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Abstract

Many weakly supervised semantic segmentation (WSSS)
methods employ the class activation map (CAM) to gen-
erate the initial segmentation results. However, CAM of-
ten fails to distinguish the foreground from its co-occurred
background (e.g., train and railroad), resulting in inaccu-
rate activation from the background. Previous endeavors
address this co-occurrence issue by introducing external su-
pervision and human priors. In this paper, we present a
False Positive Rectification (FPR) approach to tackle the
co-occurrence problem by leveraging the false positives of
CAM. Based on the observation that the CAM-activated re-
gions of absent classes contain class-specific co-occurred
background cues, we collect these false positives and utilize
them to guide the training of CAM network by proposing
a region-level contrast loss and a pixel-level rectification
loss. Without introducing any external supervision and hu-
man priors, the proposed FPR effectively suppresses wrong
activations from the background objects. Extensive exper-
iments on the PASCAL VOC 2012 and MS COCO 2014
demonstrate that FPR brings significant improvements for
off-the-shelf methods and achieves state-of-the-art perfor-
mance. Code is available at https://github.com/
mt-cly/FPR.

1. Introduction
Semantic segmentation aims to assign a semantic label to

each pixel of an input image. Benefiting from the strong ca-

pability of deep neural network (DNN) to extract semantic

features, tremendous progress [41, 42] has been made on

semantic segmentation with successful applications in au-

tonomous driving, image editing, medical image analysis,

etc. However, the training of a fully supervised segmen-

tation model demands a large number of pixel-level anno-

tations, which is labor-intensive and time-consuming. To
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Figure 1. The main idea of our approach. (a) Conventional

CAM often suffers from co-occurrence issue, e.g., railroad and

train. (b) The false positives of CAM contain the cues of co-

occurred background, (c) which are leveraged in our FPR to dis-

tinguish foreground.

reduce the cost, weakly supervised semantic segmentation

(WSSS) has been proposed to employ weaker supervision,

such as image labels [22, 5, 2, 54], bounding box [13, 46],

scribbles [38] and points [3] to train the model. Among

them, WSSS with image-level labels has attracted much at-

tention since image labels can be easily obtained from pop-

ular datasets [40, 14, 16] or the Internet. In this work, we

focus on the image-level labels based WSSS.

Most existing WSSS methods follow a two-stage

pipeline: estimating the semantic localization maps by

training a CAM [63] classification network with image-

level labels, followed by a refinement stage. Unfortunately,

CAM suffers from two critical problems, i.e., incomplete
estimation and co-occurrence issue. Incomplete estimation

is caused by the fact that CAM only activates the most dis-

criminative parts of objects, which has been well studied
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in past years [22, 62, 2, 1, 17]. In opposite to the un-

derestimation of incomplete estimation, co-occurrence is-

sue refers to the overestimation of the foreground regions.

Some background objects often appear together with fore-

ground objects, which makes CAM confused to distinguish

co-occurred pairs (e.g., train and railroad, boat and water),

resulting in co-occurred background falsely activated.

Several methods have been proposed to address the co-

occurrence issue, EPS [33] trains the CAM classifier un-

der the guidance of saliency maps, which helps to sepa-

rate the foreground (e.g., train) from the co-occurred back-

ground (e.g., railroad). CLIMS [56] introduces the pre-

trained CLIP [43] to locate and suppress the co-occurred

background by feeding the corresponding textual prompts

into the text encoder. In W-OoD [31], out-of-distribution

images are manually collected as supplement training data

to improve the CAM localization ability. However, these

methods heavily rely on external supervision or require hu-

man priors to manually specify a list of classes suffering

from co-occurrence issue [31, 56].

In this work, we propose a False Positive Rectification

(FPR) approach to address the co-occurrence issue with-

out introducing any external supervision (e.g., saliency map

[33], CLIP [56], and supplement images [31]) and human

priors. The key insight of FPR is illustrated in Figure 1, we

observe that the co-occurred background sometimes solely

occurs in an image and will be falsely recognized as fore-

ground class with relatively high probability in CAM, e.g.,

the background railroad is recognized as train. Such wrong

activation from CAM of absent class, termed false positives,

are useful but neglected by previous methods. We argue

that the WSSS co-occurrence issue can be alleviated by ad-

equately leveraging false positives cues.

In FPR, false positives are fully exploited to guide net-

work learning in a two-step manner: online prototype com-

puting and training with prototypes. In the first step, all

training images are fed into a trained CAM network to gen-

erate class-specific positive and negative prototypes accord-

ing to given image-level labels. These dataset-level proto-

types are able to comprehensively represent the semantics

of foreground and the co-occurred background. In the sec-

ond step, we propose a Region-level Contrast loss (LRC) and

a Pixel-level Rectification loss (LPR) to train the network

with prototypes. Specifically, LRC pushes predicted region-

level representations close to their positive prototypes and

pulls them away from their negative prototypes. LPR re-

moves the pixels in the CAM-activated regions if their dis-

tances to negative prototypes are less than their distances to

the positive prototypes in the representation space. These

two loss functions work together to exclude co-occurred

backgrounds without destroying the integrity of foreground

objects. We perform the above two steps iteratively so that

prototypes can be updated online and provide better guid-

ance for training.

In summary, our main contributions:

• We experimentally demonstrate the co-occurrence is-

sues of WSSS can be alleviated without introducing

any additional external supervision and human priors.

• The design of FPR does not modify the architecture

of CAM network, it can be seamlessly integrated into

off-the-shelf WSSS methods to enhance performance.

• Extensive experiments on PASCAL VOC 2012 and

MS COCO 2014 benchmarks demonstrate that FPR

brings signification improvement and achieves state-

of-the-art performance.

2. Related Work
In this section, we first review the existing WSSS meth-

ods using image-level labels, then review the relevant works

using hard samples for learning.

Weakly supervised semantic segmentation. WSSS aims

to generate high-quality pseudo segmentation masks, which

enable the off-the-shelf segmentation models to achieve

competitive performance with fully supervised methods.

Most WSSS works take the outputs of the class activation

map (CAM) [63] as the initial localization maps. However,

CAM suffers from two critical issues: incomplete estima-
tion and co-occurrence.

Incomplete estimation means that only the most discrim-

inative parts of the object (e.g., dog head), rather than a

complete foreground region, will be activated in CAM. SEC

[26] and DSRG [22] pick the high-probability pixels as the

certain regions, and compare the similarity of ambiguous

pixels with them to expand the activated regions. Adversar-

ial based methods in [53, 21, 62, 49] force the network to

focus on non-discriminative pixels by erasing the activated

regions in the feature maps. IRN [1], BES [7], and SANCE

[34] compute the pixel-pair affinity matrix to guide the ran-

dom walk so that incomplete activation can be propagated to

semantically similar areas. In summary, most WSSS meth-

ods [32, 48, 60, 61, 58] solve the incomplete estimation is-

sue by expanding the activated regions in CAM.

Co-occurrence refers to that co-occurred semantic pairs

(e.g., train and railroad, boat and water) confuse the CAM

and result in the wrong activation from the co-occurred

background. This issue has attracted lots of attention re-

cently, EPS [33] utilizes the saliency map as pseudo-pixel

feedback to distinguish the foreground objects from the co-

occurred background. CLIMS [56] relies on the cross-

modality ability of pre-trained CLIP network to suppress

background objects by feeding a predefined set of back-

ground text descriptions into the text encoder of CLIP. W-

OoD [31] manually collects the supplementary training im-
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Figure 2. The overview of the FPR approach for generating high-quality class localization maps. The class-specific positive and

negative prototypes containing co-occurred background cues are generated in the online prototypes computing stage, which are then used

to calculate the losses LRC and LPR in the stage of training with prototypes. These two steps are performed iteratively.

ages that contain co-occurred background objects to facili-

tate the discrimination capability of the network. Different

from the above methods, we address this issue without in-

troducing external supervision and human prior.

Learning from hard samples. Previous works have

demonstrated the importance of hard samples for deep

model training. In fully supervised detection task [51, 18],

OHEM [44] performs online hard sample mining to re-

duce the gap of sample imbalance. RetinaNet [39] proposes

the focal loss to increase the contribution of hard negative

samples, which significantly improves the detection perfor-

mance. Cascade R-CNN [4] designs a cascade architecture

so that easy samples and hard samples can be optimized

in different stages. In fully supervised segmentation task,

PointRend [25] introduces a rendering head to the segmen-

tation model, which receives the uncertain points (i.e., hard

samples) as input and predicts their labels.

In WSSS, the activation in the CAM of absent class (i.e.,

false positives) can be regarded as hard negative samples,

which is ignored in previous WSSS methods. A contem-

poraneous study [12] employs false positives to guide fully

supervised learning as well. However, in this paper, we fo-

cus on generating high-quality localization maps.

3. False Positive Rectification for WSSS
In this section, we first review the computation of con-

ventional CAM in Section 3.1, then elaborate on our pro-

posed False Positive Rectification (FPR) framework in Sec-

tion 3.2. Finally, Section 3.3 applies the generated localiza-

tion maps for WSSS.

3.1. Class Activation Map (CAM)

CAM is proposed to locate the foreground objects by

training a classification network. For each training image

I and its image-level label y = [y1, y2, ..., yC ] ∈ {0, 1}C ,

where C is the number of classes, CAM takes I as the input

to extract high-level feature maps F ∈ R
D×H×W , with D

channels and H × W spatial size. To bridge the gap be-

tween the classification task and the segmentation task, a 1

× 1 convolution layer and a global average pooling (GAP)

layer are employed to produce the logits prediction ŷ ∈ R
C .

During training, binary cross entropy loss is used as follows:

LBCE = − 1

C

C∑

c=1

[yc · log(σ(ŷc))+(1−yc) · log(1−σ(ŷc))],

(1)

where σ(·) is the sigmoid function.

During inference, CAM feeds the feature map F into the

trained 1 × 1 convolution layer to get logits output Mc ∈
R

H×W for each class c. The binary class localization map

Ac ∈ {0, 1}H×W
can be obtained as:

Ac = (
RELU(Mc)

max(RELU(Mc))
> θ), (2)

where (·) is the indicator function, the pixels with normal-

ized values larger than the threshold θ are regarded as the

foreground of class c.
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3.2. The Proposed FPR Approach

The framework of our proposed FPR approach is illus-

trated in Figure 2. It consists of two steps: online prototype
computing and training with prototypes. In the first step, we

feed all training images into a trained classification network

to derive representations of CAM-activated regions, which

are used to generate class-specific positive/negative proto-

types. In the second step, we train the CAM network with

our proposed region-level contrast loss and pixel-level rec-

tification loss under the guidance of prototypes. These two

steps are iteratively performed to promote the capability of

the network to distinguish co-occurred pairs.

3.2.1 Online Prototype Computing

Given an input image I and its image-level label y, we first

compute its feature map F and normalized CAM Ac for

each class c, as described in Section 3.1. Then we calculate

the regional representation fc ∈ R
D, which is a compact

feature embedding obtained by applying masked average

pooling [64, 45] on CAM-activated regions as follows:

fc =

∑
i A

i
c · F i

∑
i A

i
c

, (3)

where i is the pixel over the class localization map Ac and

feature map F .

To store the representations, we set up a positive repre-

sentation pool Rpos = [R1
pos, R

2
pos, ..., R

C
pos] and a negative

representation pool Rneg = [R1
neg, R

2
neg, ..., R

C
neg]. Each en-

try Rc
pos or Rc

neg is a list of representations fc belonging to

the c-th class. In particular, a fc will be added to Rc
pos if

the c-th class appears in image I (i.e., yc = 1), otherwise, it

is assigned to Rc
neg. With the dataset-level collection, Rpos

captures the intrinsic properties of foreground classes, while

Rneg collects the representations from class-specific false

positives, which contain the co-occurred background cues.

Directly utilizing the collected representations in Rpos

and Rneg to guide network training will cost massive

computational resources. Therefore, for each class

c, we build class-specific positive prototypes P c
pos =

[P c,1
pos , P

c,2
pos , ..., P

c,K
pos ] and negative prototypes P c

neg =

[P c,1
neg , P

c,2
neg , ..., P

c,K
neg ] from Rc

pos and Rc
neg, respectively,

where K is the number of prototypes and it is set to a small

number (e.g., 10) to reduce the computational cost.

The generation processes of prototypes P c
pos and P c

neg are

different. For P c
pos, we set them as the cluster centroids ob-

tained by performing k-means clustering on Rc
pos. How-

ever, k-means clustering is inapplicable for P c
neg, since Rc

neg

includes representations from various undefined semantics.

For example, the representations of railroad, traffic light, or

station would be collected as false positives of foreground

train. Using k-means clustering to aggregate these semantic

representations results in ambiguous negative prototypes.

Therefore, we simply select the K representations with the

highest class probability as the negative prototypes. In de-

tail, we sort the representations fc in Rc
neg in descending

order according to the predicted probability ŷc, the top-K
representations are selected as the negative prototypes P c

neg.

Remarks on difference with previous works. The

prototype-based methods has been well studied and suc-

cessfully applied to WSSS [64, 15]. Different from previous

methods only leveraging prototypes to reduce intra-class

differences, our approach additionally introduces class-

specific negative prototypes from false positives to enable

network to distinguish co-occurred pairs.

3.2.2 Training with Prototypes

After obtaining the class-specific positive/negative proto-

types, we use them to train the network. Similar to the rep-

resentation collection process, we feed the training image I
to CAM backbone to predict representation fc ∈ R

D, but

here we only care about the classes appearing in the image

(i.e., yc = 1). Region-level contrast loss LRC is proposed

to guide the learning of fc. On the one hand, fc is pulled to

the center of positive prototypes to reduce intra-class vari-

ance. On the other hand, fc is pushed away from its closest

negative prototype to enlarge the difference between fc and

co-occurred background. LRC is defined with cross entropy

as follows:

LRC = − 1
C∑

c=1
yc

C∑
c=1

yc · [log(Spos(fc, P
c
pos)

+ log(1− Sneg(fc, P
c
neg)],

(4)

where Spos and Sneg are functions to measure the similar-

ity between representation fc and prototypes based on their

Euclidean Distance:

Spos(fc, P
c
pos) = exp{− ||fc−P

c
pos||2

T },

Sneg(fc, P
c
neg) = exp{−min(||fc−P c

neg||2)
T },

(5)

where T is the temperature to scale the Euclidean Distance.

LRC makes foreground representations and co-occurred

background representations separable by enlarging the dis-

tance between them. However, the benefit is limited, be-

cause the last 1 × 1 convolution layer of the network

does not receive gradients from LRC, this linear classifier is

not aware that which representation should be filtered out.

Therefore, we propose a pixel-level rectification loss LPR to

suppress the logit outputs of pixels that are similar to the

background. Specifically, we check each pixel activated in

CAM and suppress the pixel if the distance from its repre-

sentation to the closest negative prototype is less than the

distance to the closest positive prototype. Let Φc denote the
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set of pixels to be suppressed in the c-th CAM:

Φc = {i|min(||F i − P c
neg||2) < min(||F i − P c

pos||2), Ai
c = 1}.

(6)

The loss LPR is defined as follows:

LPR = 1
C∑

c=1
yc·|Φc|

C∑
c=1

yc ·
∑

i∈Φc

M i
c , (7)

where M i
c is the logits value of pixel i at Mc.

Although LPR works well in suppressing the co-occurred

background, parts of the foreground regions like the car

wheels are suppressed as well. The reason is that some neg-

ative prototypes are from regions shared by different ob-

jects. For example, the wheels from a bus image would

be collected as false positives of car, which misleads the

network to discard the wheel parts of the car. To alleviate

this problem, we propose to filter out negative prototypes

of shared regions by leveraging the super-class information

provided by dataset, which is usually utilized to build the

tree-structured class dependencies [36]. When calculating

the LPR for a class (e.g., train), we only remain the negative

prototypes from images where all appeared classes do not

belong to the same super-class (e.g., vehicle). By filtering

out those negative prototypes from shared regions in P c
neg,

we get trimmed P c ′
neg and update the pixel set Φc as follows:

Φc = {i|min(||F i − P c ′
neg||2) < min(||F i − P c

pos||2), Ai
c = 1}.

(8)

3.2.3 Network Optimization

The final loss to train the network is the combination of the

binary cross entropy loss and the two proposed losses:

L = LBCE + λ1 · LRC + λ2 · LPR, (9)

where the λ1 and λ2 are the loss weight parameters.

The two steps of online prototype computing and train-

ing with prototypes benefit each other. A trained net-

work produces more discriminative representations for pro-

totypes, while these prototypes could provide better guid-

ance for network training. Therefore, we iteratively perform

these two steps by updating the network with trained weight

for online prototype computing before each epoch.

3.3. Training Segmentation Networks

Our FPR is able to benefit the performance of CAM. Fol-

lowing the popular practice [6, 30, 59, 52] in weakly su-

pervised semantic segmentation, we refine the high-quality

localization maps obtained by proposed FPR with estab-

lished methods (e.g. IRN[1]) to generate pseudo segmen-

tation masks, which are subsequently used to train the seg-

mentation network [9] under the fully supervised setting.

Methods Prec. Recall Seed +CRF

CAM[63]CVPR16 61.9 72.7 49.5 54.3

+FPR (Ours) 66.7 74.7 54.3 (+4.8) 59.6 (+5.3)

SEAM[52]∗CVPR20 67.2 76.5 54.8 -

+FPR (Ours) 68.9 77.1 57.0 (+2.2) 60.8

AdvCAM[30]CVPR21 66.8 77.6 55.5 62.1

+FPR(Ours) 71.5 78.1 59.7 (+4.2) 65.5 (+3.4)

MCTformer[57]CVPR22 - - 61.7 -
+FPR(Ours) 75.0 81.0 63.8 (+2.1) 66.4

Table 1. Comparison of the quality of localization maps evalu-
ated on PASCAL VOC 2012 train set. ∗ means the reproduced

results from W-OoD.

4. Experiments
4.1. Experimental Setup

Dataset and evaluation metric. We conduct the experi-

ments on the PASCAL VOC 2012 [16] and MS COCO 2014

[40] benchmarks. VOC 2012 consists of 21 classes (i.e., 20

foreground objects plus background), following the com-

mon protocol in WSSS, the augmented training images of

10,582 images [19] and associated image-level labels are

used for training. A total of 1,464 val images and 1,449

test images with pixel-wise segmentation masks are used

for evaluation. COCO 2014 includes 81 classes (80 fore-

grounds and background), it has around 80k and 40k images

in train set and val set, respectively. The evaluation metric

is the mean Intersection-over-Union (mIoU) [41].

Implementation details. In our experiments, we adopt the

ResNet50 [20] pre-trained on ImageNet [14] as the back-

bone of the classification network with the output stride of

16, the optimizer and data augmentation are the same as

[30, 31]. For PASCAL VOC 2012, the θ in Equation 2 is

set to the default background threshold 0.1, and the number

of prototypes K described in Section 3.2.1 is set to 10. The

temperature parameter T in Equation 5, and the two loss

weight parameters of λ1 and λ2 in Equation 9 are set to 13,

12e-2, and 15e-5, respectively. For the segmentation net-

work, we leverage generated pseudo segmentation masks to

train models (DeepLab-v1 [8] with WResNet38 backbone

and Deeplab-v2 [9] with ResNet101 backbone) to achieve

final segmentation results.

4.2. Experimental Results

Quality of localization maps. Since the proposed FPR

does not modify the architecture of CAM network, it can

be seamlessly integrated into off-the-shelf methods. Ta-

ble 1 presents the VOC 2012 performance of localization

maps obtained by applying FPR to WSSS methods: base-

line CAM[1], SEAM[52], and AdvCAM [30]. We observe

that FPR brings significant improvements for all three meth-

ods. It is worth mentioning that the gain in CAM (+4.8%)

is preserved in AdvCAM (+4.2%). We argue that this gain

consistency is caused by different refinement aims: Adv-
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Figure 3. Visualization of localization maps on VOC 2012 train
set. Our FPR accurately highlights the foreground regions without

hurting the integration of objects.

Methods Ext. Backbone val test

FickleNet[29]CVPR19 Saliency ResNet101 64.9 65.3

OAA+[23]ICCV19 Saliency ResNet101 65.2 66.4

ICD[17]CVPR20 Saliency ResNet101 67.8 68.0

EDAM[55]CVPR21 Saliency ResNet101 70.9 70.6

EPS[33]CVPR21 Saliency ResNet101 71.0 71.8

CLIMS[56]CVPR22 CLIP ResNet101 70.4 70.0

W-OoD[31]CVPR22 Images WResNet38 70.7 70.1

L2G[24]CVPR22 Saliency ResNet101 72.1 71.7

IRN[1]CVPR19 - ResNet50 63.5 64.8

SEAM[52]CVPR20 - WResNet38 64.5 65.7

SCCAM[6]CVPR20 - ResNet101 66.1 65.9

BES[7]ECCV20 - ResNet101 65.7 66.6

CONTA[59]NIPS20 - ResNet101 66.1 66.7

CSE[27]ICCV21 - WResNet38 68.3 68.0

PMM[37]ICCV21 - WResNet38 68.5 69.0

ReCAM[11]CVPR22 - ResNet101 68.5 68.4

SIPE[10]CVPR22 - ResNet101 68.8 69.7

ESOL[35]NIPS22 - ResNet101 69.9 69.3

AdvCAM[30]∗CVPR21 - ResNet101 67.5 67.1

+FPR(Ours) - ResNet101 70.3 (+2.8) 70.1 (+3.0)

+FPR(Ours) - WResNet38 70.0 (+2.5) 70.6 (+3.5)

Table 2. Comparison with other state-of-the-art methods on
PASCAL VOC 2012 val and test set. Ext. means external su-

pervision. ∗ means the reproduced results from W-OoD.

CAM expands foreground regions to tackle the incomplete

issue, FPR prevents the co-occurred background from being

activated. The combination with AdvCAM builds a better

performance in a complementary way.

Figure 3 illustrates the visualization comparison with

baseline CAM, we additionally present W-OoD results

since it aims to tackle co-occurrence as well. One can ob-

serve that both W-OoD and FPR are capable of distinguish-

ing the co-occurred pairs (e.g., train and station). However,

parts of foreground object like bird bodies are suppressed

wrongly in W-OoD, while FPR accurately captures the fore-

ground without hurting the object integration.

Quality of final segmentation maps. Following the com-

mon practice [30, 31, 10], the generated high-quality lo-

calization maps are refined by IRN to get pseudo masks

for DeepLab segmentation models [8, 9] training. Table 2

presents the performance comparison on the PASCAL VOC

Methods train Backbone val

SEAM[52]CVPR20 - VGG16 31.9

CONTA[59]NIPS20 - WResNet38 32.8

CDA[47]ICCV21 - WResNet38 33.2

EPS[33]CVPR21 - VGG16 35.7

ReCAM[11]CVPR22 34.6 ResNet101 36.5

MCTformer[57]CVPR22 - WResNet38 42.0

ESOL[35]NIPS22 - ResNet101 42.6

RIB[28]NIPS21 - ResNet101 43.8

CAM[63]∗CVPR16 33.1 ResNet101 35.7

+FPR(Ours) 33.9 (+0.8) ResNet101 36.6 (+0.9)

IRN[1]∗CVPR19 42.4 ResNet101 42.0

+FPR(Ours) 44.0 (+1.6) ResNet101 43.9 (+1.9)

Table 3. Performance comparison with other methods on MS
COCO 2014 benchmark. Train is the mIoU of pseudo masks,

val is the performance of DeepLab trained with pseudo masks, ∗
means the reproduced results from ReCAM.

Methods train IoU boat IoU mIoU

CAM [63] 49.8 33.3 49.5

W-OoD [31] 61.4 41.0 53.3

AdvCAM+W-OoD∗ 65.4 41.8 58.8

CLIMS [56] 63.9 58.2 56.6

FPR(Ours) 65.1 (+15.3) 44.7 (+11.4) 54.3 (+4.8)

AdvCAM+FPR(Ours) 68.5 (+18.7) 49.0 (+15.7) 59.7 (+10.2)

Table 4. Comparison of the quality of generated localization
maps on the PASCAL VOC 2012 train set. Note that both W-

OoD and CLIMS rely on external supervision and human priors.

∗ means the reproduced results.

2012 val and test sets. We find that FPR brings signifi-

cant improvements for baseline AdvCAM (+3% mIoU on

test). In addition, such performance is competitive against

W-OoD, EPS, and CLIMS, which rely on external super-

vision to tackle the co-occurrence issue. The segmentation

results on COCO 2014 are summarized in Table 3, one can

observe that baseline CAM improves the segmentation per-

formance by integrating FPR, introducing IRN refinement

help FPR to achieve 43.9% mIoU on val set.

The visualized segmentation maps of our method as well

as baselines are presented in Figure 4. FPR shows bet-

ter localization and segmentation capability, especially for

classes burdened with co-occurrence issue. For example,

FPR is capable of filtering out waterfront backgrounds and

activating boats accurately.

Comparison with methods using external supervision.
Previous works W-OoD [31] and CLIMS [56] introduce ex-

ternal supervision to refine a manually-defined class list suf-

fering from co-occurrence. The performance comparison is

shown in Table 4. We report the train, boat, and mean IoU

of localization maps on the PASCAL VOC 2012 train set.

Our FPR outperforms W-OoD in both settings of without

and with AdvCAM. Compared to CLIMS, FPR achieves

higher mIoU when integrating with AdvCAM (59.7% vs.

56.6%), although the IoU of the boat is not satisfied, this

is mainly because the CAM, which is used as the starting
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(a) PASCAL VOC 2012 (b)  MS COCO 2014

Figure 4. Qualitative segmentation results on (a) PASCAL VOC 2012 and (b) MS COCO 2014 val sets.

point in our method, achieves only 33.3% IoU on the boat.

4.3. Diagnostic Experiment

We conduct experiments on VOC 2012 datasets to per-

form a sanity check for our method. Specifically, we pro-

vide quantitative evaluation and qualitative visualization for

two proposed losses respectively to illustrate how the co-

occurrence issue is alleviated. In addition, we present the

sensitivity analyses for parameters.

Ablation study. Table 5 presents the ablation study to eval-

uate the effect of the two proposed losses LRC and LPR

for localization maps. Besides the baseline CAM trained

with LBCE, we evaluate the performance of an intuitive idea

leveraging the false positives for comparison, i.e., we intro-

duce the focal loss [39] to improve the contribution weights

of hard negative samples. Based on Equation 1, the Focal

LBCE is defined as follows:

Focal LBCE = − 1
C

C∑
c=1

[yc · log(σ(ŷc))
+(σ(ŷc))

2 · (1− yc) · log(1− σ(ŷc))].
(10)

From Table 5, we notice that simply amplifying the loss

weights of hard negative samples (i.e., false positives) only

brings 0.6% mIoU improvement. In the proposed FPR, LRC

brings 2.9% improvement over the original CAM in mIoU

score. By combining LRC and LPR , FPR performs signifi-

cantly better than CAM (54.3% vs. 49.5%).

Qualitative visualization of LRC. LRC aims to enlarge the

distance from the foreground to its corresponding negative

prototypes in the representation space. Figure 5 uses t-SNE

[50] to visualize the prototype localization of randomly se-

lected three classes (i.e., train, boat, and horse) in repre-

sentation space. At epoch 0, class-specific positive pro-

totypes contain the pixels from backgrounds, so that they

are close to the negative prototypes, which makes the co-

occurred pairs indistinguishable from the classification net-

LBCE Focal LBCE LRC LPR mIoU

� 49.5

� 50.1

� � 52.4

� � � 54.3
Table 5. Ablation study of loss terms in FPR. The mIoU val-

ues are evaluated on PASCAL VOC 2012 train set. Proposed two

losses brings +4.8% mIoU improvements.

Epoch 0 Epoch 1

Epoch 2 Epoch 3 Epoch 4

Positive prototypes

horse

train

boat

Negative prototypes 
at Epoch 0

train

boat

horse

Figure 5. Visualization of the effectiveness of LRC with t-SNE
[50]. We present the positive prototypes of three classes of horse,

train, and boat, as well as their negative prototypes.

work. During FPR training, co-occurred pairs become dis-

tinct because the predicted representations are pulled away

from the closest negative prototype. As shown in the figure,

the new generated positive prototypes gradually move away

from the initial negative prototypes.

Qualitative visualization of LPR. To check if the negative

prototypes and pixel to be suppressed are semantically con-
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Source of negative prototypes Image CAM Pixels to be suppressed 

Figure 6. Visualization of the effectiveness of LPR for train
class. The pixels to be suppressed by LPR are colorized. Accord-

ing to their closest negative prototypes in the representation space,

the pixels are annotated with different colors.

sistent, we colorize the pixels suppressed by LPR in terms

of train class. Particularly, we list three source of negative

prototypes and use different colors for suppressed pixels to

represent the source of its closest negative prototype. As

illustrated in Figure 6, LPR is able to accurately locate the

position of the co-occurred background without hurting the

integration of foreground objects. For the three presented

negative prototypes, the last two prototypes from railroad

regions make the major contribution to excavating back-

ground, which demonstrates that only a few false positives

samples are needed to tackle the co-occurrence issue.

Parameters sensitivity analyses. We analyze the effect of

parameters λ1 and λ2 in Equation 9 on the quality of lo-

calization maps. The results on VOC 2012 train set are

summarized in Figure 7(a). We find that the mIoU of local-

ization maps are relatively stable across different λ1 when

λ2 = 15e−5. We select the parameter values λ1 = 12e−2

and λ2 = 15e−5 as default setting.

We then study the impact of parameter K on the local-

ization maps. As shown in Figure 7(b), when K = 10,

FPR achieves the best performance with 54.3% mIoU. As

K increases from 10 to 50, the performance slightly degen-

erates to 53.8% mIoU. Interestingly, FPR shows a consid-

erable promotion (+3.6% mIoU) even with K = 1, which

demonstrates that our approach is insensitive to the number

of prototypes.

Quantitative analyses on false positives. To validate the

ability of FPR to suppress the activation of false positives,

we present three quantitative comparisons between CAM

baseline and FPR on VOC train set to demonstrate false

positives reduction. (1) BCE loss: (CAM: 0.0300 vs. FPR:

0.0248); (2) Average predicted probability of absent classes,

i.e.,
∑C

c=1(1−yc)σ(ŷc)∑C
c=1(1−yc)

: (CAM: 0.0120 vs. FPR: 0.0086); (3)

The False Discovery Rate, i.e., FP/(TP+FP) for 20 classes

λ2 λ1(e
−2)

(e−5) 10 12 15 17 20

10 53.3±0.3 53.6±0.2 53.8±0.4 54.2±0.3 54.1±0.6

15 53.4±0.4 54.3±0.3 54.3±0.2 54.5±0.5 54.2±0.6

20 53.2±0.5 53.3±0.5 53.6±0.6 53.8±0.6 53.4±0.4

(a) Results with different values of λ1 and λ2.

(b) Results with different numbers of prototypes K.
Figure 7. The effect of (a) loss weight parameters and (b) num-
ber of prototypes K on PASCAL VOC 2012 train set. The FPR

performance is relatively stable with variations of parameters.

are shown in Figure 8. One can observe that FPR signifi-

cantly decreases the false positives occurred in CAM based

on numerical comparison results.

Figure 8. The False Discovery Rate (FDR) comparison of CAM
and FPR on PASCAL VOC 2012 train set.

4.4. Discussion and Limitation

Discussion. Our method provides an effective way to tackle

the co-occurrence issue by adequately exploiting the inter-

nal cues of false positives. Instead of only refining some

specific classes as in W-OoD [31] and CLIMS [56], our pro-

posed FPR applies the proposed losses to all classes equally.

Interestingly, FPR could benefit most classes even those

classes that do not struggle with co-occurrence issue, 19

out of 20 classes on VOC 2012 get performance improve-

ment (please refer to supplemental materials). We sus-

pect that this is because the negative prototypes are usually

close to the decision boundary in representation space, i.e.,

most negative prototypes are in the figure center as shown

in Figure 5. Applying LRC to push the predicted represen-

tations away from the decision boundary can prevent am-

biguous outputs from the network. Such an optimization

strategy is applicable to all classes.

Limitation. We noticed that both in PASCAL VOC 2012

and MS COCO 2014 datasets, a small number of the clas-

sification labels are incorrect, which hurt the FPR perfor-
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mance. Consider the following case, an appeared class is

mistakenly labeled as absent, the representation of which

may be taken as the negative prototype. At the training

phase, pulling away prototypes belonging to the same se-

mantic category with two proposed losses is meaningless

and misguides the FPR learning. We believe that if all

wrong classification labels are revised, the effectiveness of

FPR will be further improved.

5. Conclusion
In this paper, we focused on the co-occurrence issue in-

herited in weakly supervised semantic segmentation. In-

spired by the fact that the false positives of CAM contain

class-specific co-occurred background cues, we proposed

an FPR approach to leverage representations of false pos-

itives as guidance for CAM network training. We first

collected the representations of CAM-activated regions to

build class-specific positive and negative prototypes, which

were then utilized to calculate region-level contrast loss and

pixel-level rectification loss for network learning. Differ-

ent from previous methods such as EPS [33], W-OoD [31]

and CLIMS [56], which introduced external supervision to

tackle the co-occurrence problem, our proposed FPR fully

exploited the dataset internal information. Experiments

on PASCAL VOC 2012 and MS COCO 2014 benchmarks

demonstrated that FPR achieved competitive performance

with the aforementioned methods, and outperformed other

WSSS methods using only image-level labels.
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