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Abstract

Space-filling curves (SFCs) act as a linearization ap-
proach to map data in higher dimensional space to lower
dimensional space, which is used comprehensively in com-
puter vision, such as image/point cloud compression, hash-
ing and etc. Currently, researchers formulate the problem
of searching for an optimal SFC to the problem of find-
ing a single Hamiltonian circuit on the image grid graph.
Existing methods adopt graph neural networks (GNN) for
SFC search. By modeling the pixel grid as a graph, they
first adopt GNN to predict the edge weights and then gen-
erate a minimum spanning tree (MST) based on the predic-
tions, which is further used to construct the SFC. However,
GNN-based methods suffer from high computational costs
and memory footprint usage. Besides, MST generation is
un-differentiable, which is infeasible to optimize via gradi-
ent descent. To remedy these issues, we propose a GNN-
based SFC-search framework with a tailored algorithm that
largely reduces computational cost of GNN. Additionally,
we propose a siamese network learning scheme to optimize
DNN-based models in an end-to-end fashion. Extensive
experiments show that our proposed method outperforms
both DNN-based methods and traditional SFCs, e.g. Hilbert
curve, by a large margin on various benchmarks.

1. Introduction

Space-filling curves (SFCs) are performed as the data
linearization method which transforms data in n-D to 1D
sequence. It has various applications in computer vision
tasks, such as image/point cloud compression [22, 40], im-
age transmission [25], data clustering [27], and geography
hashing [1]. Currently, SFCs are widely used in deep learn-
ing tasks like point cloud analysis [4] and knowledge distilla-
tion [?]. Traditional SFCs are in fractal structures with many
useful properties that can benefit many downstream appli-
cations. For example, Hilbert curve [12], with a locality-
preserving structure, is widely used in data compression
tasks. Z-curve [28] significantly accelerate the hashing prob-
lem thanks to its jump-connected structure.
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Figure 1: Comparison between our method and Hilbert
curve. It can be found that the SFC generated by our model
is determined by the image context while Hilbert curve has
a fixed structure.

However, with a fixed structure, traditional SFCs lack
flexibility when facing different data and tasks, which lim-
its the broader application of SFCs.

To further improve the performance of SFCs, data-
adaptive space-filling curves are proposed. (see Figure 1)
Previous works [44, 29, 6] mainly focus on the context of
image, such as pixel difference and image gradient during
SFC generation. Then it can reach better locality-preserving
properties compared with Hilbert curve. In these works,
the generation of SFCs is transformed into the problem of
finding a Hamiltonian path in a grid graph as shown in Fig-
ure 2. Currently, following the same SFC modeling scheme,
researchers attempt to generate high-quality SFCs via deep
learning-based approach [39]. Specifically, they first gen-
erate multiple small circuits based on a graph G and pre-
dict the edge weights Wy, in dual graph G’ through graph
neural networks (GNN) [17, 38]. Then, they search for a
Minimum Spanning Tree (MST) on §’, and finally, a single
Hamiltonian circuit is formed according to the MST. Pow-
ered by deep neural networks, the learning-based methods
outperform traditional data-adaptive SFCs by a large margin.
However, the application of such methods is limited by the
high computational cost since GNN is very GPU-consuming
when dealing with grid graphs (e.g. the adjacency matrix of
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Figure 2: The process of generating data-adaptive SFCs.

a 32 x 32 grid graph has the size of 1024 x 1024). Moreover,
the MST is generated using greedy algorithm like Prim [31],
which is classified as an undifferentiable algorithm. This
significantly complicates the optimization of this problem
through gradient-based methods.

In this paper, we introduce an efficient deep learning-
based SFC generation method to remedy these issues. To
tackle the first challenge, we propose an Efficient-GCN
(EGCN) module that can significantly reduce computational
cost. In addition, we design a novel learning scheme to op-
timize our model in an end-to-end manner. To be more spe-
cific, we first encode input images with convolutional net-
works [11] and our proposed feature normalization mod-
ule. Then, we process the obtained features via EGCN. Our
EGCN module is based on the fact that the adjacency matrix
of a grid graph only contains 4 offset-diagonals. Based on
the observation that multiplying an offset-diagonal matrix is
identical to shifting the original matrix, our EGCN is free
of matrix multiplication of adjacency matrices, which saves
computational cost.

Optimization scheme is another important part in our
model since finding an optimal SFC is combinatorial opti-
mization problem. However, previous arts [15, 8, 18] are not
stable in our task as illustrated in prior work [39]. Therefore,
in this paper, we design an elegant solution to find optimal
SFCs. Inspired by the self-learning procedure [10, 5], we de-
sign a new learning scheme to optimize the given objectives
effectively.

On top of that, to increase the stability of our model,
we propose a multi-stage MST algorithm that combines the
MSTs from multi-stage image features. So that the generated
SFCs can receive multi-stage image information and achieve
better performance further. Our contribution can be summa-

rized as follow:

* We introduce an Effective-GCN (EGCN) module that
tailors grid graphs. It dramatically decreases the mem-
ory cost of GCN.

* We propose a new learning scheme to find optimal
SFCs in the end-to-end manner.

* We adopt a multi-stage MST algorithm, which helps
generate stable SFCs.

* Extensive experiments show that our method outper-
forms both DNN-based and traditional methods.

2. Related Work

Fractal Space-Filling Curves. Fractal space-filling curves
are generated by the infinite iteration of a basic unit f; (x). In
1890, Peano constructs the first continuous surjective map-
ping from R — R2, which is known as the Peano space-
filling curve [35]. It is formulated as a continuous function
f :00,1] — [0,1]? given by f(x) = lim,, 00 fn(x). Ce-
saro [35] shows the analytic arithmetic expression of Peano
curve using parametric equation t — (¢(t), 1(t)) as follow:

— i f2n71(t) — i f2n(t>
n=1 3" n=1 3"
where
fm(t) — 1+([37nﬂ_3[37ﬂ—1t]_1)(_1)[3t]+[32t]+...+[3m71t].

A similar fractal SFC is constructed by Lebesgue [28] in
1904 and is known as Z-curve, which is formulated by the
t — (p(t),1(t)) parametric equation:

32n 2t
Z: rEn)

where f(t) = 1 —t,t € [0,1]. Z-curve has many jump
connections that link two distant data points, which makes it
qualified for time-sensitive tasks such as geographic hash-
ing [1], data indexing [40] and etc. Hilbert curve f, ()
is another Fractal SFC with good locality-preserving prop-
erty [27]. Its analytic expression is described using the
quaternary Cantor set as mentioned in [35], in other word,
fn(z) = frn(04¢142¢s - ..) and the Hilbert curve is shown

as:
)

where e is the number of k’s preceding ¢; (mod 2) and
d; = egj + e3; (mod 2). Hilbert curve is welcomed for the
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Figure 3: The main framework of our model. Norm represents the feature normalization L(-) and Cover&Merge is the
Cover-and-Merge algorithm. We use ResNet during implementation, which has 4 output stages. The network is optimized by
minimizing the KL-divergence between the main network and the siamese network. N(0, 1) represents the standard Gaussian
noise. The MSTs are generated via Prim algorithm with O(N?) complexity. Since the tested images are relatively small (32 x

32 or 64x64) and such complexity is acceptable.

locality-sensitive tasks like image and point cloud compres-
sion [40].

Every fractal SFC has its own properties and they are
qualified for different tasks. They are cost-friendly since
they can be easily generated by repeating basic unit. How-
ever, these pre-defined structures cannot perfectly fit the data
distribution of various datasets and the curve selection shall
be very careful for different tasks. Hence, the data-adaptive
space-filling curves are proposed to match the diversity of
data and tasks.

Data-adaptive Space-Filling Curves. Compared to frac-
tal SFCs, data-adaptive SFCs are more suitable for data lin-
earization since they are generated according to the data
distributions such as image context [6], gradient [29], and
neighborhood similarity [44]. These data-adaptive SFCs are
formed through the Cover-and-Merge algorithm [25, 6, 39].

Specifically, in the cover step, we first create an undi-
rected grid graph G and each node in G is the location of
pixels (see Figure 2(a)). Then we generate several small cir-
cuits based on G (see Figure 2(b)). After that, an undirected
dual graph G’ is constructed over G as shown in Figure 2(c).
Finally, the edge weights in G’ are modeled according to dif-
ferent approaches. For example, Dafner et al. [6] assign the
edge weight W (C;, C;) between to nodes C; and C; in dual
graph as follow:

W(Ci, Cj) = [u] + |w| = |e] = | f],

where u,w,e,f are the differences between adjacent pixels
(e.g. |u] = |p1 — p2|, see Figure 2(b)). Wang et al. [39]
further improve the performance of data-adaptive SFC by
introducing graph neural networks (GNN) for edge weight
prediction as follow:

W = E(G(Conv(9))),

where J is the input image and W is the edge weights of
G’ and G(-), F(-) are GNN and CNN, respectively. Since
finding the optimal SFC via W is an NP-hard problem, they
design a learning scheme that includes an evaluator network
E(+) for weight optimization.

After determining the edge weights of §’, we move to the
merge step. Firstly, we find the MST 7 in dual graph §' (see
Figure 2(d)) and link all the small circuits in G according to
7. After that, a new SFC is obtained as shown in Figure 2(f).
Cover-and-Merge algorithm transforms SFC generation into
the task of finding a Hamiltonian path in G.

3. Methodology
3.1. Problem Formulation

The problem of generating a space-filling curve via deep
learning-based approach can be described as follows: Given
an input gray image IS *#*W where H and W are the
image height and width, we first split it into many 2 X 2
grids. Then, for each small grid, all 4 points are connected
to form a small circuit, as shown in Figure 2(b). Based on
the graph with small circuits, we generate the dual graph [2]
G’, as shown in Figure 2(c). Then, we are going to predict
the edge weights Wg: in §'. After getting the dual graph
weights, we search an MST on G’ according to Wg/ (see
Figure 2(d)) and apply Cover-and-Merge algorithm [25] to
merge the obtained MST with small circuits to get the SFC,
as shown in Figure 2(f).

Overview. As shown in Figure 3, our framework consists
of two parts: graph weight generation and SFC generation.
For graph weight generation, we use a learnable neural net-
work, consisting of a convolutional neural network (CNN)
Conv(-), a feature normalization layer L(-), and an Efficient-
GCN EGCN(), to extract the graph weights Wg/ from the
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Figure 4: Matrix multiplication with offset diagonal matrices. (a) Adjacency matrix of a 3x3 grid graph; (b) A matrix left
multiplied by I;4p: is equivalent to shifting the elements of the matrix upward and replacing some rows (gray rows) with
0; (c) A matrix left multiplied by I, is equivalent to shifting the elements of the matrix upward and padding the last
rows with 0. The colored elements (pink, yellow, blue, purple and gray) represents non-zero elements while the uncolored

elements stand for O.

input image, which can be formulated as:

Wg = EGCN(L(Conv(J))). (1)

For SFC generation, we first construct an MST based on the
predicted Wy via Prim algorithm [31] T(+), and then gen-
erate the SFC by Cover-and-Merge algorithm, denoted as:

SFC = Cover_and _Merge(T(Wg)). 2)

Note that the SFC generation procedure is un-differentiable.
Therefore, we can not directly adopt gradient descent to op-
timize the models. To mitigate this issue, we propose a new
learning scheme to effectively update the model parameters.

3.2. Graph Weight Generation

Convolutional Network. For every input gray image
J elXHXW, we first extract its spatial features via residual
convolutional networks [11] as follows:

X =F(9). 3)
Then, we upsample X to the original image size H x W
via Bilinear interpolation and apply 2D convolution with

. . CxdxW
stride=2 and kernel size=1 to get featuremap W, ,
where C'is the output channel number.

Feature Normalization. Next, we model the intermediate

graph weights W, by reshaping and normalizing W;. Sup-
pose N = & = W W} will be reshaped to W, € RN*xC,
After that, Wy, is obtained by the Softmax normalization
of W; along C axis (S;(-)) and N2 axis (Sa(-)). Then, we
concatenate the two features, denoted as:

ng = L(W[) = COHC&t(Sl(W[), SQ(W])) (4)

Using the intermediate graph weights Wg, as input,
Efficient-GCN is then proposed to determine the edge
weights Wg.

Efficient-GCN. Similar to NSFC [39], EGCN aims to cap-
ture the long-range dependencies of image context to predict
Wg:. EGCN is a variant of GCN [17], which has the basic
formulation as:

Wit =0 (D72 AD 2w, W)

o)
Wg =Wt r

=1,2

g Ly e

"R7

where W¢ is the ¢, input intermediate graph, A=T+A,
A is the adjacency matrix, D represents the degree ma-
trix of A, W} is the learnable weights for W, and o(:)
stands for the non-linear operation. NSFC [39] first adopts
graph networks of Equation (5) to learn Wy, and gener-
ates SFC that has better quality compared with previous
works [6, 44, 29]. However, for a gird graph with size
H x W, the original GNN requires the modeling of adja-
cency matrix A € RHWXHW = which consumes a lot of
computational resources. Luckily, an efficient GNN for grid
graphs is achievable after investigating its adjacency matrix
A.

Specifically, the nodes in a 4-connected grid graph only
have edges in up, down, left, and right directions. Therefore,
A can be formulated as:

A= Iup + Idown + Ileft + Iright
= Idown + Iright + ITdown + ITrighta
where I.;gn: € RN*XN? is the diagonal matrix with offset 1

and Ipn € RY *XN? is the diagonal matrix with offset N
(See Table 7a). I 4oy and I'" ;¢ represent the transpose
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matrix of Igop and I;;gp¢, respectively. Then, its multipli-
cation with W§1 € RN?XCr (C'- represents 7, input chan-
nel number) will have the following formulation:

AWél = Idownwgl + Im‘ghth,
F I doun W, + 1T g W3, Q)
= W§1N + ngl + ngfN + ngfl’

where W . represents that all elements e € W¢, moving
upwards by N and padding the last N rows with O (see Fig-
ure 4(c)). Similarly, Wg  means that e € W¢ moving
downward by N and padding the first N rows with 0. The
same process will be applied to W, and W¢ . The only
difference is that Wg = and Wg  should remove some
rows after element shifting (see Table 7b for details.)

Therefore, our proposed EGCN is achieved by the ele-
ment shifting of W¢ . This operation has a smaller com-
putational cost since we do not perform real matrix mul-
tiplication between adjacency matrix A and input features.
Additionally, it does not cost GPU memory for generating
A. Using the computation scheme of Equation (6), given
an input intermediate graph with weight Wg,, the proposed
EGCN is formulated as:

Wit = EGCN(W§,, A) = o (I + A)W§, W)
= U((ng + WéIN + ngl + ng —N (7)
+ WL W), r=1,2,...,R—1.

JIr—1

In our model, the learnable weight W/ is implemented
by spectral graph convolution. For the last GNN layer (R,
layer), we follow Equation (7) but set the output channel
number to 1 and then remove the non-linear function o(+).
The output of EGCN WSRIJrl e RV represents the node
weights of graph G’ and the edge weight, W, between two
nodes will be calculated by the average value of their node
weights. Then, we construct an MST based on Wg,. How-
ever, during experiments, we find the obtained MST T(Wg/ )
is not stable, which means the predicted SFCs vary severely
with different random seeds during training and it makes the
resultant SFC not constantly have good performance. There-
fore, we propose a multi-stage Minimum Spanning Tree gen-
eration algorithm which is based on multi-level image fea-
tures to mitigate the stability problem.

3.3. Multi-Stage Minimum Spanning Tree

Considering a CNN [43, 19, 36, 11], the shallow lay-
ers capture more low-level information, such as texture and
edges, while the deep layers contain rich high-level seman-
tic information. Merging multi-level image features will in-
crease the stability of outputs and this approach is proved to
be successful in various tasks [23, 24, 33, 26]. Inspired by
these previous works, we build a multi-stage minimum span-
ning tree generation algorithm for stable W prediction.

Outpout

Stage 2 Stage 3 [ EGCN Stage 4 EGCN
MST MST MST CNN
T2 T3 Ta
| \ \ \ \

I—* Tree-Intersection

Figure 5: [Illustration of multi-stage MST. After tree-
intersection, the obtained graph edge weights are set to 7,
which is designed to make sure that these edges will be in-
cluded in the next MST.

Specifically, we take the second, the third and the fourth
stage output of ResNet as:

[ZXQ, :x?,, x4] = F(g)a

where X,,, € REm*HmXWm and m € {2, 3,4} is the output
of my;, stage of ResNet. Then we generate corresponding
MST 7, 73 and 74 based on different levels of feature:

T = T(EGCN(L(X,))), m € {2,3,4}.  (8)

After that, we define a tree-intersection operation for span-
ning trees 7 and 7 - - - Ty,

7-1rj7-2...7-n:147_1.147_2...147_”7

where A, is the adjacency matrix of 7,, and - represents
element-wise production. In the real implementation, we
only store the 4 diagonals of A, to save GPU memory.
The multi-stage MST generation algorithm for edge weights
Wy is performed as follows:

A%Q/ = [1+ (T}* 1)7’2 ngﬂﬂ;] .AWS”

where 72, 3 and 74 are generated by Equation (8) and n is a
relatively small number (e.g. le — 3). AWC,, represents the
adjacency matrix of Wg. and AJVV{,S/ is its multi-stage adja-
cency matrix. If Wyg, is generated through Al , T(Wg)
will have relatively small cost when passing filrough the
edges that existing in 79, 73 and 74. In this way, we can
filter out some edges that are impossible to form MST and
increase the probability of generating a new MST by select-
ing the edges that exist in all previous MSTs (see Figure 5).

4. Weight Optimization

SFC generation is un-differentiable because of MST gen-
eration, e.g., Prim algorithm [31], and Cover-and-Merge al-
gorithm. It can not be directly optimized by gradient-based
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methods. Therefore, we address this problem by designing a
new learning scheme, which is detailed as follows.

4.1. Objectives

Note that the generated SFCs should be adapted for dif-
ferent tasks. Therefore, in this paper, we investigate SFCs in
two task: data transmission and data compression and they
can be measured by autocorrelation and LZW code length
respectively. Therefore, we use them as the objectives.

Autocorrelation. Autocorrelation factor is widely used
in various tasks like data transmission, spectral analysis
[25, 37, 14]. Given a flattened gray image sequence ¥ €
REW autocorrelation evaluates the inherent similarity of
the sequence by calculating the correlation factor between
Y[t],t € {1,--- , HW} with its delay copy Y[t + k]:

SR Y Y[t + K]

b, =
i Y[t

; &)

where k € {1,---, HW} is the delay factor. The larger
autocorrelation, the better the quality of obtained SFC.

LZW Code Length. LZW Coding [45] is a lossless data
compression algorithm. Given a flattened pixel sequence Y,
the quality of LZW coding can be measured using the length
of the LZW encoded sequence as follow:

®; = Length(LZW Coding(Y)). (10)

The smaller LZW Code length, the better compression
efficiency of obtained SFCs.

4.2. Learning Scheme

Inspired by previous generative models [9, 32], self-
learning [5, 10] and knowledge distillation schemes [13, 34],
we design two networks: main network and siamese net-
work, as shown in Figure 3. The input of main network is
the original image J while the input of the siamese network
is the original image with some noise (J + N(0,1)). We
add random noise to the siamese network because random
noise only changes the intensity of the pixels while keep-
ing important features like edges intact. ®°, @™ indicate the
evaluation score produced by the siamese network and main
network under the given objectives. We only optimize one
network per iteration. If ®° is better, the siamese network
will be the teacher model and main network will be the stu-
dent. Otherwise, the main network will be the teacher. The
parameters of student model are updated by minimizing the
KL-divergence between the main network and the siamese
network, denoted as:

o [KL(elem),
BP KL (emlef),

If ®™ is better,

. (1)
If ®° is better,

where e®, e™ represent the outputs of siamese network and
main network, respectively. In the testing stage, we only use
main network for inference. Our learning scheme is more
efficient than NSFC and we can generate SFC for each image
instead of each class like NSFC. More details about network
training can be found in Appendix.

5. Experiments

Datasets. We use gray image datasets MNIST [21] and
Fashion-MNIST [42] during experiments. Both datasets
have 60000 training samples and 10000 testing samples.
Following the setting in NSFC [39], we change the original
image to 32x32 before training and testing. Additionally,
Tiny-imagenet [20] experiments are involved in the follow-
ing experiments. It is sampled from ImageNet dataset [7]
and the size of all images are 64x64. We resize all input
images to 32 x32 for quantitative comparison. Additionally,
64 x 64 images are used to show the scalablity of our model.
It has 200 object classes and each class contains 500/50/50
training/validation/test images. We will use training and
validation set during experiments.

Experimental Setting. Our method is implemented by Py-
torch framework [30] and we apply ResNet-18 during exper-
iments. All images will be transformed into grayscale before
input. The model is trained from scratch and the number of
GNN layer R (refered in Equation (7)) is set to 3 for all ex-
periments. We set the training batch size to 128 and the total
epoch is set to 80. In the training stage, we decay learning
rate by half in every 20 epochs. We use Adam [16] optimizer
with learning rate I = 0.001 for all experiments.

5.1. Quantitative Comparison

Different Objectives. We train our model using different
objectives including autocorrelation and LZW code length.
The experimental results can be found in Table 1.

During experiments, we first train our model and NSFC
using autocorrelation with delay factor k = 6. After that, we
generate SFCs via Zigzag, Hilbert, and Dafner [6] scheme
sequentially. Then we test the average autocorrelation of all
obtained SFCs. After autocorrelation experiments, we op-
timize our proposed framework and NSFC according to the
LZW code length. Table 1 illustrates that our model signif-
icantly outperforms other methods in all evaluation metrics.
For example, under the LZW coding scheme, our method
only occupies an average of 158.3 bytes in the MNIST
dataset, which is much shorter than previous works. Some
visualized results on Tiny-Imagenet dataset can be found on
Figure 6.

Computational Cost. In this part, we compare the com-
putational cost of our proposed EGCN with other methods
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et Vethod Autocorrelation  LZW Code Length Method GPU  Params  Inference time
atase etho 1 (bytes)| GCN [17] 104M  1.6M 11ms
. GAT [38] 120M 1.8M 12ms
Zigrag 0.207 175.4 SGC [41] 88M  0.8M 9ms
Hilbert [12] 0.475 182.7 (+7.3) FastGCN [3] 96M 0.5M 8ms
MNIST [21] Dafner [6] 0.401 - EéCN M 0-3M 4mé
NSFC [39] 0.558 171.1 (-4.3) .
Ours 0.625 158.3 (-17.1)
X Table 2: Comparison between different GCN
Zigzag 032 1258 thods, All methods ore tested by using grid
Hilbert [12] 0.723 427.3(+1.5) methods. All methods are tested by using gr
Fashion-MNIST [42]  Dafner [6] 0.704 graphs with size 64 x 64 and batch size 512.
NSFC [39] 0.786 4124 (-13.4) .
Ours 0.834 400.7 (:25.1) Stage2  Stage3  Stage4  Autocorrelation
. X X X 0.577 (£0.04
Zigzag 0.811 925.1 v % v 0.601 E:I:O 02;
. Hilbert [12] 0.874 927.6 (+2.5) ! :
Tiny-imagenet v v X 0.589 (£0.03)
(32x32) [20] Dafner [6] 0.896 909.0 (-16.1) v v v 0.625 (+0.01)
NSFC [39] 0.913 904.9 (-20.2) . :
Ours 0.936 888.7 (-36.4)
Zigrag 0719 Table 3: Ablatl‘on stuc‘ly on n‘lultl-ste‘lge MST.
- Hilbert [12] 0.773 N |
T(ay;aaﬁe;g? Dafner [6] 0.779 g2
NSFC [39] - “E“ 8t *
Ours 0.826 E 4l ﬂ i
= [

Table 1: Comparison between different methods. Zigzag curve is imple-

[«

OXQ%X S “\%'i

o NG

mented by Pytorch reshape function. Additional to the 3232 images, we

use Tiny-imagenet with size 64 x 64 for scalability experiments. The results

show that our model is scalable to a larger image.

Learning Scheme AC Training Time/epoch ~ Params
NSFC [39] 0.593 1867s 22.9M
Ours 0.625 72s 22.3M

Table 5: Comparison between our scheme and NSFC.

in terms of GPU occupation and inference time. In the ex-
periments of Table 2, we input a batch of equal-weight grid
graphs with size 64 x 64, and the layer number for all meth-
ods is set to 3 for a fair comparison. Table 2 shows that our
proposed EGCN not only significantly outperforms the clas-
sical GCN [17, 38] in terms of GPU memory occupation and
inference time, but also surpasses other fast GCN methods
such as FastGCN [3] and SGC [41].

To demonstrate the efficiency of our proposed EGCN, we
present the average time consumption of each component
of our model in MNIST experiments, as depicted in Fig-
ure 4. The terms “Embed” and “Merge” refer to the graph
weight embedding and Cover-and-Merge algorithm, respec-
tively. Specifically, the CNN, MST, and Cover-and-Merge
algorithm require 12ms, Sms, and 8ms, respectively. In con-
trast, our proposed graph weight embedding scheme only re-
quires 2ms, highlighting the effectiveness of EGCN.

5.2. Ablation Study

In this part, we ablate all modules in our framework.
MNIST is used for the following experiments and the train-

Table 4: Average time consumption of our

model in inference stage.

gl

Original Ours Hilbert Ours flatten  Hilbert flatten
Figure 6: Visualized results of our proposed methods. We
first show SFCs generated by our method. Then we flatten
images according to the curve, obtaining an 1D sequence
with size HW. Finally, we upsample the sequences to im-
ages. It can be found that the images flattened by our method
have a higher degree of aggregation, which demonstrates that

our SFCs have better clustering property.

ing/testing objective is autocorrelation with delay factor k =
6.

Multi-Stage Minimum Spanning Tree. We first validate
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Table 6: Ablation study on EGCN and feature nor-
malization.

(a) MNIST

(b) Fashion-MNIST

Figure 7: Visualization of different autocorrelation factors.

the importance of the proposed Multi-Stage MST, which
is introduced to increase network stability in the training
process. We use the multi-stage MST algorithm on the
output of different stages of ResNet, the results can be
found in Table 3. It tells that multi-stage MST greatly re-
duces the volatility of the predicted results (0.577 (£0.04)
to 0.625(40.01)). Without multi-stage MST, the generated
SFCs do not constantly have good performance. Also, we
found that combining the outputs of all 3 stages reaches the
best performance. As it is shown in Figure 5, multi-stage
MST selects the intersection of all MSTs, which merges
multi-level image features. Then, our networks can produce
more stable outputs benefiting from rich context features.

Different Learning Schemes. Our learning scheme differs
significantly from NSFC [39], which adopts a generator-
evaluator structure. In the subsequent experiments, we com-
pare the performance of the two learning schemes based on
autocorrelation performance and network training time of
one epoch. To conduct these experiments, we create an SFC
evaluator according to the settings described in NSFC [39],
while keeping other components unchanged (e.g., multi-
stage MST, EGCN). The performance of the two learning
schemes is shown in Table 5. The results indicate that our
learning scheme not only performs better but also has a
shorter training time, as we avoid using the time-consuming
Dafner [6] algorithm as input.

EGCN and Feature Normalization. This section evaluates
the effectiveness of the proposed EGCN and feature normal-
ization layer. Initially, we replace EGCN with the original
GCN layer, while maintaining other settings such as learn-
ing scheme and multi-stage MST. Subsequently, we substi-
tute GCN with EGCN. According to the results presented in
Table 6, the EGCN yields a slight improvement in autocorre-
lation performance, but the gain is not significant. However,
with the aid of feature normalization, our proposed method
surpasses GCN by a large margin. We also combine GCN
with our feature normalization layer, but the obtained re-
sults indicate that the autocorrelation improvement is less
pronounced than that of EGCN.

Scalability. Scalability is the major concern of learning-

based SFC generation methods because firstly GCN is not
suitable for large images since the node number increases
exponentially with image size. Secondly, it is still a very
challenging problem to quickly find MST on large images.
However, due to the efficiency of our proposed EGCN, the
problem of the computational cost of GCN is alleviated. To
show the scalability of our proposed method, we conduct
64 x 64 experiments on the Tiny-imagenet dataset using au-
tocorrelation (k=100) objective. The results in Table 1 tell
that our model is scalable to the larger image. Additionally,
applying the scale-up method mentioned in NSFC [39] is
also a good solution to the scalability problem. More exper-
iments about the scalability of our method can be found in
Appendix.

More Visualization. We conduct experiments using differ-
ent autocorrelation factors k. Here we visualize the autocor-
relation performance with different & on Figure 7. It shows
that our method consistently outperforms Hilbert curve and
Zigzag curve.

6. Conclusion and Discussions

In this paper, we propose an efficient SFC generation
method via deep learning. To be specific, we design a
GCN module EGCN to accelerate GCN computation in grid
graphs. Additionally, we develop a siamese network-based
learning scheme to optimize our network efficiently. More-
over, we propose a multi-stage MST module to stabilize the
training process. The experimental results show that our
method significantly outperforms previous works such as
Hilbert, NSFC by a large margin.

Limitations and Future Works. Searching for an optimal
SFC is an NP-hard problem, and solving the problem in a
large graph is still challenging. Hence, we cannot ensure that
our method provides the global optimal solution. As one of
the future directions, we will search for more powerful and
efficient optimization strategies to approximate global solu-
tions. Another direction is that we can explore the possibility
of applying the proposed SFC to other tasks, such as point
cloud compression [4], data clustering [27] and etc.
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