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Figure 1: Overview of our vector font generation results. Our approach reconstructs font shapes with sharper corners and
more compact contours while enabling smooth interpolation between different font styles.

Abstract

Existing vector font generation approaches either strug-
gle to preserve high-frequency corner details of the glyph or
produce vector shapes that have redundant segments, which
hinders their applications in practical scenarios. In this pa-
per, we propose to learn vector fonts from pixelated font im-
ages utilizing a joint neural representation that consists of a
signed distance field (SDF) and a probabilistic corner field
(CF) to capture shape corner details. To achieve smooth
shape interpolation on the learned shape manifold, we es-
tablish connections between the two fields for better align-
ment. We further design a vectorization process to extract
high-quality and compact vector fonts from our joint neural
representation. Experiments demonstrate that our method
can generate more visually appealing vector fonts with a
higher level of compactness compared to existing alterna-
tives.

1. Introduction

The automatic generation of stylized fonts has important
applications in art and design. The vector font is preferred
to the pixelated font image by virtue of its scalability in
rendering and compactness in storage and therefore has be-
come mainstream.

Existing vector font generation methods either directly
work on the vector format [3, 25, 34], or perform vector-
ization on the generated pixelated font image [26]. The
former mainly represents a glyph shape as a sequence of
Scalable Vector Graphic (SVG) drawing commands and
learns to generate such sequences by ground truth vector
supervision or utilizing a differentiable vector shape ren-
derer [15]. Despite the ability of this representation for
capturing fine shape details, these methods suffer from the
ambiguity brought by the nature of the many-to-one map-
ping from the drawing commands to the rendered shape, in
which case different drawing commands could produce the
same-looking shape. This ambiguity often leads to redun-
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dant segments in the generated sequence, degrading shape
quality. The latter stream benefits from coordinate-based
neural implicit fields that emerged in recent years [4, 21],
and tends to produce higher-quality overall shape. How-
ever, the inherent smoothness of the network output with
respect to the input coordinates hinders these methods from
accurately modeling high-frequency geometric details like
the corners.

Based on the above observations, in this paper, we aim
to present an implicit neural representation of fonts that
can both model geometric details and be used to synthe-
size high-quality vector fonts. Our intuition is to enhance
existing implicit neural representations with explicit mod-
eling of corner positions and design a procedure to convert
this representation to vector primitives. More specifically,
we model the overall glyph shape using a 2D signed dis-
tance field (SDF), and model a probabilistic corner field
(CF) to indicate the probability of each position being a
corner point. We learn a latent space of the proposed repre-
sentation on a large number of fonts using their pixelated
images and ground truth corner positions as supervision.
To achieve smoothness interpolation in the latent space, we
build correspondences of the two fields by a novel signed
distance flow loss. Converting this joint implicit neural rep-
resentation to vector fonts is not trivial, as we need to in-
tegrate the corners into the base shapes without bringing
artifacts. To achieve this, we take inspiration from the dual
contouring algorithm [13] to locate the coordinates of cor-
ners from CF, and obtain a compact vector shape via incre-
mental curve fitting. We compare our method with existing
vector font/shape synthesis methods and demonstrate that
our proposed representation can achieve higher quality in
the font reconstruction and interpolation task, while being
able to generate compact vector output.

In summary, our contributions are as follows:

• A joint neural implicit representation for fonts that
combines a signed distance field (SDF) and a proba-
bilistic corner field (CF) to capture corner details of
glyph shapes better.

• A customized vectorization process to convert the joint
representation to compact vector fonts.

• State-of-the-art quality on font reconstruction and in-
terpolation task both qualitatively and quantitatively.

2. Related work
2.1. Pixel Font Synthesis

Many works on font synthesis adopted Generative Ad-
versarial Network (GAN) [8] to generate diverse stylish
character [31, 35]. Also, there are some other encoder-
decoder-based approaches that are able to output high-
quality calligraphy [12, 37, 11]. And a few works conducted

few-shot learning to perform style transfer [2, 7, 24]. De-
spite the strength of GAN, it usually suffers from unstable
training [27] and mode collapse [30], so finding an efficient
and stable solution for generative task counts for diversely
stylish glyph generation. Other than GAN, the representa-
tion based on SDF [16, 17, 36] leverages the power of im-
plicit field also reaches competitive results in multiple tasks.

2.2. Vector Font Synthesis

In many cases, fonts are stored in vector representations,
which are scalable and require much less storage space than
pixmaps, so a lot of work is also aimed at generating vector
representations. By vectorizing pixmaps, Im2Vec [25] al-
lows converting pixel fonts to vector fonts, while LIVE [20]
converts more complex images to SVG images with better
preservation of image detail and topology structures. SVG-
VAE [18] sequential autoencoder architecture that extracts
SVG commands to reconstruct fonts. DeepSVG [3] uti-
lizes the power of the transformer to obtain these SVG com-
mands. DeepVecFont [34] introduces multi-modal learning
based on the structure of SVG-VAE, and refine the SVG on
the pixel image to obtain more accurate reconstruction re-
sult. Reddy et al. [26] presents a multi-curve implicit repre-
sentation to reproduce sharp corners. DualVector [17] em-
ploys unsupervised learning to acquire font shape through
multiple implicit dual components, subsequently refining
these components on a learned pixelated image to achieve a
concise vector contour. VecFontSDF [36] adopts parabolic
shape primitives, with a more precise SDF supervision sig-
nal, and achieves high reconstruction and synthesis qual-
ity. In addition, DiffVG [15] makes vector curves differ-
entiable, establishing relationships between vector graph-
ics and bitmaps, which allows them to be optimized by the
network and gradually become a theoretical foundation of
many vector shape generation works.

2.3. Neural Implicit Representation

Implicit neural representation (INR) yield appealing
result in view synthesis such as Neural Radiance Field
(NeRF) [22] and shape representation like Distance
Field [23, 5] and Occupancy Field [21]. NeuS [32] com-
bines the previous two, estimates the object’s geometry
through volume rendering, and can restore the object’s sur-
face texture. Compared with convolution, implicit repre-
sentation has better position representation and interpola-
tion properties [4]. By encoding the coordinates instead of
pixel value, it would mitigate the texture sticking [14]. For a
Signed Distance Field (SDF) representation, it’s easy to ex-
tract its contour or surface via marching cube [19], march-
ing tetrahedra[28] or dual contouring [13].

In our work, we represent the font by two implicit fields,
SDF and CF, with HyperNetworks. The SDF part will use
RELU as the activation function, and CF will use sine as
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Figure 2: Network architecture and vectorization process of our proposed method. For any vector shape, the network inputs
the latent code of its font and glyph and outputs the SDF and CF values of the corresponding pixel coordinates. Then we
extract the contour of the shape by the zero-level set of SDF, the position of the corners by the peak of CF, and finally,
combine these results to generate vector fonts by our rendering method.

activation and be initialized as proposed in [29].

3. Method
In this section, we will introduce a joint implicit repre-

sentation consisting of two neural fields: a signed distance
field (SDF) and a corner field (CF) for fonts. In sec.Sec. 3.1
and Sec. 3.2, we train two neural networks, namely the SDF
network and the CF network, to represent our fonts. The
SDF network takes the coordinate of pixels p, an integer
Iglyph ∈ [0, Nchar) and an integer Istyle ∈ [0, Nfont) as inputs,
and outputs the SDF value of the corresponding font, where
Nchar = 52 is the number of characters from A-z, and Nfont
is the number of font style groups in training data. On the
other hand, the CF network takes p, Iglyph, and Istyle as in-
puts. It outputs the CF value and an auxiliary SDF value
dubbed as SDFlow. These two networks are trained inde-
pendently with different training objectives, LSDF and LCF.

Then we align the glyph shapes implied by the two fields
in Sec. 3.3 and finally we describe a vectorization process
to extract high-quality vector fonts in Sec. 3.4. We disen-
tangle the latent representation for each glyph to the font-
style-related and the character-structure-related codes. So
we associate each glyph with four learn-able latent codes,
αSDF, βSDF, αCF, βCF, in which αSDF ∈ RD1 , αCF ∈ RD3 is
for font styles and βSDF ∈ RD2 , βCF ∈ RD4 is for charac-
ter structures. These codes can be retrieved by selecting the
Istyle-th and Iglyph-th vectors from the respective codebook
utilized in the neural networks.

3.1. Signed Distance Field

In this part, we use an SDF to represent the corner-free
shape of the glyph. To increase the model capacity, we

adopt two HyperNetworks [10, 6], ΨS , ψS to consume the
latent codes αSDF, βSDF and produce the parameters of the
SDF network ΦS . More specifically, the parameters of this
SDF network θ are the element-wise sum of the outputs of
the two HyperNetworks:

θ = ΨS(αSDF) + ψS(βSDF) (1)

where ΨS : RD1 → Rm, ψS : RD2 → Rm and m is the
number of the parameters of the SDF network. In our im-
plementation, ΦS takes the query coordinate p as the in-
put and predicts the signed distance value at p, following
a ReLU-activated MLP architecture. We adopt L1 loss for
SDF reconstruction:

LSDF = ∥s̄− ΦS(p; θ)∥1 (2)

where s̄ is the ground truth SDF value at coordinate p. The
hyper-network-based approach usually learns a better latent
space than directly predicting the signed distance condi-
tioned on a latent code with an MLP with fixed parameters
and is experimentally proved to have finer fitting results.

Since the ground truth normal value n̄ could be easily
obtained by parametric curves (i.e. Bézier curves or lines),
we can apply the contour constraint loss to supervise the
normal, i.e. the derivatives of the SDF values with respect
to the input coordinates, for a better contour:

LNormal = 1− ⟨∇pΦS(p; θ), n̄⟩ (3)

where ∇ is the spatial gradient of SDF, and ⟨·, ·⟩ denote the
cosine similarity of two vectors. Like many other works
using implicit SDFs [9, 1], we also use Eikonal loss to con-
strain the correctness of the SDF:

LEikonal = |∥∇pΦS(p; θ)∥2 − 1| (4)
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Figure 3: Vectorization process. First, we find the peaks from the corner point field as possible corner positions, then we find
the nearest points to each peak on the contour contour points (zero-level set) obtained by SDF, and use these points to split
the contour. Each set (including the first two corner points and a section of contour points) is vectorized by curve fitting, and
the beginning and end control points of the vector curve are ensured to be on the corner points. Finally, the vector font is
obtained by combining these vector curves.

In summary, the SDF network is trained with the follow-
ing objective:

LSDF = λSDFLSDF + λNormalLNormal + λEikonalLEikonal (5)

where λ∗’s are the balancing weights for different loss
terms.

3.2. Corner Field

Because SDF struggles to model high-frequency details
such as corners, which are decisive in terms of the visual
quality and usability of fonts, we introduce another implicit
field called Corner Field (CF). Generally, it is difficult to en-
code extremely sparse information in the network, such as a
binary image with only a few pixels in white. So for a cor-
ner, it can’t only have a value of 1 in its position and a value
of 0 in other places. Therefore, we choose to set the corner
field as a probability field, like the Gaussian Distribution in
DARK [38]. It intuitively reflects the probability that a cor-
ner point exists in the neighborhood of a query point p. But
different from DARK, which separates each joint part and
represents it independently, we model all corners in a single
field with the target CF defined as:

c̄(p) = max
i

exp

(
−∥p− ci∥22

ξ2

)
(6)

where ξ controls the range of the probability field, ci is the
position of the i-th corner of this glyph. It is necessary to
adopt this global representation because the number of cor-
ners of each glyph is not fixed, some characters may have as
many corners as much more than 20, and some glyphs may
even have no corner, in this case, c(p) = 0.

Similar to SDF, we adopt another two HyperNetworks
ΨC , ψC to form the parameters of the CF network ΦC .

ω = ΨC(αCF) + ψC(βCF) (7)

where ΨC : RD3 → Rl, ψC : RD4 → Rl and l is the
number of the parameters of the CF network. ΦC is a sine-
activated [29] MLP that consumes the query coordinate p
and produces the corner field value c at p along with an
auxiliary signed distance value s′:

c, s′ = ΦC(p;ω) (8)

We will discuss s′ later in Sec. 3.3.
Since CF uses a probabilistic representation, we use the

binary cross-entropy loss as our reconstruction loss:

LCF = BCE(ΦC(p;ω).c, c̄) (9)

In addition, the output of our networks is a field, which
means we need a mechanism for locating the corners. By
Eq. (6) we know that the extrema of the field are corners.
Visually, we could tell corners are located in the middle of
the field, or in other words, the peak of the field. So we
propose the peak loss for peak enhancement:

LPeak = c̄(p)2LCF (10)

In summary, the CF network is trained with the following
objective:

LCF = λCFLCF + λPeakLPeak + λSDFlowLSDFlow (11)

where λ∗’s represent the balancing weights for different loss
terms, and LSDFlow serves as an additional supervision of
SDF value at each p. This supervision is crucial for interpo-
lation and will be further explored and discussed in Sec. 3.3.

3.3. Alignment of SDF and CF

Our final goal is not only to reconstruct the glyph but
also to find a good latent space for interpolation. Naturally,
SDF bears an interpolation property because the change of

5541



the SDF value at the queried coordinate describes exactly
the movement of the glyph contour while the CF is not nec-
essarily of this nature. Therefore, we add an auxiliary SDF
supervision to the CF network to constrain the network pa-
rameters:

LSDFlow = ∥s̄− ΦC(p).s
′∥1 (12)

where s̄ is the ground truth SDF value at p. For the last
linear layer of ΦC , we have:

s′ =Wsh

c = σ(Wch)
(13)

where σ(·) is the sigmoid function, Wc,Ws is the weights
related to output c and s respectively of the last layer of ΦC ,
and h is the hidden output of the penultimate layer network.
We expect to relate changes in s′ and c in this way, and in
Fig. 4, we also demonstrate the validity of the alignment.
During interpolation, the CF without LSDFlow suffers from
peaks vanishing in intermediate results, and those peaks
would emerge in the final results, while CF with LSDFlow
would provide a rational peak transfer corresponding to the
glyph shape.

w SDFlow

w/o SDFlow

Figure 4: Interpolation w, w/o LSDFlow, corresponding cor-
ner in fonts where make differences on CF are marked with
circles.

3.4. Vectorization Process

To generate vector graphics that are scalable, such as
SVG or TTF format fonts, we do not stop at the joint rep-
resentation but will continue to produce functional vector
fonts from the two implicit fields.

Extract contour points. The first step of vectorization
is to transfer the zero-level set obtained by SDF into an or-
dered point set on the glyph contour. We start by converting

L1

L2

p’

p’’

n’

n’’
CF’s peak

acquired corner

Nearest point 
on surface

Figure 5: Locate the corner from CF by dual contouring.

the field into a binary pixel image I that:

I(p) =

{
0, ΦS(p/R) ≥ 0

1, ΦS(p/R) < 0
(14)

where p = (x, y) ∈ {1, 2, ..., R}2 is the pixel coordinate on
the image, R is the resolution of the image to be rendered,
then we perform the following edge detection:

M = (1− I) · (I ⊗ 1) (15)

where ⊗ is convolution operator and 1 is a 3×3 convolution
kernel matrix filled with 1. p(x, y) is on the contour if and
only if M(x, y) = 1. We will then locate the corner points.
And finally, we use incremental curve fitting to vectorize
the glyph given the contour points and corner points.

Locate corners with Dual Contouring. After extracting
the ordered points on the contour from SDF, we need to
determine the position of corners from CF, which usually
served as the start and end control points of a path. In CF,
each peak corresponds to a surrounding corner. Since CF
is a probabilistic representation, the expected corner point
does not coincide exactly with the peak. So when we find
the peak, we need to locate a corner in its neighborhood.
Similar to dual contouring [13], we choose the tangent inter-
section of two points on the contour near the peak as the cor-
ner. When we find the point closest to the peak, we should
find two tangent lines on both sides of it, as shown in Fig. 5.
We identify these two lines, L1 and L2, by the following
method:

L1 =

n∑
i=0

Cλ(k)p
′
i + t(

n∑
i=0

Cλ(k)n
′
i)⊥

L2 =

n∑
i=0

Cλ(k)p
′′
i + t(

n∑
i=0

Cλ(k)n
′′
i )⊥

(16)

where p′,p′′ are pixel coordinates in both sides of the con-
tour point nearest to the corner, ordered from near to far,
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n′,n′′ are corresponding contour normal vectors on p′,p′′,
and (·)⊥ denotes the vector perpendicular to the vector in-
side. The Cλ(k) above is defined by:

Cλ(k) =
e−λλk

k!
/

n∑
i=0

e−λλi

i!
(17)

which is actually a normalized coefficient of Possion dis-
tribution. Since the points near the corner points will have
smooth outputs in the network, we should intuitively care
about the coordinates and tangents of the points a little far-
ther away from the corner points, while we do not care about
the points further away either, and the Poisson distribution
fits this data distribution modality. So we adopt the Poisson
distribution to weigh the coordinates and tangent vectors of
the contour points near the corner point to form the tangent
lines. The final corner is the intersection of L1 and L2.

Incremental Curve Fitting. After obtaining the cor-
ners and contour, we split them into multiple sets of
{cs, ce, {pi}}, as shown in Fig. 3. For any {cs, ce, {pi}},
we need to find several curves or lines as a path that takes
cs as the start control point, and ce as the end control point,
and minimize the fitting error of {pi}, i = 0, ..., n.

From the first point of {pi}, we maintain a set S = ∅
initially, constantly adding the point into S. Initially, we
take the p0 as the start control point of the splines we want
to fit. Progressively, each time we add the temporary pi in,
we consider it to be the end control point of the straight line
L we want to fit, and we calculate the maximum error of
the distance from the point in S to the line. If it exceeds a
threshold lmin, there are two different cases according to the
length of the line:

1. If ∥L∥2 ≥ lmin, record L, empty S, and fit the next
spline.

2. If ∥L∥2 < lmin, we consider the points in S are on a
quadratic Beziér curve Q, and start fitting this curve.

For the quadratic Bézier curve, since we have determined
the start and end control points, the only thing left to do
is to determine the second control point. In addition, we
know that there are no corners between cs and ce, so the
splines we fit must be smoothly connected. We utilize the
good property of the Bézier curve that its tangent on the
start or end point is in the same direction as the connection
between it and the adjacent control point. Thereby, we just
need to find the second control point along the tangent di-
rection of the control point at the end of the previous curve,
and here we can use linear searching (for example, place
the second control point at small intervals from the starting
point, then calculate the error, and finally take the position
with the smallest error as the position of the second control

point), or more efficiently, binary search. The detail is de-
scribed in the supplementary material. Finally, we add cs
and ce to the spline curve as the start and end points.

4. Experiments

In this section, we conduct experiments on the font
shape reconstruction and interpolation task in Sec. 4.1 and
Sec. 4.2. We first compare with several related meth-
ods, including Im2Vec [25], Multi-Implicit [26], DeepVec-
Font [34] and Attr2Font [33]. Im2Vec is a vector shape
generation method that learns from pixelated images. Deep-
VecFont and Multi-Implicit are state-of-the-art vector font
synthesis methods. DeepVecFont directly learns draw-
ing command sequences while Multi-Implicit models font
shape with implicit neural fields and utilizes an isosurface
extraction method to get vector outputs. Attr2Font is a font
generation method that works on the image domain. We
perform the quantitative comparison on L1, SSIM, and s-
mIoU, and also show qualitative comparison results. We
demonstrate the compactness of our generated vector font
in Sec. 4.3 and perform ablation studies to evaluate the ef-
fectiveness of some key design choices in Sec. 4.4. We
used the test set data from DeepVecFont [34] to train all the
methods for fair comparisons. It contains 1425 fonts, each
having 52 glyphs from A to z.

4.1. Reconstruction

We tested the reconstruction accuracy of each method at
different resolutions with L1 error, Structural Similarity In-
dex (SSIM), and soft mean Intersection of Union (s-mIoU).
The ground truth data was rasterized from the vector paths,
and we translated each letter so that they were centered on
the image. We did not perform the centering for DeepVec-
Font and instead used its own data preprocessing procedure.

As shown in Tab. 1, our model outperforms other meth-
ods, which demonstrates that our proposed representation
has enough capacity to model these shapes. Without CF,
details of font shapes will be missing and corners are over-
smoothed. This is more clearly illustrated in Fig. 1 (Sharper
Corner) rather than the table, where CF promotes extra de-
tails for complex shapes. Fig. 9 demonstrates some recon-
struction results in the dataset.

4.2. Interpolation

Interpolation between existing fonts is an important
means of generating new fonts. Although there are vari-
ous possibilities for the interpolation between any two font
styles, our ultimate goal is to make the interpolation re-
sult match the font distribution as closely as possible as is
mentioned in Multi-Implicit [26]. We sample 1000 fonts
from the dataset, group them into 500 pairs, and interpolate
between fonts in each pair with an interpolation factor of
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Methods L1↓ SSIM↑ s-mIoU↑
Ours .0140/.0136/.135 .9672/.9682/.9657 .9264/.9272/.9299

Ours w/o CF .0160/.0153/.0154 .9610/.9631/.9581 .9194/.9219/.9238
Im2Vec .0332/.0341/.0339 .9055/.9172/.9003 .8657/.8475/.8254

DeepVecFont .0418/.0419/.0419 .8509/.8515/.8451 .7310/.7303/.7317
Multi-Implicit .0408/.0401/.0402 .8853/.8880/.8875 .8161/.8192/.8187

Attr2Font .1057/.1066/.1064 .7143/.7186/.7183 .6075/.6042/.6046

Table 1: Reconstruction results in different resolutions (1282/2562/5122).

Methods L1↓ SSIM↑ s-mIoU↑
Ours .0485/.0489/.0488 .8804/.8800/.8775 .8106/.8095/.8103

Im2Vec .0649/.0658/.0658 .8203/.8186/.8158 .7250/.7222/.7230
DeepVecFont .0454/.0456/.0456 .8466/.8464/.8408 .7217/.7205/.7217
Multi-Implicit .0710/.0711/.0711 .8230/.8236/.8234 .7476/.7479/.7478

Attr2Font .0514/.0528/.0527 .8796/.8829/.8826 .8023/.7950/.7958

Table 2: Interpolation results ifferent resolutions (1282/2562/5122).

(a) (b) (c)

(d) (e)

(f) (g) (h)

Figure 6: Multiple correspondences of corner field transfer.

0.5. For each interpolation result, we find the correspond-
ing fonts with the smallest L1 and largest SSIM and s-mIoU
respectively from the original dataset as the pseudo ground
truth to compute the final metrics. As indicated in Tab. 2,
our method achieves overall the best performance among all
competitors. In Fig. 7 we show that our method preserves
the sharp corners well during interpolation.

It is worth mentioning that since we adopt an auto-
decoder architecture, the latent codes for each font are
retrieved by optimization on frozen network parameters.
However, fitting the latent code for our corner field repre-
sentation brings ambiguity, as shown in Fig. 6: There are
two ways to transfer the corner field from (d) to (e), from
the (a) to (c) or from the (f) to (h). The CF in (a) and (f)

Interpolation

Ours

Multi-Implicit

Im2Vec

DeepVecFont

Figure 7: Corner preservation in interpolation: For the two
fonts to be interpolated, the intermediate interpolation font
should have corners consistently in the parts they have cor-
ners.

share different latent codes while their CF looks the same.
Therefore, like Im2Vec, we generate different font shapes
by interpolation.

Despite these limitations, the SDF network demonstrates
capability in few-shot style transfer and shape completion
tasks. By freezing the network parameters, we optimize
a style code using the SDF value derived from the target
shape, in conjunction with the glyph code supplied by the
pre-trained model as the HyperNetworks’ input. Detailed
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information and corresponding results will be presented in
the supplementary material.

Methods M L Q C CMDs CPs
Ours 1.40 12.01 18.83 0 32.25 51.08

DeepVecFont 1.43 9.10 0 12.21 22.75 47.17
Im2Vec c 0 0 20c 21c 61c

Multi-Implicit 5.68 1681 0 0 1686 1686
Human-Designed 1.43 9.04 0 9.56 20.03 39.17

Table 3: Number of Commands (CMDs) and Control Points
(CPs). c is the color parameter in Im2Vec, and we adopt
c = 1 with only black color in experiment.

Target Contour Target Contour

Multi-Implicit

DeepVecFont

Im2Vec

Ours

Figure 8: The comparison of compactness of different
methods, our method uses a small number of curves and
there is no redundancy and crossover between curves.

4.3. Compactness of Vector

Although several methods involved in the comparison
can generate vector fonts, there are significant differences
in the way they are generated. What these methods have in
common is that they all generate a series of path sequences
(includes path consisting of M, L, Q, and C commands in
SVG, where M and L have 1 control point, Q has 2 and C
has 3 control points), but the number of the commands of
these sequences is different, as shown in the Tab. 3. Differ-
ent methods generate vector fonts that have different num-
bers of path commands (CMDs) and control points (CPs). It
can be seen that DeepVecFont and Im2Vec have advantages
in these two aspects, but they sometimes introduce wrong
structures, as shown in Fig. 8 (red box), while the method
of vectorizing zero level set with an implicit representation
does not have these problems and has a tight surface. On top

of that, our method has a comparable number of commands
and path points as DeepVecFont and Im2Vec, resulting in
more compactness.

4.4. Ablation study

In this section, we first conduct ablation studies on the
loss function proposed in the Corner Field, then we train
several models of SDF Net with or without HyperNetworks
to verify its importance.

Level 0.3 0.5 0.7 0.9
w/o LPeak 1.183 .6832 .6833 .6832
w LPeak 1.109 .5806 .5877 .5877

Table 4: Error of the number of corners between network
outputs w, w/o LPeak and GT.

Peak Constraint. When two corners are too close, the
peaks of the corner field obtained by the network may stick
together, resulting in the existence of only one peak. Tab. 4
shows the L1 error between the corner number of ground
truth and network output with or without the peak loss. The
level represents that when the value of a pixel (probability
between 0∼1) is greater than its 8 neighbor pixels, as well
as greater than a threshold equal to that level, it’ll be treated
as a corner, otherwise not. We use a default level of 0.5
in our reconstruction and interpolation experiments. It can
be seen that when training without peak loss, the disparity
between the number of output corners and the number of
ground truth corners will significantly increase.

SDF Constraint. The signed distance flow can be used to
constrain the interpolation results of the corner field so as
to obtain a reasonable latent space of the corner field cor-
responding to the SDF results because we lack the ground
truth for intermediate results. Because of this, we need met-
rics other than L1 or SSIM to measure the quality of the in-
terpolation results with or without the signed distance flow.
In most situations, the shape transfer would lead to a cor-
ner transfer from (a)-(c) rather than (f)-(h) in Fig. 6, such
as the example in Fig. 4. Therefore, we apply the chamfer
distance between interpolated corners CI and the corners to
interpolate C0 and C1 to measure their divergence, which
we expect to be a relatively large value:

Div(↑) = 1

∥cI∥
min(

cI∑
i=0

c0
min
j=0

(∥CI [i]− C0[j]∥),

cI∑
i=0

c1
min
j=0

(∥CI [i]− C1[j]∥))
(18)

where c0, c1, cI is the number of corners in C0, C1, CI , and
Cx[y] denote the y-th corner in Cx. Results shows a to-
tal Div = 971.7 without LSDFlow and Div = 988.6 with
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Figure 9: Different methods comparison on several reconstructed fonts. The cyan box marks the starting glyph of each font
style.

LSDFlow, which demonstrates the effectiveness of the SDF
constraint in interpolation.

HN L/F IN L/F L1(↓) SSIM(↑) s-mIoU(↑)
4/384 5/256 .0154 .9581 .9238
4/384 3/256 .0210 .9437 .9030
3/384 5/256 .0151 .9594 .9264
4/256 5/256 .0177 .9432 .8972

- 5/256 .0455 .8620 .7892
- 5/384 .0354 .8924 .8287
- 8/256 .0408 .8843 .8206
- 8/384 .0277 .9175 .8634

Table 5: Results on different network configuration w and
w/o HyperNetworks(HN).

HyperNetworks. To establish the indispensability of Hy-
perNetworks (HN), we conducted training on multiple SDF
networks, both with and without the implementation of HN.
Among them, four models incorporate HN while the other
four models exclude it. The latter groups of models without
HN utilized the concatenation of αS , βS , and coordinate
p as input, bypassing the adoption of HyperNetworks for
parameter prediction and instead directly training the SDF
Net.

Tab. 5 shows these results on the reconstruction of Hy-
perNetworks, under the 5122 resolution. HN refers to the
HyperNetworks ΨS and ϕS , while IN denotes the SDF Net
ΦS . L/F denotes the number of layers/feature dimensions
of the MLP in HN and IN. The first group denotes the de-
fault configuration we adopt in the Sec. 4.1 and Sec. 4.2.

The results demonstrate that HyperNetworks significantly
enhances the accuracy of font representation. In terms of
training efficiency, the 6th group (the 2nd group w/o HN)
has a similar training duration as the first one, while its
performance is much inferior to the one that has Hyper-
Networks. Furthermore, the last group requires more than
half of the additional training overhead compared to the
first group, yet there is still a discernible performance gap
between them. However, the comparison between the 1st
and the 3rd groups reveals that augmenting the network pa-
rameters does not consistently contribute to reconstruction.
Thus, there’s ample room for improvement in the archi-
tecture design of HyperNetworks. Detailed illustrations of
more network architecture designs will be provided in the
supplementary materials.

5. Conclusion

We present a novel font representation for improved
shape details. It consists of a signed distance field (SDF)
and a probabilistic corner field (CF) that models the number
and positions of the corners. Based on the proposed repre-
sentation, we propose a vectorization procedure to combine
the SDF and CF to generate high-quality vector fonts with
compact contours. We hope our work can inspire new direc-
tions for integrating high-frequency details in areas like 3D
shape modeling and generation. The biggest limitation of
this work is that it cannot randomly sample a group of cor-
responding SDF and CF from the networks, which could
be solved by a more powerful encoder mixing the modal of
two fields and embedding them into the same latent space.
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