity

to continuously learn new categories without forgetting the

old ones. The rehearsal strategy [37, 49, 38, 42, 44] has

been widely used to achieve this goal. Specifically, a lim-

ited amount of exemplars from previous tasks are stored in

a memory buffer and replayed when learning new tasks.

*indicates corresponding author.
1https://github.com/chen-xw/DRC-CIL
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Figure 1. Data imbalance of CIL. With the exemplars of previous

tasks buffered, the training data within each task is imbalanced.

As the task increment proceeds, more categories appear in a fixed-

size memory. Such imbalance becomes more severe.

Due to the relatively small size of the memory buffer,

the training samples of a new class are far more than the old

ones. Therefore, adopting the rehearsal strategy can intro-

duce the data imbalance problem to CIL. Two kinds of long-

tailed recognition techniques, the adjusted losses [36, 8]

and the data re-sampling [28], are exploited by many CIL

methods [25, 42, 3, 44] to learn the classifier with less bias.

These methods alleviate the data imbalance within each in-

crement task independently.

However, the data imbalance in CIL is dynamic and be-

comes more extreme as the task increment proceeds, as

illustrated in Fig. 1. A novel dynamic residual classifier

(DRC) is proposed in this work to handle this challenging

scenario. Inspired by the recent advance residual classifier

(RC) [7], a lightweight branch layer is inserted before the

classifier to encode the task-specific knowledge. This new

architecture enables the residual fusion of classifier out-

puts to alleviate the data imbalance effectively. However,

directly applying RC for CIL leads to the model-growing

problem, i.e., the growing overhead from the additional

branch layers assigned to the new tasks. The proposed DRC

handles this dynamic increment issue via the simple yet ef-

fective branch layer merging.

DRC is directly applicable to different CIL pipelines

This ICCV paper is the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it is identical to the accepted version;

the final published version of the proceedings is available on IEEE Xplore.
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by simply replacing the fully connected (fc) classifiers.

Three typical CIL pipelines, i.e., the Model Direct Trans-

fer (MDT) [37, 15], the Model Expansion and Compres-

sion (MEC) [42, 44] and the Model Adaptation and Fusion

(MAF) [24, 5], as shown in Fig. 2, are chosen to be com-

bined with DRC. They can consistently benefit from such

combinations, with clear improvements observed. The de-

tails and comparisons on such combinations are given in

Sec. 3.3. More importantly, DRC is most compatible with

MAF among the three pipelines. The resulting MAFDRC

method achieves state-of-the-art performance under both

conventional CIL and long-tailed CIL (LT-CIL) settings.

Extensive analyzes are conducted to provide insights into

each part. The main contributions are three-fold:

• We show the data imbalance issue in CIL rehearsal

is dynamic across tasks rather than static within each

task. The proposed dynamic residual classifier (DRC)

aims to handle this challenging scenario from the per-

spective of classifier architecture, which is comple-

mentary to existing efforts in CIL;

• The branch layer architecture and residual fu-

sion mechanism from a recent long-tailed classifier

(RC) [7] are adopted by DRC to alleviate the nega-

tive impact of data imbalance on CIL for the first time.

More importantly, the model-growing problem of the

vanilla RC under the CIL setting is handled with the

simple yet effective branch layer merging in DRC;

• The proposed DRC is generalizable. On the one hand,

incorporating DRC brings clear improvements to dif-

ferent CIL pipelines. On the other hand, the effective-

ness of DRC is demonstrated in both the CIL and the

LT-CIL settings.

2. Related Work
Class Incremental Learning (CIL) is one of the major set-

tings in continual learning [41, 10]. It aims to equip deep

models with the capacity to continually learn from a se-

quence of tasks with disjoint classes and avoids the Catas-

trophic Forgetting [17] of previously learned knowledge.

Rehearsal-based methods [37, 34, 49, 43, 38, 27] pre-

serve very limited exemplars from previous tasks and re-

playing them in the new task to defy forgetting. Exemplars

are selected by different strategies. iCaRL [37] stores a sub-

set of samples per class by selecting the good approxima-

tions to class means in the feature space. RWalk [4] selects

exemplars with higher entropy or those close to the clas-

sification boundary. Instead of storing raw data samples,

DGR [40] exploits the synthetic instances from a genera-

tive model [19]. In this work, we use the rehearsal strategy

as in [37]. The data imbalance caused by limited rehearsal

memory is a challenge for Classifier Learning in CIL. To

learn a less biased classifier, the adjusted losses [36, 8] are
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Figure 2. Illustrations of three CIL pipelines. (a) is the Model

Direct Transfer (MDT). (b) depicts the Model Expansion and

Compression (MEC). (c) shows the Model Adaptation and Fusion

(MAF). Φt indicates the classification model of task t. Dt and

Mt represent the new data and memory data of task t respectively.

Blue indicates old knowledge, yellow indicates new one and green

represents a mixture of both.

exploited by existing CIL methods. A margin ranking loss

proposed by [25] encourages the old and new classes to be

better separated and avoid ambiguities. The adjusted classi-

fication loss of FOSTER [42] aims to re-balance the logits

of the rare (old) and dominant (new) classes. Based on a

balanced training subset sampled [28], an independent clas-

sifier learning stage is introduced to alleviate the impact of

data imbalance. For example, EEIL [3] finetunes its classi-

fier while DER [44] trains a new one from scratch with such

balanced data. Moreover, different post-hoc corrections are

applied to the classifiers learned from the imbalanced data.

The output logits of the new classifier are rescaled by a sim-

ple affine function in BiC [43]. The norms of the classifier

weight vectors for the new and old classes are aligned in

WA [49]. The proposed dynamic residual classifier (DRC)

aims to handle the data imbalance of CIL with a new classi-

fier of dynamic architecture. Therefore, it is complementary

to the relevant CIL methods mentioned above.

Besides the rehearsal strategy, distillation tech-

niques [23, 48] are used by different CIL pipelines to

transfer the discriminative knowledge of preceding cate-

gories from the old models to the new ones, resulting in

the Distillation-based methods [37, 15, 42, 24, 5]. Under

the Model Direct Transfer (MDT) pipeline, the model is

finetuned with both the new data and the distilled knowl-

edge from the retained old model. The changes in attention

maps between the new and old models are penalized via

distillation in LwM [13]. Distillation also can be conducted

on the prediction scores [37] or spatial features [15].
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The Model Expansion and Compression (MEC) pipeline

consists of two stages. In the first stage, the old model is

retained and expanded with new modules for the learning

of a new task. Such a model expansion stage is also known

as the parameter isolation methods [32, 26, 44, 42, 16].

The feature representations from the old frozen model

and the newly added one are concatenated and trained

on the new task, as in DER [44] and FOSTER [42]. A

dynamic model expansion strategy based on the ViT

architecture [14] is proposed in DyTox [16]. In the next

stage, the model compression, e.g., distillation [23] or

network pruning [39], is applied to control the size of the

expanded model. Under the Model Adaptation and Fusion

(MAF) pipeline, a model optimized on the new task only

is obtained at the adaptation stage. The new knowledge

within this adapted model together with the old knowledge

from either the exemplars [24] or the old model [5] are

integrated into a single model via distillation. A neural

network is split into two partitions in [30] for training the

new task separated from the old task and reconnecting them

to fuse the knowledge across tasks. The proposed DRC is

compatible with the three pipelines and clearly improves

their performance.

Long-tailed (LT) Recognition [47, 45] is an active re-

search topic under Data Imbalance [29, 21]. The adjusted

losses [36, 8, 46] and the data re-samling [1, 2, 12, 28] are

two kinds of important techniques for Long-tailed Recog-

nition. They are adopted by many CIL methods [3, 25, 49,

44, 42] to independently handle the data imbalance within

each incremental task, as detailed above. In this work, we

show the data imbalance of CIL can be more challenging

than that of LT, as the former is dynamic across incremental

tasks while the latter is static. Recently, a novel classifier

architecture [7] has been proposed for LT recognition. We

find its branch layer architecture and residual fusion mecha-

nism are effective under the CIL setting. However, directly

applying this classifier for CIL raises the model-growing

problem. The proposed DRC handles it with the branch

layer merging and becomes an effective and efficient classi-

fier for CIL. Moreover, a new CIL setting, long-tailed CIL

(LT-CIL), has been proposed in [33], where the new task

data obeys a long-tailed distribution as well. Our DRC is

found effective in this setting.

3. Methodology
In class incremental learning, a model is learned from a

sequence of T tasks, where the task t has a set of nt dif-

ferent classes Ct = {ct,1, ct,2, · · · , ct,nt
}. The classes in

different tasks are disjoint, Ci ∩ Cj = ∅, ∀i, j ∈ {1, ..., T}.

The training data of task t denotes as Dt. It contains data

tuples in the form of (x, y) where x is the image and y is its

ground-truth class label. When training on task t, the model

can only access to Dt. With rehearsal applied, data samples

from previous tasks are maintained in a memory buffer Mt

with a relatively small size, i.e., |Mt| � |Dt|. Mt is also

included in the learning procedure of task t. Updates of the

memory buffer are dynamic when the task increment pro-

ceeds, as shown in Fig. 1. During testing, data samples are

from all observed classes so far with balanced distributions.

3.1. Residual Classifier for CIL

The residual classifier (RC) [7] is with the branch layer

architecture and residual fusion mechanism. RC can be

used to handle the dynamic data imbalance of CIL. Specifi-

cally, the classification model Φt with RC consists of three

parts, the feature extractor Ft, the branch layers B1, · · · ,Bt

and the classifier heads Ht = {h1, h2, · · · , ht}, as illus-

trated in Fig. 3(a). The feature representation of an input

image x is

f = Ft(x), (1)

where f ∈ R
d and Ft is parameterized with θt. The branch

layers are task-specific under the CIL setting. B1, · · · ,Bt−1

are inherited from the previous model Φt−1 to preserve the

old knowledge. Therefore, they are frozen at the new task

t. Bt is for task t and learned with other parts of Φt. All

branches are lightweight, i.e., the 1 × 1 convolutional lay-

ers without bias terms, to alleviate the growing overhead of

model parameters. The output of the branch layer Bi is

bi = Bi(f) = ωBi
· f, (2)

where ωBi
is the weight of branch layer and · is matrix mul-

tiplication, i = 1, · · · , t. To encode the knowledge of all

previous tasks, their outputs are averaged,

b̄t−1 =
b1 + · · ·+ bt−1

t− 1
, (3)

with t ≥ 2. Ht is a set of task-specific classifiers

h1, h2, · · · , ht, where hi corresponds to the classifier of task

i, i = 1, · · · , t. hi is an FC layer with output dimension

|Ci|. Different logits of classifiers are computed via

⎧⎪⎪⎨
⎪⎪⎩

�
′
t,Ht−1

= Ht−1(b̄t−1),

�
′
t,ht

= ht(b̄t−1),

�t,Ht−1
= Ht−1(bt),

�t,ht
= ht(bt),

(4)

as depicted in Fig. 3(a). �t and �
′
t are the overall logits

of two branches respectively. Taking �t as an example, its

computation is

�t = Ht(bt) = [Ht−1(bt), �t,ht
] = [�t,Ht−1

, �t,ht
] (5)

where [·] is the concatenate operation and �t ∈
R

|C1|+···+|Ct| covers all classes seen so far. The probabilis-

tic output of �t is pt = Softmax(�t). �
′
t can be obtained in

the similar way with b̄t−1 as input.
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Figure 3. Illustrations of the residual classifier (RC) and the proposed dynamic residual classifier (DRC) for CIL at task t. The residual

fusion of overall logits, �̄t, is shown. Ft is the backbone feature extractor.

The residual fusion is applied to the corresponding logits

between the two branches. Three fused logits are computed

via ⎧⎪⎨
⎪⎩

�̄t =
1
2 (�t + �

′
t),

�̄t,Ht−1
= 1

2 (�t,Ht−1
+ �

′
t,Ht−1

),

�̄t,ht
= 1

2 (�t,ht
+ �

′
t,ht

).

(6)

�̄t is the fused logits of all categories till task t. �̄t,Ht−1
fuses

the logits of old tasks. �̄t,ht
is the logits for new categories

at task t.

3.2. Dynamic Residual Classifier

The residual classifier (RC) still suffers from the grow-

ing storage and computation overhead as more task-specific

branch layers are introduced under the CIL setting. Dy-

namic Residual Classifier is proposed to handle this issue

via the branch layer merging in an iterative manner. Assum-

ing the task increment proceeds from t − 1 to t, B
′
t−2 and

Bt−1 are the two branch layers inherited from task t−1. As

the branch layers are instantiated with the lightweight 1× 1

convolutional layer without bias term, B
′
t−2 and Bt−1 are

parameterized by the weight matrices ωB
′
t−2

and ωBt−1
re-

spectively. A new branch layer B
′
t−1 is obtained by merging

B
′
t−2 and Bt−1 in the parameter space,

ωB
′
t−1

=
ωBt−1 + ωB

′
t−2

2
. (7)

B
′
t−1 is frozen to preserve the discriminative knowledge

learned from previous tasks, as shown in Fig. 3(b). The

model-growing problem in RC is thus handled by DRC with

only two branch layers, B
′
t−1 and Bt, included for each task.

Fat

Bt

1Bt -
'

Sharedx
hat

a
t
a
t

hat

Figure 4. Model Φa
t with DRC for Adaptation.

Moreover, it is interesting to show that the final logit �̄t−1 of

the previous model Φt−1 is consistent with the output logit

�
′
t,Ht−1

of branch B
′
t−1 at task t,

�̄t−1 = 1
2 (Ht−1(Bt−1(f)) + Ht−1(B

′
t−2(f)))

= 1
2 (Ht−1(ωBt−1

· f) + Ht−1(ωB
′
t−2

· f))
= ωHt−1

· ( 12 (ωBt−1
+ ωB

′
t−2

) · f) + κHt−1

= ωHt−1 · (ωB
′
t−1

· f) + κHt−1

= Ht−1(B
′
t−1(f))

= �
′
t,Ht−1

,

(8)

where ωHt−1
and κHt−1

are the weight and bias of the clas-

sifier Ht−1 respectively. The effectiveness of simple branch

layer merging can be further demonstrated by this observa-

tion. The output logits of the DRC are also computed with

the residual fusion mechanism as in Eq. (6).
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3.3. CIL Pipelines with DRC

The combinations between DRC and three CIL

pipelines, the model adaptation and fusion (MAF), the

model direct transfer (MDT), and the model expansion and

compression (MEC), are presented. The resulting methods,

MAFDRC, MDTDRC, and MECDRC, are also compared.

MAFDRC The MAF pipeline consists of two successive

stages, the model adaptation and then fusion, as shown in

Fig. 2(c). In the adaptation stage, a trainable model Φa
t

with DRC is depicted as in Fig. 4. Specifically, B
′
t−1 is

obtained via the branch layer merging as Eq. (7) and fixed.

�at is the residual fusion between the output logits of the two

branches. With cross-entropy as the learning objective,

La
c =

∑
(x,y)∈Dt

CE(�at , y), (9)

Φa
t is end-to-end optimized on current task t with Dt only.

In the model fusion stage, our aim is to integrate the

knowledge from different models, i.e., Φt−1 and Φa
t , into a

single Φt while reducing the impact of data imbalance. Φt

is instantiated with the model architecture as in Fig. 3(b).

B
′
t−1 is from the branch layer merging and Bt is initialized

with the corresponding branch of Φa
t . The classification loss

Lbranch
c consists of two terms,

Lbranch
c =

∑
(x,y)∈Dt∪Mt

CE(�t, y)+
∑

(x,y)∈Mt

CE(�
′
t,Ht−1

, y).

(10)

They guide the learning of the two branches and encour-

age parameter specialization for old and new classes respec-

tively. Lfusion
c is proposed to optimize the model over all

the classes across tasks, with the fused logit �̄t from Eq. (6),

Lfusion
c =

∑
(x,y)∈Dt∪Mt

CE(�̄t, y). (11)

Moreover, the discriminative knowledge from Φa
t and Φt−1

are distilled into the final model Φt with the loss,

Ldistil =
∑

(x,y)∈Dt∪Mt

KL(pt−1||p̄t,Ht−1
) + KL(pat ||p̄t,ht

),

(12)

where p̄t,Ht−1
can be represented by S(�̄t,Ht−1

), and p̄t,ht

can be represented by S(�̄t,ht)). In the model fusion step,

Φt is optimized on the overall loss,

Lall = (1− α)Lfusion
c + αLbranch

c + βLdistil, (13)

with balancing hyper-parameters 0 ≤ α ≤ 1 and β.

MDTDRC In the MDT pipeline, distillation loss is used

to directly transfer the knowledge of the previous task from

Φt−1 (the teacher) to Φt (the student) and prevent the rep-

resentations of previous data from drifting too much during

new task learning, as illustrated in Fig. 2(a). The proposed

DRC is enabled by introducing the branch layers, Bt and

B
′
t−1. The parameters of B

′
t−1 are obtained via Eq. (7) and

Bt for the new task is random initialized.

MECDRC In the model expansion stage, the previous

model is frozen and expanded with a new trainable one by

concatenating their feature representations. The resulting

larger model is then trained with Dt and Mt, as shown in

Fig. 2(b). The proposed DRC is also introduced at this stage

to boost the performance of the large model across tasks. In

the mode compression stage, the expanded model is dis-

tilled into the final model with a smaller size.

Comparisons among Three Pipelines MDT usually

impose a challenge to find the balance between learning

novel classes and preserving old knowledge simultaneously

within a single model. Model expansion can achieve better

balance at the price of storage and computation overhead,

while model compression may neutralize the improvements

from expansion. In MAF, Φa
t is optimized with only new

data Dt in the first stage. Φt−1 preserves the knowledge

of previous tasks. The complementary knowledge in Φa
t

and Φt−1 is then fused into Φt by distillation to improve

performance on both old and new tasks. Moreover, DRC

is integrated into both stages of MAF rather than a single

stage of MEC or MDT. To this end, MAFDRC is chosen as

our main method.

4. Experiments

4.1. Experimental Setup and Details

Datasets ImageNet1000 [11] is a large-scale dataset

with 1,000 classes that includes 1.28 million images

for training and 50,000 images for validation. Ima-

geNet100 [11] is made up of 100 randomly selected classes

from ImageNet1000. CIFAR100 [31] consists of 100

classes and each class has 600 images, of which 500 are

used as the training set and 100 are used as the test set.

Protocols For ImageNet100 and CIFAR100, we validate

the proposed method in two widely used CIL protocols: (1)

B0 (base 0) [37]: In this protocol, a model is gradually

trained on 5 steps (20 new classes per step), 10 steps (10

new classes per step) and 20 steps (5 new classes per step)

with the fixed memory size of 2,000 exemplars. (2) B50
(base 50) [25]: A model is trained first on 50 classes. The

remaining 50 classes are used for continual learning with 5,

10 classes per step. The memory size is fixed to 20 exem-

plars per class. For ImageNet1000, we evaluate our method

on the protocol [37] where a model is trained on all 1,000

classes with 100 classes per step (10 steps in total). The

fixed memory size is 20,000 exemplars. We also carried out

the LT-CIL experiments on CIFAR100 and ImageNet100
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Methods

ImageNet100 B0 ImageNet100 B50 ImageNet1000

5 steps 10 steps 20 steps 5 steps 10 steps 10 steps

Avg Last Avg Last Avg Last Avg Last Avg Last Avg Last

iCaRL [37] 74.87 63.36 70.35 55.78 67.80 51.78 64.69 54.46 57.92 50.52 54.15 36.25

BiC [43] 77.11 67.10 70.98 52.00 63.79 41.70 68.51 54.36 60.73 43.04 61.66 41.30

WA [49] 77.59 68.36 73.59 60.78 68.81 57.16 68.49 59.74 62.10 54.42 59.23 40.92

PODNet [15] 76.73 64.90 70.13 53.30 62.78 47.10 78.41 69.18 75.97 66.50 - -

DER w/o p [44] 81.03 74.44 78.30 70.40 78.22 71.40 80.30 74.28 78.58 71.66 67.41 58.56
FOSTER B4 [42] 79.59 72.58 76.54 67.08 74.21 62.16 79.93 72.48 76.27 67.04 68.34 58.53

FOSTER [42] 78.38 71.38 76.22 66.70 73.95 62.42 79.56 71.18 75.79 66.90 - -

MAFDRC 82.22 76.01 79.66 70.41 75.21 63.59 81.37 74.86 77.95 71.26 69.37 59.59

Table 1. Results on ImageNet100 B0, B50 and ImageNet1000 B0 settings. DER w/o P means DER without pruning. FOSTER B4 means

the model before feature compression.

(a) ImageNet100 B0 10 steps (b) ImageNet100 B50 10 steps (c) ImageNet1000 B0 10 steps

Figure 5. Incremental Accuracy on ImageNet. The top-1 accuracy (%) after learning each task is shown.

following the protocol [33]. Two classification accuracy are

reported. ”Avg” is the average accuracy over incremental

steps. ”Last” is the accuracy of the last step.

Implementation Details Our method is implemented

with PyTorch [20] and PyCIL [50]. The standard 18-layer

ResNet [22] is used as the backbone feature extractor for

ImageNet. For CIFAR100, a modified 32-layer ResNet [37]

is used instead. In our experiments, the MDT setting fol-

lows [37], that of MEC is from [42], and the MAF one is

based on [24] in all experiments. Integrating the proposed

DRC with the MAF pipeline results in our main method,

MAFDRC. For different CIL settings, similar optimization

is used. In model adaptation, the SGD optimizer with a mo-

mentum of 0.9 is used for training 70 epochs in total. The

initial learning rate is set to 0.1 and gradually reduces to

zero with a cosine annealing scheduler. In model fusion,

the above settings are followed, but training 130 epochs in

total. For data augmentation, we follow the practice2 in

FOSTER [42], where the AutoAugment [6] is used along

2https://github.com/G-U-N/ECCV22-FOSTER.

with the common random cropping and horizontal flip. For

a fair comparison, the reported CIL results of all competi-

tors in this work are reproduced with such an augmenta-

tion.3 In the LT-CIL scenario, our experimental setting is

exactly the same as in [33]. The balancing hyperparame-

ters α and β in Eq. (13) are set to 0.2 and 4 respectively via

cross-validation.

4.2. Main Results

The results of different CIL methods on both the Ima-

geNet100 and ImageNet1000 are shown in Tab. 1. The pro-

posed MAFDRC achieves the same level of performance as

the strong competitors, i.e., FOSTER [42] and DER [44],

and becomes one of the state-of-the-art (SOTA) methods.

Our method consistently surpasses the FOSTER and its un-

compressed variant, FOSTER B4, with clear margins. For

example, MAFDRC is better than FOSTER B4 with 3.12%
and 1.68% improvements in the averaged accuracy under

3We also conduct experiments with conventional data augmentation

and report such results in the Supplementary Material.
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Methods

CIFAR100 B0 CIFAR100 B50

5 steps 10 steps 20 steps 5 steps 10 steps

Avg Last Avg Last Avg Last Avg Last Avg Last

iCaRL [37] 69.29 57.03 68.37 53.04 67.43 49.65 62.21 53.63 53.65 47.18

BiC [43] 68.66 58.22 67.75 53.31 65.41 47.12 63.92 54.18 59.68 48.04

WA [49] 72.09 61.49 70.88 56.74 68.10 49.60 67.30 59.37 61.86 50.86

PODNet [15] 69.32 57.75 63.17 47.49 58.26 40.62 70.40 62.49 69.20 60.14

DER w/o P [44] 75.83 68.95 75.71 65.85 74.04 62.53 72.95 68.06 72.50 67.37
FOSTER B4 [42] 74.53 65.31 73.13 61.81 70.64 56.84 71.31 64.66 68.90 61.41

FOSTER [42] 72.46 63.35 71.80 60.15 69.56 56.50 70.09 63.63 68.05 60.71

MAFDRC 74.87 66.45 73.97 62.04 71.75 57.65 71.65 65.09 70.21 62.20

Table 2. Results on CIFAR100 B0, B50 setting.

(a) B0 10 steps (b) B0 20 steps (c) B50 10 steps

Figure 6. Incremental Accuracy on CIFAR100. The top-1 accuracy (%) after learning each task is shown.

CIFAR100 ImageNet100
Methods

5 steps 10 steps 5 steps 10 steps

EEIL 38.46 37.50 50.68 50.63

+Two Stage[33] 38.97 37.58 51.36 50.74

LUCIR 42.69 42.15 52.91 52.80

+Two Stage[33] 45.88 45.73 54.22 55.41

PODNet 44.07 43.96 58.78 58.94

+Two Stage[33] 44.38 44.35 58.82 59.09
MAF 35.92 33.70 46.62 35.83O

rd
er

ed
L

T
-C

IL

MAFDRC 53.13 49.01 60.69 59.65
EEIL 31.91 32.44 42.87 43.72

+Two Stage[33] 34.19 33.70 49.31 48.26

LUCIR 35.09 34.59 45.80 46.52

+Two Stage[33] 39.40 39.00 52.08 51.91

PODNet 34.64 34.84 49.69 51.05

+Two Stage[33] 36.37 37.03 51.55 52.60
MAF 31.63 30.18 41.53 39.92S

h
u
ffl

ed
L

T
-C

IL

MAFDRC 41.41 41.84 52.49 56.35

Table 3. LT-CIL [33] results with average accuracy reported.

the B0 10 steps and the B50 10 steps of ImageNet100,

respectively. On the large-scale ImageNet1000, such im-

provement is still more than 1%. Similar results are ob-

tained by MAFDRC and the DER w/o P (DER without

pruning). Note that DER w/o P is a strong CIL method

that keeps expanding its feature extractors and ends up with

a much larger model size than ours with the fixed num-

bers of parameters and feature dimensions across tasks.

However, MAFDRC still achieves better results than DER

w/o P in multiple settings, including the challenging Iman-

geNet1000, with nontrivial improvement (usually more

than 1%). Detailed comparisons among different methods

along the incremental learning procedure are illustrated in

Fig. 5.

The CIL results on CIFAR100 are shown in Tab. 2 and

Fig. 6. DER achieves the best performance at the price of

a much larger model size than the proposed method, i.e.,

the model parameters in DER are rough k times of those in

MAFDRC under k steps. Our method achieves the second-

best results and is better than other SOTA methods with sim-

ilar model sizes, e.g., FOSTER.

The proposed method is also validated on a new CIL

setting, LT-CIL [33], with other SOTA results reported in

Tab. 3. Our MAFDRC consistently achieves the new SOTA
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Components CIFAR100 ImageNet100

MAF DRC LA Avg Last Avg Last

65.59 50.56 68.95 54.18

� 69.61 54.84 72.01 58.76

� � 72.80 60.92 78.65 69.88

� � � 73.97 62.04 79.66 70.41

Table 4. Contributions of different components in MAFDRC.

Methods
CIFAR100 ImageNet100

Avg Last Avg Last

MAF 69.61 54.84 72.01 58.76

MAFRC 74.07 61.91 79.26 70.54

MAFDRC 73.97 62.04 79.66 70.41

Table 5. The results of MAF with residual classifier (RC) and

dynamic residual classifier (DRC).

results on both datasets and settings. More importantly,

the proposed method boosts its baseline, the MAF pipeline,

with more than 10% in most cases. It suggests the effec-

tiveness of the proposed dynamic residual classifier (DRC)

in handling the data imbalance issue.

4.3. Detailed Analysis

The results of CIFAR100 B0 10 steps and ImageNet100

B0 10 steps are reported by default. More results can be

found in the Supplementary Material.

Contributions of different components The results are

shown in Tab. 4. The MAF pipeline achieves clearly bet-

ter results than the finetuning baseline since such a pipeline

is a CIL method itself, as discussed in Sec. 2. The pro-

posed DRC brings substantial improvements. For example,

DRC enhances MAF results with 6.64% average accuracy

and 11.12% last accuracy on ImageNet100. By replacing

the conventional classification loss with the adjusted loss,

logit adjustment (LA) [36], provides positive effects and re-

sults in the proposed method, MAFDRC.

Branch Layer Merging As shown in Tab. 5, MAFRC

clearly improves the baseline. Therefore, the effectiveness

of the branch layer architecture and residual fusion mecha-

nism in RC is demonstrated. However, with the increasing

task-specific branch layers, MAFRC suffers from the prob-

lem of growing model size. DRC handles this issue with

branch layer merging, resulting in a more efficient model,

MAFDRC. Moreover, MAFDRC is as effective as MAFRC,

as suggested by their performance in Tab. 5.

CIL Pipelines with DRC As shown in Tab. 6, DRC is

compatible with all three pipelines and clearly boosts their

performance. MAF benefits the most.

Data Imbalanced Methods The balanced fine-tuning

(BFT) [28] and the weight aligning (WA) [49] are alterna-

tives to DRC for handling the data imbalance in CIL. As

Model
CIFAR100 ImageNet100

Avg Last Avg Last

MAF 69.61 54.84 72.01 58.76

+DRC 72.80(↑3.19) 60.92(↑6.08) 78.65(↑6.64) 69.88(↑11.12)

MEC 69.02 52.86 70.08 55.06

+DRC 70.25(↑1.23) 54.76(↑1.90) 71.41(↑1.33) 58.54(↑3.48)

MDT 67.69 52.56 69.40 54.68

+DRC 70.80(↑3.11) 58.28(↑5.72) 71.31(↑1.91) 59.34(↑4.66)

Table 6. The results of different pipelines with DRC.

Methods
CIFAR100 ImageNet100

Avg Last Avg Last

MAF 69.61 54.84 72.01 58.76

MAF+BFT [28] 69.75 55.19 73.08 59.96

MAF+WA [49] 70.14 56.23 73.94 62.14

MAF+DRC 72.80 60.92 78.65 69.88

Table 7. The results of different imbalanced methods.

Methods
CIFAR100 ImageNet100

Avg Last Avg Last

DER w/o P 71.99 62.66 76.49 69.42
FOSTER B4 71.16 59.40 75.63 64.90

FOSTER 69.79 58.33 74.58 64.72

MAFDRC 71.24 59.73 77.88 69.64

Table 8. CIL results with reserving 20 exemplars per class.

(a) α (b) β

Figure 7. Impacts of αs and βs. CIFAR100 B0 10 steps is used.

shown in Tab. 7, both BFT and WA bring some improve-

ments to the MAF pipeline but are inferior to our DRC.

Hyper-parameters The memory size of the B0 proto-

col [37] is reduced to 20 exemplars per class. The results are

reported in Tab. 8. Our MAFDRC still achieves the SOTA

level performance. The performance of our methods with

different hyper-parameter values of Eq. (13) are shown in

Fig. 7. Our method is not sensitive to such changes.

5. Conclusion
In this paper, the dynamic nature of the data imbalance

in the widely used CIL rehearsal strategy is shown. We
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aim to handle this challenging scenario with a novel dy-

namic residual classifier (DRC). This is complementary to

the adjusted losses and data re-samplings used by many CIL

methods based on the static viewpoint. The proposed DRC

adopts the branch layer architecture and the residual fusion

mechanism of a recent advance residual classifier (RC) and

handles the model-growing problem with the branch layer

merging. As a generalizable method, DRC substantially

improves the performance of different CIL pipelines and

achieves SOTA performance under both the CIL and LT-

CIL settings.
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