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Abstract

Pseudo-Labeling (PL) is a critical approach in semi-
supervised 3D object detection (SSOD). In PL, delicately
selected pseudo-labels, generated by the teacher model,
are provided for the student model to supervise the semi-
supervised detection framework. However, such a paradigm
may introduce misclassified labels or loose localized box
predictions, resulting in a sub-optimal solution of detec-
tion performance. In this paper, we take PL from a noisy
learning perspective: instead of directly applying vanilla
pseudo-labels, we design a noise-resistant instance super-
vision module for better generalization. Specifically, we
soften the classification targets by considering both the
quality of pseudo labels and the network learning ability,
and convert the regression task into a probabilistic mod-
eling problem. Besides, considering that self-supervised
learning works in the absence of labels, we incorporate
dense pixel-wise feature consistency constraints to elim-
inate the negative impact of noisy labels. To this end,
we propose NoiseDet, a simple yet effective framework
for semi-supervised 3D object detection. Extensive ex-
periments on competitive ONCE and Waymo benchmarks
demonstrate that our method outperforms current semi-
supervised approaches by a large margin. Notably, our
NoiseDet achieves state-of-the-art performance under var-
ious dataset scales on ONCE dataset. For example,
NoiseDet improves its NoiseyStudent baseline from 55.5
mAP to 58.0 mAP, and further reaches 60.2 mAP with en-
hanced pseudo-label generation. Code will be available at
https://github.com/zehuichen123/NoiseDet.

1. Introduction
3D object detection, aiming at detecting instances in the

3D space, is of great importance in various applications.
Thanks to the large amount of labeled data, it has achieved
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Figure 1. The noisy predictions generated by a well-trained 3D ob-
ject detector. Despite carefully tuning the model and filtering low-
confidence score predictions, there are still low-quality bounding
boxes left. Directly enforcing the detector to learn from such noisy
data on an unlabeled dataset can mislead the model convergence
or even deteriorate its performance. In the top figure, we demon-
strate an inaccurate heading regression case, and the bottom case
shows a false positive prediction. We distinguish the ground truth
and model predictions with green and blue, respectively.

great success in the past few years [37, 29, 9, 56, 10, 11].
However, labeling a large-scale dataset is extremely time-
consuming and labor-intensive [40]. This issue gets much
more severe in the 3D object detection task, where 7 degree-
of-freedom parameters need to be determined as well as the
categorical labels. Therefore, how to further boost the su-
pervised detectors with limited labeled datasets remains a
practical and urgent problem.

Semi-supervised object detection (SSOD) demonstrates
great prospects recently due to its simplicity and weak de-
pendence on costly annotations [46, 20, 39]. By lever-
aging easily accessible unlabeled data, SSOD approaches
enhance the model performance with little human effort
[47, 43, 51, 25]. The strategies of current SSOD can be
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categorized into two main streamlines: Mean-Teacher [41]
and Pseudo-Labeling [24]. Mean-Teacher adopts a teacher-
student paradigm, where the teacher is initialized from the
student model via Exponential Moving Average (EMA) to
produce supervised signals on the unlabeled data in an end-
to-end training fashion. Inspired by this, more advanced
ways, including SESS [55], NoisyStudent [45], are built
upon the teacher-student paradigm and achieve significant
improvements. Despite the superior performance and ele-
gant pipeline, they are not model-agnostic (i.e. the teacher
and student should be the same model) and miss the chance
to pursing high-quality pseudo labels, such as off-board la-
bel generation [35]. Another line of work is pseudo la-
beling [53, 36]: the model is first trained on labeled data
and then generated pseudo labels on the unlabeled data for
later training. Different from MT, it can be easily applied to
any detector without adapting the framework to the teacher-
student paradigm. These multi-stage approaches obtain rea-
sonably good results, however, the final performance is of-
ten impeded by the quality of pseudo labels. To address
this issue, 3DIoUMatch [42] proposes to estimate the lo-
calization accuracy predicted by the network and utilizes it
as a metric to guide the label generation. ProficientTeacher
[51] introduces a clustering-based box voting module to fil-
ter low-quality predictions without introducing any hand-
crafted rule. Although the accuracy of pseudo labels gets
greatly improved, it may still fail in certain cases, leading to
unstable model convergence. Harsh confidence filtering is
proven to be worked well [46], however, we observe that it
is still hard to remove all misleading instances for generated
labels, which can distract the model convergence, shown in
Figure 1.

In this paper, we acknowledge the existence of noise in
the generated labels and take PL as a noisy learning task:
instead of directly applying vanilla pseudo-labels, we de-
sign a noise-resistant instance supervision module for bet-
ter model generalization. Specifically, for the classification
branch, we leverage the confidence predictions from the
teacher and the student model learning ability to construct
soft categorical targets. Different from previous approaches
[47, 28], which simply apply them for loss reweighting, we
enforce the network to directly learns from such continual
supervision. In this way, our strategy can adaptively learn
more knowledge from the teacher’s predictions and at the
same time develop tolerance to low confidence score labels.
As for the regression branch, we find that solely relying on
classification scores or IoU predictions is not enough to re-
flect the learning quality of each attribute of the 3D box. To
mitigate this problem, we convert the original smooth L1 re-
gression into a probabilistic modeling task: by enabling the
network to output two variables to represent the Gaussian
distribution, we maximize the negative log-likelihood of the
targets in the distribution. Apart from the label supervi-

sion on the unlabeled data, we also introduce a novel dense
pixel-wise feature self-supervised consistency constraints to
further eliminate the negative impact of noisy data. To this
end, we propose NoiseDet, a simple semi-supervised 3D
object detection framework to address the noise learning
problem from the unlabeled data. Our NoiseDet is modal-
agnostic and can be easily applied to any 3D object detector
with little modification.

We summarize our key contributions as follows:

• Instead of directly improving the quality of pseudo-
labels, we formulate SSOD as a noisy learning prob-
lem, where we acknowledge the existence of the noise
in pseudo-labels and soften the network supervision
for model generalization.

• Based on this thought, we propose NoiseDet, a sim-
ple yet effective SSOD framework to deal with the
noisy data through two core modules: noise-resistant
instance supervision and dense pixel-wise feature con-
sistency constraint.

• With extensive experiments, we validate the effective-
ness of our approach on two competitive benchmarks.
Notably, it achieves state-of-the-art performance on
the challenging ONCE dataset.

2. Related Work
2.1. LiDAR-based 3D Object Detection

3D object detection aims to detect instances in the 3D
space, which is of great importance in various applica-
tions, such as autonomous driving, navigation robot, and
augmented reality. Current LiDAR detectors [52, 59, 49]
mainly voxelize the point cloud into a BEV or voxel rep-
resentations and adopt traditional 2D convolutions to pre-
dict bounding boxes. To improve the inference speed, some
works [15, 30] attempt to detect objects directly through the
range view. [58] combines both BEV and range-view fea-
tures together to achieve better performance. VoxelNet [59]
adopts PointNet [34] to extract local features through raw
point clouds and fill them into the predefined voxel space.
PointPillar [22] directly processes points inside a pillar to
naturally formulate BEV feature representations, establish-
ing an ultra-fast baseline detector. Inspired by CenterNet
[14], CenterPoint [52] introduces a center-based label as-
signment strategy in 3D object detection, achieving com-
petitive detection accuracy among various approaches. In
addition to dense one-stage detectors, many works [8, 38]
apply an R-CNN-style two-stage detection paradigm. Point
R-CNN [38] propose 3D RoIAlign to aggregate regional
features based on the proposals and then refines the de-
tections. PV-RCNN [37] and Voxel R-CNN [13] construct
two-parallel branches to extract both point-level and voxel-
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level features to enjoy the best of each. However, indepen-
dently localizing moving instances can introduce misalign-
ment noise, 3D-MAN [50] and MPPNet [7] leverage multi-
frame information to further enhance predictions with tem-
poral knowledge.

2.2. Semi-Supervised Learning (SSL)

Semi-supervised learning is an important task in lever-
aging easy-to-access unlabeled data to improve the super-
vised model. Most current SSL methods [53, 17, 5, 19]
involve adding additional supervision on unlabeled data to
regularize the learning of the model. Among them, pseudo-
labeling is a popular pipeline [4, 24, 18], where unlabeled
data is firstly labeled with a supervised model, and then
acts in a common training paradigm. In order to guaran-
tee the quality of the generated labels, [24] often filter them
with a hard threshold based on the classification score. In
addition to hard pseudo-labels, NoisyStudent [45] explores
soft supervision to avoid ambiguity problems. Besides, it
injects different augmentations to the student and teacher
models, to encourage consistency regularization. In light of
this, plenty of approaches [44, 2, 26] enforce the model to
predict similar results when applying various input permu-
tations. Such strategies are also verified on 2D object detec-
tion, where [32] borrows the idea from FixMatch to achieve
promising performance. MUM [21] introduces Mix/UnMix
augmentation, enforcing students to reconstruct unmixed
features for the mixed input images.

2.3. Semi-Supervised 3D Object Detection

Semi-supervised learning (SSL) has been rapidly devel-
oped in both classification and object detection domains and
obtains promising results in recent years. There are two
main streams in SSOD: consistency learning and pseudo
labeling. Consistency-based works [41, 25] apply data
augmentations/perturbations to the input, which forms nat-
ural regularization for the network predictions. Such a
consistency-learning target enforces the model to acquire
valid information from the unlabeled data, therefore im-
proving the performance. SESS [55] is the first work to
attempt such a paradigm on 3D object detection, where
the classification and regression predictions are matched
through L2 distance and supervised with the similarity loss
on the teacher and student. Inspired by Mean Teacher [41],
it also adopts the exponential moving average (EMA) tech-
nique to further boost the performance. Apart from the
consistency-based approaches, pseudo-labeling is another
solution [46, 42]. Most PL works pay attention to the qual-
ity enhancement of pseudo labels. 3DIoUMatch [42] pro-
poses to learn the IoU of the network predictions and utilize
it to adaptively filter the low-quality pseudo labels. In order
to remove the duplicate score threshold search, Proficient-
Teacher [51] introduces a novel clustering-based box voting

module, replacing the hand-crafted NMS process. Different
from the previous approaches, our method views pseudo-
labeling as a noisy learning problem, therefore delivering
more generalization against noisy pseudo-data.

3. NoiseDet
It is acknowledged that predictions generated by the

teacher model will inevitably encounter false positive (FP)
or false negative (FN) problems, despite many efforts that
have been devoted to overcoming these issues [51, 46].
Such noises can distract the convergence of the model dur-
ing the semi-supervised training process, or even deteriorate
the final performance.

The main intuition of NoiseDet is to improve the model
generalization ability against noisy pseudo labels, which are
generated by the baseline model trained on limited labeled
data. We start with a vanilla two-stage pseudo-labeling
pipeline: assuming that we have access to a (small) set
of labeled set L = {xli, yli}

Nl
i=1, and a set of unlabeled set

U = {xui }
Nu
i=1, whereNl andNu are the numbers of labeled

and unlabeled datasets. A teacher model is firstly trained on
the labeled set L, and then infer on unlabeled set U to get
pseudo labels {yui }

Nu
i=1 and formulate the pseudo-labeled set

Up = {xui , yui }. After that, we initialize the student model
from the pretrained teacher and uniformly sample data from
both L and Up set to construct each batch for second-stage
training. Different from previous works, which mainly fo-
cus on improving the quality of pseudo-labels, NoiseDet di-
rectly learns knowledge from noise labels {yUi }

Nu
i=1.

3.1. Noise-Resistant Instance Supervision

In contrast to standard fully supervised object detection,
where labels are carefully human-annotated and verified,
the supervisory signals on the unlabeled set are generated
by the vanilla teacher model. It may contain unexpected
noisy labels, leading to model performance degeneration.
Therefore, we propose to transform such hard, deterministic
instance supervision into the noise-resistant one to develop
the model tolerance to the noisy labels, instead of directly
eliminating them.

Recent works [16, 3] suggests that the confidence score
c can be viewed as the noisy level of the network predic-
tions, i.e, the model is more prone to yield a high score
for easy-to-detect samples and low score for not-sure sam-
ples. Therefore, an intuitive idea is to filter the gener-
ated pseudo-labels with a pre-defined score threshold Up =
{(xui , cui )|cui ≥ cthres} to eliminate the noises for the un-
labeled dataset. Though simple, such a strategy does not
provide a clear divergence for the rest labels. For instance,
the quality of a box with c = 0.9 can be different from
the quality of the box with c = 0.5. However, they are
treated equally with 1/0 labels in the classification branch.
To fully exploit a reliable confidence score derived from the
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Figure 2. The overall architecture of the proposed NoiseDet. It consists of two main components: noise-resistant instance supervision
and dense feature consistency constraint. It follows the pseudo-labeling practice with a two-stage training paradigm: (i) pseudo labels are
pre-generated with a well-trained teacher model on the unlabeled dataset, and (ii) the student model is trained on both labeled (omitted in
the figure) and unlabeled LiDAR points in a semi-supervised manner.

teacher model, we leverage the c as an indicator to mea-
sure the quality of the pseudo label. Specifically, instead of
directly assigning each anchor with a deterministic binary
label, we soften the categorical label into a value ranging
from 0 to 1 given the confidence score c as well as the IoU
τ between the student predictions and its matched pseudo
labels. Different from the one in GFL [27] where the cat-
egorical labels are assigned based on the IoU between the
network prediction and the ground-truth boxes, we view it
as the combination of the quality of the GT boxes itself and
the learning ability of the student. Since the standard Focal
Loss can only handle discrete binary values, we adopt Qual-
ity Focal Loss [27] to conduct the classification supervision
on the non-discrete categorical labels:

ŷ = αc+ (1− α)τ, (1)

LUcls = −|y − ŷ|β((1− y)log(1− ŷ) + ylog(ŷ)), (2)

where ŷ is the quality score predicted by the teacher and
y is the student predictions, α is set to 0.75. Note that
our approach can be easily extended into other continual
versions of cross-entropy loss, for instance, Gaussian Focal
Loss [23].

In addition to the classification loss, the boundary targets
of the bounding box can present more ambiguities since it
contains 7 degree-of-freedom and presents fewer training
samples (only positive samples receive the regression super-
vision). Therefore, how to effectively deal with misleading
regression targets is non-trivial. To address this problem,

we convert the deterministic regression into the probability
optimization task. Concretely, we model the network pre-
diction of each bounding box as a Gaussian distribution h
given the feature vector x:

ĥ = N (µ(x), σ(x)), (3)

where µ(x) and σ(x) denotes the mean and variance of each
regression term predicted by the network. After that, the re-
gression loss can be converted into a negative log-likelihood
(NLL) loss, where the objective is to maximize the likeli-
hood of each GT h in the predicted distribution:

Lreg = −logN (h;µ(x), σ(x)) (4)

= −log
1

σ
√

2π
e−

1
2 (
h−µ
σ )2 . (5)

By converting the deterministic regression task to a proba-
bilistic estimation problem, the model develop more toler-
ance against noisy information in the training data, there-
fore achieving better performance.

3.2. Dense Feature Consistency Constraint

Considering that labels can contain noise information
that deteriorates the model performance, we further exploit
the incorporation of unsupervised learning to obtain useful
knowledge about label-independent features. However, dif-
ferent from the common-studied image classification task
that mostly cares about the overall feature representation,
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3D object detection requires estimating instances with var-
ious scales and directions. Therefore, learning a scale and
rotation-invariant feature extractor for 3D detector is of vital
importance. By applying various data augmentation, such
as rescaling, rotating, and global transforming, into the in-
put point clouds, and supervising them with the transformed
ground-truth boxes, the model can develop robustness to
such transformations. However, when the label itself is not
so accurate enough, such a strategy may be more harmful.

To avoid this problem, we propose a dense pixel-wise
consistency constraint to enforce the network to acquire
such property. Previous literature mainly involves label-
level consistency [55, 42, 1, 54] to ensure the model con-
sistency, where the predicted bounding boxes are reversed
back to the original space and regularized with Euclidean
distance matching. Despite being simple and straightfor-
ward, this low-dimensional prediction distribution (num-
ber of classes and 7 regression targets) means that only a
few amounts of knowledge are encoded, thus limiting the
knowledge that can be transferred. Hence, we apply the
consistency constraint on the feature level by reversing the
BEV features according to the data transformation in the
data augmentation and then conducting dense pixel-wise
regularization.

More formally, given one frame of point clouds P and
a set of data augmentation policies A, we randomly sam-
ple two transformations A1,A2 from A and apply them to
the point P to produce two different views of point clouds
P1, P2. The augmented point clouds are fed into the point
feature extractor F to generate the BEV feature maps F :

F1 = F(P1), F2 = F(P2). (6)

Once obtaining the BEV features, we simply reverse
them back to the original space with the recorded transfor-
mation flow:

F̂1 = A−1
1 (F1), F̂2 = A−1

2 (F2), (7)

where A−1 denotes the reverse transformation of A. To this
end, we can derive the pixel-wise feature consistency con-
straint with standard L2 loss:

Lconsist = ||F̂1 − F̂2||2. (8)

Considering that the point-based 3D features can hold
meaningful information only if the point exists, mainly due
to the characteristics of the LiDAR points, we further intro-
duce a foreground-focusing mask to selectively regularize
the augmented BEV features. Different from previous ap-
proaches [12] that directly set each foreground GT region
with hard supervision, we generate a soft mask to smooth
the regularization effect at the boundary regions, similar in
[57]. Specifically, we draw a Gaussian distribution for each

GT center (xi, yi) in the BEV space,

φi,x,y = exp(
(xi − x̂i)2 + (yi − ŷi)2

2σ2
i

), (9)

where σi is a constant (set to 2), indicating the object size
standard deviation. Since feature maps are class-agnostic,
we merge all φi,x,y into one single mask Φ by taking the
maximum value across the i dimension. Therefore, the final
dense feature consistency constraint is derived as:

Lconsist =
1

HWΦ

H∑
i

W∑
j

max(φij)||F̂1 − F̂2||2. (10)

By aligning dense pixel-wise features on the BEV
space, the model can gradually learn the ability to extract
transform-invariant feature extraction and fully utilize the
unlabeled data in a self-supervised manner.

4. Experiments
4.1. Datasets

ONCE dataset [33] is one of the largest autonomous driv-
ing datasets with 1 million LiDAR point clouds and 7 mil-
lion paired images. Only 15,000 samples are annotated with
3D bounding boxes, which are divided into training, valida-
tion and testing split with a ratio of 33%/20%/47%, respec-
tively. Among all instances, five classes are labeled as inter-
ested categories: Car, Bus, Truck, Pedestrian, and Cyclist.
According to the official SSL setting, 5,000 samples are se-
lected as labeled set and all the unlabeled sets are divided
into 3 scales of subsets: Small, Medium, and Large.
The small set contains 70 sequences (100k samples), the
medium set contains 321 sequences (500k samples), and the
large set contains 560 sequences (about 1M samples). Fol-
lowing the official evaluation tools, we set 0.7, 0.3, and 0.5
for Vehicle, Pedestrian, and Cyclist as the mAP IoU thresh-
old, respectively. Besides, similar to Waymo Open Dataset
[40], the evaluation protocol provides metrics based on dif-
ferent perception ranges: ‘0-30m’, ‘30-50m’, and /‘50m-
inf’ to fully reflect the detection ability of the model.

4.2. Implementation Details

NoiseDet follows the two-stage training pipeline: we
first train the teacher network with 80 epochs for ONCE
dataset. Then we utilize the STE module proposed in Profi-
cientTeacher [51] to obtain pseudo-labels on the unlabeled
dataset. During this process, we can easily incorporate other
techniques such as camera/Radar detection or object track-
ing to further refine the labels. We do not consider such im-
plementations since it is out of the scope of this paper, but
it is proven to be effective in [35]. For the semi-supervised
training configuration, we uniformly sampled 1 labeled and
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Table 1. Comparison with other state-of-the-art semi-supervised 3D object detection approaches on ONCE validation set with different
amounts of unlabeled samples (e.g., “Small”, “Medium” and “Large”). We bold the best overall results and list the relative gains based on
the baseline model (i.e., SECOND [48] trained on labeled training set only) for better illustration. Most experimental results are borrowed
from the official implementations in ONCE [33].

Methods Vehicle AP (%) Pedestrian AP (%) Cyclist AP (%) mAP (%)overall 0-30m 30-50m 50m-inf overall 0-30m 30-50m 50m-inf overall 0-30m 30-50m 50m-inf
Baseline [48] 71.19 84.04 63.02 47.25 26.44 29.33 24.05 18.05 58.04 69.96 52.43 34.61 51.89

Small (100K unlabeled samples)
Pseudo Label 72.80 84.46 64.97 51.46 25.50 28.36 22.66 18.51 55.37 65.95 50.34 34.42 51.22 (- 0.67)

Noisy Student [45] 73.69 84.69 67.72 53.41 28.81 33.23 23.42 16.93 54.67 65.58 50.43 32.65 52.39 (+ 0.50)
Mean Teacher [41] 74.46 86.65 68.44 53.59 30.54 34.24 26.31 20.12 61.02 72.51 55.24 39.11 55.34 (+ 3.45)

SESS [55] 73.33 84.52 66.22 52.83 27.31 31.11 23.94 19.01 59.52 71.03 53.93 36.68 53.39 (+ 1.50)
3DIoUMatch [42] 73.81 84.61 68.11 54.48 30.86 35.87 25.55 18.30 56.77 68.02 51.80 35.91 53.81 (+ 1.92)
NoiseDet (Ours) 75.26 86.36 67.52 55.29 37.96 42.36 32.78 23.28 60.77 72.31 55.03 38.87 58.00 (+ 6.11)

Medium (500K unlabeled samples)
Pseudo Label 73.03 86.06 65.96 51.42 24.56 27.28 20.81 17.00 53.61 65.26 48.44 33.58 50.40 (- 1.49)

Noisy Student [45] 75.53 86.52 69.78 55.05 31.56 35.80 26.24 21.21 58.93 69.61 53.73 36.94 55.34 (+ 3.45)
Mean Teacher [41] 76.01 86.47 70.34 55.92 35.58 40.86 30.44 19.82 63.21 74.89 56.77 40.29 58.27 (+ 6.38)

SESS [55] 72.11 84.06 66.44 53.61 33.44 38.58 28.10 18.67 61.82 73.20 56.60 38.73 55.79 (+ 3.90)
3DIoUMatch [42] 75.69 86.46 70.22 56.06 34.14 38.84 29.19 19.62 58.93 69.08 54.16 38.87 56.25 (+ 4.36)
NoiseDet (Ours) 77.14 87.21 69.94 58.44 40.45 44.91 35.71 24.11 62.59 73.04 57.98 42.67 60.06 (+ 8.17)

Large (1M unlabeled samples)
Pseudo Label 72.41 84.06 64.54 50.05 23.62 26.80 20.13 16.66 53.25 64.69 48.52 33.47 49.76 (- 2.13)

Noisy Student [45] 75.53 86.52 69.78 55.05 31.56 35.80 26.24 21.21 58.93 69.61 53.73 36.94 55.34 (+ 3.45)
Mean Teacher [41] 76.38 86.45 70.99 57.48 35.95 41.76 29.05 18.81 65.50 75.72 60.07 43.66 59.28 (+ 7.39)

SESS [55] 75.95 86.83 70.45 55.76 34.43 40.00 27.92 19.20 63.58 74.85 58.88 39.51 57.99 (+ 6.10)
3DIoUMatch [42] 75.81 86.11 71.82 57.84 35.70 40.68 30.34 21.15 59.69 70.69 54.92 39.08 57.07 (+ 5.18)
NoiseDet (Ours) 78.02 87.00 72.55 59.49 42.89 46.52 38.21 26.60 62.74 73.19 58.03 42.88 61.16 (+ 9.27)

Table 2. Comparison of detection results based on SECOND and
CenterPoint with and without NoiseDet on ONCE validation set.

Detector Method mAP

SECOND NoisyStudent 55.50
NoiseDet (Ours) 58.01

CenterPoint NoisyStudent 63.77
NoiseDet (Ours) 65.57

4 unlabeled samples for each batch to avoid training col-
lapse. Following the official ONCE benchmark [33], we ini-
tialize the student from a pretrained checkpoint on the full
labeled set. The student is trained for 25, 50, 75 epochs for
small, medium, and large settings on ONCE dataset. The
learning rate is set to 1e-4 and the pseudo-labels are updated
every 25 epochs. All models are trained on an 8 NVIDIA
V100 GPUs machine.

4.3. Main Results

We first implement NoiseDet with the standard anchor-
based 3D detector, SECOND, following the official bench-
mark [33], on the Small protocol setting of ONCE dataset.
The final performance is shown in Table 2. Our NoiseDet
greatly boosts its enhanced baseline NoisyStudent [45] by
2.5 mAP. Then, we also report it on a stronger anchor-
free-based detector, CenterPoint [52], which also obtains an
improvement of 1.8 mAP, validating the effectiveness and

generalization of the proposed method under different 3D
detection frameworks. Besides, we also validate NoiseDet
on the competitive Waymo Open Dataset [40] in Appendix,
which outperforms 3DIoUMatch [42] by a large margin.

4.4. Comparison with State-of-the-Arts

To further validate the superiority of our method,
we compare NoiseDet with various state-of-the-art semi-
supervised approaches, including Pseudo-Label, NoisyS-
tudent, Mean Teacher, SESS, and 3DIouMatch. The ex-
periments are conducted on the three different protocols
(Small, Medium, and Large) to fully exploit the exten-
sibility of various strategies and the results are reported in
Table 1. We select SECOND as our baseline to keep con-
sistent with other works [33]. NoiseDet surpasses all other
counterparts, achieving new state-of-the-art in this compet-
itive benchmark. With the increase of the unlabeled dataset
size, NoiseDet can consistently improve the detectors with
significant gains: with 6.1 mAP, 8.2 mAP, and 9.3 mAP un-
der Small, Medium, and Large protocols, respectively.

4.5. Ablation Studies

In this section, we conduct a series of ablation studies to
gain a deeper understanding of NoiseDet. For efficiency, all
experiments are conducted on the Small protocol of the
ONCE training set and evaluated on the validation set.
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Table 3. Effectiveness of each component in our NoiseDet. Results are reported on ONCE validation subset with SECOND.

Noise-Resistant Instance Supervision Dense Feature Consistency Constraint mAP
Classification Regression APveh APped APcyc APoverall

72.03 36.80 57.73 55.50
X 72.78 36.41 60.73 56.80

X 73.87 36.74 58.34 56.39
X X 74.05 36.62 61.03 57.27
X X X 75.26 37.96 60.77 58.01

4.5.1 Main Ablations

In order to understand the effectiveness of each module con-
tributing to the detection performance in NoiseDet, we test
each component separately on the baseline detector SEC-
OND and report the results in Table 3. Our baseline is the
enhanced implementation of NoisyStudent [45], where its
performance starts from 55.5 mAP on the validation dataset.
When we add the noise-resistant instance supervision on the
classification branch, the mAP score is raised by 1.1 mAP.
And then we test the proposed component on the regres-
sion branch, which yields another 0.8 mAP. Such a huge
improvement validates the correctness of the noise learn-
ing strategy on the unknown quality of pseudo-labels and
the effectiveness of the proposed noise-resistant instance
supervision module. When the dense feature consistency
constraint module is applied, the accuracy is promoted by
1.2 mAP, suggesting that consistent regularization provides
useful unsupervised hints for model convergence. Finally,
we put all techniques together, and NoiseDet achieves 58.0
mAP on the validation subset, indicating a 2.5 mAP perfor-
mance enhancement.

4.5.2 Noise-Resistant Instance Supervision

Comparison with other classification supervision. We
first compare our proposed noise-resistant classification loss
with other supervision approaches. The vanilla strategy is
to directly apply Focal Loss on the pseudo labels, similar
to the labeled data. Then, we attempt to utilize the pre-
dicted score from the teacher to adjust the supervision on
the pseudo-labels by reweighting the classification loss. In
doing this, we can alleviate the training distraction from
low-quality samples by lowering their penalties. Inspired
by 3DIoUMatch [42], we consider IoU as another measure-
ment to help decide the loss penalty on the pseudo samples
(denoted as IoU Reweight). We also consider Quality Fo-
cal Loss proposed in [27] to further integrate IoU into the
classification supervision. The final results are shown in Ta-
ble 4. Incorporating reweighting mechanisms, either IoU or
classification score, to balance the supervision across dif-
ferent samples brings about 0.5 mAP improvements. When
adapting to QFL, the model improves to 56.2 mAP. Finally,

by both considering localization quality (IoU) and the sam-
ple quality (classification score), we obtains the best perfor-
mance, 56.8 mAP on the validation subset.

Table 4. Comparison with different classification supervision ap-
proaches on ONCE validation dataset.

Classification Loss APoverall

Focal Loss [31] 55.45 ± 0.07
Score Reweight 56.09 ± 0.10
IoU Reweight 55.90 ± 0.17

QFocal Loss [27] 56.20 ± 0.05
Ours 56.80 ± 0.08

Strategies on ŷ generation. In this part, we explore the
best strategy to generate the classification targets ŷ for the
Focal Loss. We first consider utilizing the teacher’s pre-
dicted categorical confidence to replace the original hard
pseudo labels, based on the observation that the quality of
the generated pseudo-labels is highly correlated with the
classification score. On top of this, we also consider the lo-
calization quality between the student and teacher’s predic-
tions. The main intuition is that when the student model can
not perfectly learn the pseudo-targets well, we infer them as
noisy labels and downgrade their categorical targets. Actu-
ally, this strategy comes to the same formulation as Quality
Focal Loss. In order to further improve the representation
ability of ŷ, we adopt the combination of IoU and confi-
dence score to fully leverage the information. We consider
two types of combinations: multiplication and weighted
sum. The experimental results are shown in Table 5. By
combining IoU and confidence score with weighted sum,
the detection accuracy gets the best performance.

Comparison with other regression supervision. In ad-
dition to classification targets ŷ, properly softening the re-
gression supervision on noisy pseudo labels is also non-
trivial. Therefore, we compare different kinds of regression
losses and their tolerance against noisy data. The original
loss is Smooth L1 loss, which provides more penalty on
more accurate predictions (close to GT targets), encourag-
ing the model to pay more attention to high-precision boxes.
However, such a strategy is counter to the learning on noisy
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Table 5. Ablations on the strategies to generate the classification
target ŷ for categorical supervision.

Cls Score IoU Operation APoverall

- 55.45 ± 0.07
X - 56.45 ± 0.17

X - 56.11 ± 0.21

X X Multiply 56.52 ± 0.05
X X Weighted-sum 56.80 ± 0.08

Figure 3. Visualization of the loss curve of different regression
approaches on the labeled split in each batch. We also plot the fi-
nal detection performance (mAP) at the end iteration of each loss.
Note that there exits occasional fluctuations during training prob-
ably due to the noisy annotations in the training data, empirically
it will not affect the final model performance.

labels: if the network fails to regress the target well, it prob-
ably belongs to low-quality samples. Therefore, we directly
employ the L1 loss to avoid large misleading gradients on
noisy bounding box regression. Another option to improve
the tolerance against noisy labels for regression is to convert
the regression task into a probabilistic optimization prob-
lem. As a result, we consider the Gaussian NLL as an alter-
native regression objective. We report the results in Figure
3. Gaussian NLL outperforms all other losses, achieving
56.4 mAP on the validation subset, demonstrating the supe-
riority of the probabilistic model on noisy data learning.

4.5.3 Dense Feature Consistency Constraint

Strategies on consistency regularization. Consis-
tency learning is a crucial component in semi-supervised
pipelines. In most previous work [55], such regularization is
often conducted on the label level. A key reason is that label
encoding is agnostic to any transformation, which is easy to
apply to various object detection tasks. Luckily, most in-

put permutations in point clouds can be easily reversed and
differentiable. Therefore, we can also explore the feature-
level consistency regularization with L2 loss. Followed by
the idea of SimSiam [6], we add a projection layer for one
branch and detach the gradient in the other branch, and then
regularize them with L2 loss. We also consider distance
correlation to consider the inner structural similarity in the
latent feature space. The final results are shown in Table
6. The vanilla L2 loss on the feature level obtains the best
performance. We infer the reason that mutual L2 introduces
additional flexibility through the linear projection layer and
further promotes the effect of consistent regularization.

Table 6. Comparison with different approaches for dense feature
consistency constraints. “DC” denotes distance correlation.

Input-level Loss AP

Label-level L2 55.45 ± 0.07
Feature-level DC 56.07 ± 0.14
Feature-level L2 56.70 ± 0.06

4.6. Extension to Auto-Labeling Strategy

Auto-Labeling is a simple and effective strategy to im-
prove model prediction. By combing with additional tech-
niques, such as temporal information or object tracking, we
can obtain high-quality pseudo-labels [35]. Different from
the Mean-Teacher paradigm, the pseudo-labeling pipeline
allows the network to pursue more precious labels offline
and greatly improves its potential in real-world applications.
In this section, we imitate this paradigm and validate the
superiority of our framework. Specifically, we generate the
pseudo-labels based on two well-tuned CenterPoint mod-
els, (CenterPoint and CenterPoint-E), which achieve 62.5
and 70.1 mAP on the ONCE validation subset, respectively,
to stimulate the auto-labeling process and utilize it to super-
vise a SECOND model. The final results are shown in Table
7. With the quality-improved label, our NoiseDet still con-
sistently outperforms the competitive NoisyStudent base-
line, yielding a 1.4 and 2.2 mAP on the ONCE validation
subset, demonstrating its effectiveness and generalization
on semi-supervised learning tasks.

Table 7. Detection results on different pseudo-label generation
with respective teacher models. The results are reported on ONCE
validation dataset. CenterPoint-E denotes for the enhanced version
of CenterPoint.

PL Source APveh APped APcyc APoverall

SECOND [48] 75.26 37.96 60.77 58.00
CenterPoint [52] 75.42 40.19 62.73 59.44

CenterPoint-E [52] 76.01 41.56 63.01 60.19
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5. Conclusion
In this paper, we introduce a pseudo-labeling-based

semi-supervised 3D object detection framework, namely
NoiseDet. By viewing the semi-supervised learning as a
noisy learning task, we propose two core modules to over-
come the ambiguity detection problem: noise-resistant in-
stance supervision and dense feature consistency regular-
ization. With soft task supervision on the unlabeled data and
unsupervised feature consistency regularization, our model
develops tolerance towards noisy pseudo-labels and im-
proves the model generalization. Extensive experiments on
the ONCE dataset demonstrate the effectiveness and gen-
eralization of our approach. We hope NoiseDet can pro-
vide a new perspective in dealing with in-sufficient accuracy
pseudo labels for semi-supervised 3D object detection.
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jects as points. arXiv preprint arXiv:1904.07850, 2019. 5

[58] Yin Zhou, Pei Sun, Yu Zhang, Dragomir Anguelov, Jiyang
Gao, Tom Ouyang, James Guo, Jiquan Ngiam, and Vijay
Vasudevan. End-to-end multi-view fusion for 3D object de-
tection in LiDAR point clouds. In CoRL, pages 923–932.
PMLR, 2020. 2

[59] Yin Zhou and Oncel Tuzel. Voxelnet: End-to-end learning
for point cloud based 3D object detection. In CVPR, pages
4490–4499, 2018. 2

6939


