NeuRBF: A Neural Fields Representation with Adaptive Radial Basis Functions

Zhang Chen† Zhang Li† Liangchen Song Lele Chen
Jingyi Yu Junsong Yuan Yi Xu
1 OPPO US Research Center 2 University at Buffalo 3 ShanghaiTech University

{zhang.chen,zhong.li,lele.chen,yi.xu}@oppo.com
{lsong8,jsyuan}@buffalo.edu yujingyi@shanghaitech.edu.cn
https://oppo-us-research.github.io/NeuRBF-website/

Abstract

We present a novel type of neural fields that uses general radial bases for signal representation. State-of-the-art neural fields typically rely on grid-based representations for storing local neural features and N-dimensional linear kernels for interpolating features at continuous query points. The spatial positions of their neural features are fixed on grid nodes and cannot well adapt to target signals. Our method instead builds upon general radial bases with flexible kernel position and shape, which have higher spatial adaptivity and can more closely fit target signals. To further improve the channel-wise capacity of radial basis functions, we propose to compose them with multi-frequency sinusoid functions. This technique extends a radial basis to multiple Fourier radial bases of different frequency bands without requiring extra parameters, facilitating the representation of details. Moreover, by marrying adaptive radial bases with grid-based ones, our hybrid combination inherits both adaptivity and interpolation smoothness. We carefully designed weighting schemes to let radial bases adapt to different types of signals effectively. Our experiments on 2D image and 3D signed distance field representation demonstrate the higher accuracy and compactness of our method than prior arts. When applied to neural radiance field reconstruction, our method achieves state-of-the-art rendering quality, with small model size and comparable training speed.

1. Introduction

Neural fields (also termed implicit neural representation) have gained much popularity in recent years due to their effectiveness in representing 2D images, 3D shapes, radiance fields, etc. [50, 44, 15, 70, 62, 47, 48]. Compared to traditional discrete signal representations, neural fields utilize neural networks to establish a mapping from continuous input coordinates to the corresponding output value. Owing to their concise and efficient formulation, neural fields have been applied to various areas ranging from signal compression [66, 22, 12, 86], 3D reconstruction [49, 83, 79], neural rendering [47, 48, 9, 39, 63, 25, 64, 14], medical imaging [24, 81, 75], acoustic synthesis [11] and climate prediction [31].

Early neural fields [50, 44, 15, 47] use neural features that are globally shared in the input domain. Despite the compactness of the models, they have difficulty in representing high-frequency details due to the inductive bias [5, 70] of MLPs. To tackle this problem, local neural fields have been proposed and widely adopted [7, 32, 51, 41, 26, 67, 48, 9], where each local region in the input domain is assigned with different neural features. A common characteristic in this line of work is to use explicit grid-like structures to spatially organize neural features and apply N-dimensional linear interpolation to aggregate local neural features. However, grid-like structures are not adaptive to the target signals and cannot fully exploit the non-uniformity and sparsity in various tasks, leading to
potentially sub-optimal accuracy and compactness. While multi-resolution techniques [69, 16, 58, 84, 28] have been explored, it can still be expensive to achieve fine granularity with excessive resolution levels. Some works [47, 70, 62] use frequency encoding to address the low-frequency inductive bias. However, this technique is only applied on either input coordinates or deep features.

In this work, we aim to increase the representation accuracy and compactness of neural fields by equipping the interpolation of basis functions with both spatial adaptivity and frequency extension. We observe that the grid-based linear interpolation, which is the fundamental building block in state-of-the-art local neural fields, is a special case of radial basis function (RBF). While grid-based structures typically grow quadratically or cubically, general RBFs can require fewer parameters (sometimes even constant number) to represent patterns such as lines and ellipsoids. Based upon this observation, we propose NeuRBF, which comprises of a combination of adaptive RBFs and grid-based RBFs. The former uses general anisotropic kernel function with high adaptivity while the latter uses N-dimensional linear kernel function to provide interpolation smoothness.

To further enhance the representation capability of RBFs, we propose to extend them channel-wise and compose them with multi-frequency sinusoid function. This allows each RBF to encode a wider range of frequencies without requiring extra parameters. This multi-frequency encoding technique is also applicable to the features in the MLP, which further improves accuracy and compactness.

To effectively adapt radial bases to target signals, we adopt the weighted variant of K-Means to initialize their kernel parameters, and design a weighting scheme for each of the three tasks (see Fig. 1): 2D image fitting, 3D signed distance field (SDF) reconstruction, and neural radiance field (NeRF) reconstruction. For NeRF, since it involves indirect supervision, traditional K-Means cannot be directly applied. To address this, we further propose a distillation-based approach.

In summary, our work has the following contributions:

- We present a general framework for neural fields based on radial basis functions and propose a hybrid combination of adaptive RBFs and grid-based RBFs.
- We extend radial bases with multi-frequency sinusoidal composition, which substantially enhances their representation ability.
- To effectively adapt RBFs to different target signals, we devise tailored weighting schemes for K-Means and a distillation-based approach.
- Extensive experiments demonstrate that our method achieves state-of-the-art accuracy and compactness on 2D image fitting, 3D signed distance field reconstruction, and neural radiance field reconstruction.

2. Related Work

Global Neural Fields. Early neural fields [50, 44, 15, 77, 45, 21] are global ones and primarily focus on representing the signed distance field (SDF) of 3D shapes. They directly use spatial coordinates as input to multi-layer perceptrons (MLPs) and optionally concatenate a global latent vector for generalized or generative learning. These methods have concise formulation and demonstrate superior flexibility over convolutional neural networks (CNN) and traditional discrete representations in modeling signals in the continuous domain. However, these methods are unable to preserve the high-frequency details in target signals.

Mildenhall et al. [47] pioneeringly proposed NeRF, which incorporates neural fields with volumetric rendering for novel view synthesis. They further apply sine transform to the input coordinates (i.e., positional encoding), enabling neural fields to better represent high-frequency details. Similar ideas are also adopted in RFF [70] and SIREN [62], which use random Fourier features or periodic activation as frequency encoding. These works also promote neural fields to be a general neural representation applicable to different types of signals and tasks. More recently, other encoding functions or architectures have been explored [23, 72, 40, 60, 74, 73, 19, 36, 87, 52, 53, 18, 85, 57, 80]. For example, MFN [23] replaces MLPs with the multiplication of multiple linear functions of Fourier or Gabor basis functions, and WIRE [57] uses Gabor wavelet as activation function in MLPs. Radial basis functions (RBF) have also been discussed in [52, 53]. However, unlike our work, they only consider simplified forms of RBFs and do not explore spatial adaptivity, leading to nonide performance.

Local Neural Fields. In parallel to frequency encoding, local neural fields improve representation accuracy by locality. Early attempts [7, 32, 51, 17, 13, 67] uniformly subdivide the input domain into dense grids and assign a neural feature vector to each grid cell. During point querying, these local neural features are aggregated through nearest-neighbor or N-dimensional linear interpolation and then used as input to the following MLPs. Due to feature locality, the depth and width of the MLPs can be largely reduced [67, 26, 33], leading to higher training and inference speed than global neural fields. Apart from neural features, the locality can also be implemented on the network weights and biases [54, 58, 29], where each grid cell has a different MLP. Dense grids can be further combined with RFF [70] or SIREN [62] to improve accuracy on high-frequency details [30, 43]. However, a significant drawback of dense grids is that they are parameter-intensive.
To improve model compactness, numerous techniques have been proposed, such as multi-resolution tree (and/or residual) structures [41, 84, 16, 42, 58, 82, 76, 26], hash grids [48], dictionary optimization [68], permutohedral lattices [51, 8, 61, 6, 25], wavelet [55], and multiplicative fields composition [10]. Among them, Instant NGP [48] achieves high accuracy, compactness, and efficiency across different signal types. Despite the additional data structures or operations, these methods still rely on basic grid-based linear interpolation as the building block for neural feature aggregation. Another line of work [27, 38, 78] relaxes the grid structures and allows neural features to be freely positioned in the input domain. However, they use simple interpolation kernel functions, which still have limited spatial adaptivity. Their performance is also inferior to state-of-the-art grid-based ones.

Unlike prior local neural fields, we seek a general framework consisting of hybrid radial bases and enhance their representation capability by simultaneously exploiting spatial adaptivity and frequency extension.

3. Our Method

3.1. Local Neural Fields As Radial Basis Functions

Local neural fields represent a signal \(f \) in the form of a function \(f : \mathbb{R}^D \rightarrow \mathbb{R}^O \), which maps a coordinate \(x \) in the continuous \(D \)-dimensional space to an output of \(O \) dimensions. The function \(f \) can be considered as a composition of two stages, i.e., \(f = g_m \circ g_b \), where \(g_b \) extracts the local neural features at input location \(x \) from a neural representation (e.g., feature grid), and \(g_m \) decodes the resulting feature to the final output. Now we consider grid-based linear interpolation for \(g_b \), which is a common building block in state-of-the-art neural fields. It has the following form:

\[
g_b(x) = \sum_{i \in U(x)} \varphi(x, c_i) w_i.
\]

where \(\varphi(x, c_i) \) is the kernel function, \(c_i \) is the position parameter, and \(w_i \) is the interpolation weight of node \(i \).

3.2. Neural Radial Basis Fields

Compared to grid-based linear interpolation, the advantages of RBFs originate from the additional position and shape parameters \(c_i, \sigma_i \). As illustrated in Fig. 2, our framework makes extensive use of adaptive RBFs. To fully exploit their adaptivity, we propose to use anisotropic shape parameters \(\Sigma_i \in \mathbb{R}^{D \times D} \). The first row of Fig. 3 shows that with anisotropic shape parameters, the shape of an RBF’s level set can be either circular, elliptical, or even close to a line. This allows an RBF to be more adaptive to target signals. For the kernel function \(\varphi \), we use the inverse quadratic function as an example, which is computed as:

\[
\varphi(x, c_i, \Sigma_i) = \frac{1}{1 + \|x - c_i\|^2 \Sigma_i^{-1}(x - c_i)}.
\]

Note that \(\Sigma_i \) is a covariance matrix, which is symmetric. Hence, each \(\Sigma_i \) only has \(\frac{D(D-1)}{2} \) parameters.
Fourier Basis

Radial Bases

Gabor Basis

Extended Radial Bases

Figure 3. Comparison of Bases. For the right 3 columns: the first row shows radial bases with different shape parameters; the bottom row shows extended radial bases with different frequencies.

Note that our framework is not limited to a specific function type but supports any others that have the radial basis form. The choice of the function type can thus be finetuned per task.

Sinusoidal Composition on Radial Basis. We notice that while traditional RBF is a scalar function, \(w_i \in \mathbb{R}^F \) is a vector with multiple channels (recall Eq. (2)). Our motivation is to let each channel of \(w_i \) linearly combine with a different variant of the RBF so that the channel-wise capacity of RBF can be exploited. To achieve this, we propose to compose RBF with a multi-frequency sinusoid function, where a radial basis is extended into multiple channels with different frequencies:

\[
\varphi(x, c_i, \Sigma_i) = \sin(\tilde{\varphi}(x, c_i, \Sigma_i) \cdot (m + b)),
\]

where \(m, b \in \mathbb{R}^F \) are the global multiplier and bias applied to \(\tilde{\varphi}(x, c_i, \Sigma_i) \) before sine transform. The resulting \(\varphi(x, c_i, \Sigma_i) \) has \(F \) channels and is then multiplied with \(w_i \) through Hadamard product. Fig. 2 illustrates this computation process. \(g_0(x) \) is thus computed as:

\[
g_0(x) = \sum_{i \in U(x)} \varphi(x, c_i, \Sigma_i) \odot w_i.
\]

With Eq. (5), the number of bases encoded by a single pair of \(c_i, \Sigma_i \) is increased from 1 to \(F \), leading to higher representation ability. Note that \(m, b \) are globally shared across RBFs. We set \(b \) as a learnable parameter and \(m \) as a fixed parameter. We determine the value of \(m \) by specifying the lowest and highest frequencies \(m_l, m_h \). The rest of the elements are obtained by log-linearly dividing the range between \(m_l \) and \(m_h \).

Our sinusoidal composition technique differs from positional encoding [47] and random Fourier features [70] in that we apply sine transform to radial bases instead of input coordinates. This allows the composited bases to have elliptical periodic patterns as shown in Fig. 3 second row, while the bases created by [47, 70] are limited to linear periodic patterns. Our technique is also related to the Gabor filter, which combines a Gaussian function and a sinusoidal function using multiplication. Still, the Gabor filter can only produce bases with linear patterns.

Sinusoidal Composition on Feature Vector. We also apply our sinusoidal composition technique to the output features \(h_0 \) of the first fully-connected (FC) layer in \(g_m \):

\[
f_0 = \sin(h_0 \odot m_0) + h_0,
\]

where \(h_0, m_0, f_0 \in \mathbb{R}^{F_0} \) and \(\odot \) is Hadamard product. The bias term is omitted since it is already contained in FC layer. The reason to apply this sinusoidal composition to \(h_0 \) instead of \(g_0(x) \) is to let the network first combines the multi-frequency bases in \(g_0(x) \) via an FC layer. Here, we also include a residual connection, which slightly benefits performance. The resulting feature vector \(f_0 \) is input to the next layer in \(g_m \). \(m_0 \) is set in a similar manner as \(m \) by specifying its lowest and highest frequency \(m_{l0} \) and \(m_{h0} \). Compared to sinusoid activation [62], our multi-frequency approach can produce features of wide frequency range with one sine transform. In addition, it does not require specialized initialization for the FC layers. We experimentally observe that our technique achieves higher performance under radial basis framework. Table 5 shows a quantitative comparison with positional encoding [47] and sinusoid activation [62].

Hybrid Radial Bases. To balance between fitting accuracy and interpolation smoothness, we propose to use a combination of adaptive RBFs and grid-based RBFs. The position and shape parameters of adaptive RBFs can be freely assigned while those of grid-based RBFs are fixed to a grid structure. Adaptive RBFs tend to produce sharp discontinuities when \(U(x) \) (the set of neighboring RBFs of the point \(x \)) changes. On the other hand, grid-based RBFs do not exhibit such discontinuity and can better preserve function smoothness. Please refer to our supplementary for an illustration. We combine adaptive and grid-based RBFs through feature concatenation, which allows the network to select features accordingly.

3.3. Initialization of Position and Shape Parameters

Motivated by [59], we adapt RBFs to target signals by initializing their position and shape parameters with weighted K-Means clustering. Intuitively, this biases RBF
distribution towards data points with higher weights. This technique is simple and effective, and can be applied to different tasks by changing the weighting scheme.

Position Initialization. Let $x_1, ..., x_n$ be the coordinates of input points and $w_1, ..., w_m$ be the weight of each point (weight calculation will be described later). Given initial cluster centers $c_1, ..., c_n$, weighted K-Means optimizes these cluster centers with:

$$\min_{c_1, ..., c_n} \sum_{i=1}^{n} \sum_{j=1}^{m} a_{ij} w_j \|x_j - c_i\|^2,$$

(8)

where a_{ij} is an indicator variable. Following common practice, we solve Eq. (8) with an expectation–maximization (EM)-style algorithm.

Shape Initialization. Inspired by Gaussian mixture model, we initialize the shape parameters Σ_i as the following:

$$\Sigma_i = \frac{\sum_j a_{ij} w_j (x_j - c_i)(x_j - c_i)^T}{\sum_j a_{ij} w_j}.$$

(9)

Weighting Schemes. The weights $w_1, ..., w_m$ control how RBFs will be distributed after initialization. Data points with higher importance should be assigned with higher weights.

For 2D images, we use the spatial gradient norm of pixel value as the weight for each point: $w_j = \|\nabla I(x_j)\|$. For 3D signed distance field, we use the inverse of absolute SDF value as point weight: $w_j = 1 / (|SDF(x_j)| + 1e-9)$. The inclusion of $1e-9$ is to avoid division by zero.

For neural radiance field, it is a task with indirect supervision. The input signal is a set of multi-view 2D images while the signal to be reconstructed lies in 3D space. Therefore, we cannot directly obtain the weights. To tackle this problem, we propose a distillation method. We first use grid-based neural fields to train a model for 1000 ~ 2000 training steps. Then we uniformly sample 3D points and use the trained model to predict the density $\sigma(x)$ and color feature vector $f_c(x)$ at these points. Finally, we convert density to alpha and multiply with the spatial gradient norm of the color feature vector as point weight: $w_j = (1 - \exp(-\sigma(x_j)\delta)) \|\nabla f_c(x_j)\|$. This weighting scheme takes both density and appearance complexity into account. Compared to 3D Gaussian Splatting [34] and Point-NeRF [78], our approach does not require external structure-from-motion or multi-view stereo methods to reconstruct the point cloud, but distills information from a volumetric model. Hence, our initialization can handle both surface-based objects and volumetric objects.

4. Implementation

In this section, we describe the key points of our implementation. More details can be found in our supplementary.

We implement our adaptive RBFs using vanilla PyTorch without custom CUDA kernels. For the grid-based part in our framework, we adopt Instant NGP [48] for 2D image fitting and 3D signed distance field (SDF). We use a PyTorch implementation of Instant NGP from [1]. For neural radiance field (NeRF) reconstruction, we explored TensoRF [9] and K-Planes [25] as the grid-based part. We reduce the spatial resolution and feature channel of the grid-based part, and allocate parameters to the adaptive RBFs accordingly.

For sinusoidal composition, we use $m_l = 2^{-3}, m_h = 2^{12}, m_{l0} = 1, m_{h0} = 1000$ in the image experiments on DIV2K dataset [3, 71], and $m_l = 2^9, m_h = 2^3, m_{l0} = 30, m_{h0} = 300$ in SDF experiments. In NeRF task, we do not apply sinusoidal composition since the improvement is small.

Training is conducted on a single NVIDIA RTX A6000 GPU. We use Adam optimizer [35] where $\beta_1 = 0.9, \beta_2 = 0.99, \epsilon = 10^{-15}$. The learning rates for neural features are $5 \times 10^{-3}, 1 \times 10^{-4}, 2 \times 10^{-2}$ for image, SDF and NeRF task respectively. In addition, we apply learning rate schedulers that gradually decrease learning rates during training. The position and shape parameters of RBFs can be optionally finetuned via gradient backpropagation. However, we do not observe significant performance gain and therefore fix these parameters during training.

We use L2 loss when fitting 2D images and reconstructing neural radiance field, and use MAPE loss [48] when reconstructing 3D SDF. For SDF task, we use the same point sampling approach as Instant NGP [48]. For NeRF task, we follow the training approaches in TensoRF [9] and K-Planes [25] respectively. In all experiments, both competing methods and our method are trained per scene.

5. Experiment

5.1. 2D Image Fitting

We first evaluate the effectiveness of fitting 2D images. We use the validation split of DIV2K dataset [3, 71] and 6 additional images of ultra-high resolution as evaluation benchmark. DIV2K validation set contains 100 natural images with resolution around 2040×1356. The resolution of the 6 additional images ranges from 6114×3734 to 56718×21450.

We first compare with MINER [58] and Instant NGP (“I-NGP”) [48], which exhibit state-of-the-art performance for high-resolution image fitting. We let our method use fewer parameters than the other two. During timing, the time for initializing RBFs is also taken into account.

Table 1 top half shows the comparison on the DIV2K dataset. For our method, we include two additional setups:
Table 1. 2D Image Fitting. We quantitatively compare our method with MINER [58], Instant NGP (“I-NGP”) [48], BACON [40] and PNF [80] on the validation set of DIV2K dataset [3, 71].

<table>
<thead>
<tr>
<th>Method</th>
<th>Steps</th>
<th>Time</th>
<th># Tr. Params</th>
<th>PSNR</th>
</tr>
</thead>
<tbody>
<tr>
<td>DIV2K</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MINER</td>
<td>35k</td>
<td>16.7m</td>
<td>5.49M</td>
<td>46.92</td>
</tr>
<tr>
<td>I-NGP</td>
<td>35k</td>
<td>1.3m</td>
<td>4.91M</td>
<td>47.56</td>
</tr>
<tr>
<td>Ours</td>
<td>35k</td>
<td>7.9m</td>
<td>4.31M</td>
<td>58.56</td>
</tr>
<tr>
<td>Ours3.5k</td>
<td>3.5k</td>
<td>48s</td>
<td>4.31M</td>
<td>51.53</td>
</tr>
<tr>
<td>Ours2.2M</td>
<td>35k</td>
<td>7.7m</td>
<td>2.20M</td>
<td>49.26</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>DIV2K 256×256×3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ours 3.5k</td>
</tr>
<tr>
<td>Ours 2.2M</td>
</tr>
</tbody>
</table>

Figure 4. 2D Image Fitting. Leftmost column shows the fitted images of our method and the resolution of the images. The other columns show the error maps of each method, along with the number of trainable parameters (“# Tr. Params”) and PSNR.

We additionally compare with BACON [40] and PNF [80] on the 100 images in DIV2K validation set. In this experiment, the images are center cropped and downscaled to 256×256×3 following the practice of BACON [40]. We use their official codes and settings for BACON and PNF, and let our method use the same batch size (65,536) and training steps (5k) as them. The results are shown in Table 1 bottom half. We further conduct comparisons on a sample image from Kodak dataset [20], and show the qualitative results and training curves in Fig. 5. The image is similarly center cropped and resized to 256×256×3. The results show that our method has both fast convergence and high fitting accuracy. Higher PSNR demonstrates the ability to more precisely represent target signals, and implies fewer parameters and training steps to reach a specified PSNR. For the image in Fig. 5, Instant NGP and MINER reach 45.34 dB and 45.23 dB PSNR with 140K parameters and 5k steps. Our method instead can reach 45.59 dB PSNR with only 72K parameters and 3.5k steps.
5.2. 3D Signed Distance Field Reconstruction

We use 10 3D models from the Stanford 3D Scanning Repository [65], the Digital Michelangelo Project [37], and TurboSquid [2] as benchmark data. These models contain delicate geometric details and challenging topologies. We compare our method with NGLOD [69] and Instant NGP [48]. For evaluation metrics, we use Intersection over Union (IoU) and normal angular error (NAE). NAE measures the face normal difference of corresponding points and can better reflect the accuracy of reconstructed surface than IoU.

Fig. 6 demonstrates example results on 3 objects. Our method produces more accurate geometry, with sharp edges and smooth surfaces. Comparatively, the results of NGLOD are overly smooth while those of Instant NGP contain noises.

In Table 2, we compare the performance under different numbers of trainable parameters. Our approach consistently has higher IoU and lower NAE. The advantages of our method are larger when using fewer parameters, which is also demonstrated in Fig. 7.

<table>
<thead>
<tr>
<th>Steps</th>
<th># Tr. Params↓</th>
<th>IoU↑</th>
<th>NAE↓</th>
</tr>
</thead>
<tbody>
<tr>
<td>NGLOD5 [69]</td>
<td>245k</td>
<td>10.15M</td>
<td>0.9962</td>
</tr>
<tr>
<td>NGLOD6 [69]</td>
<td>245k</td>
<td>78.84M</td>
<td>0.9963</td>
</tr>
<tr>
<td>I-NGP [48]</td>
<td>20k</td>
<td>950K</td>
<td>0.9994</td>
</tr>
<tr>
<td>Ours</td>
<td>20k</td>
<td>856K</td>
<td>0.9995</td>
</tr>
</tbody>
</table>

| I-NGP_{400K} [48] | 20k | 498K | 0.9992 | 6.39 |
| Ours_{400K} | 20k | 448K | 0.9994 | 5.53 |

Table 2. 3D Signed Distance Field Reconstruction. We quantitatively compare our method with NGLOD [69] and Instant NGP (“I-NGP”) [48].

5.3. Neural Radiance Field Reconstruction

We evaluate our approach on both 360° scenes and forward-facing scenes. Metrics of the comparison methods are taken from their paper whenever available. Full per-scene results are available in our supplementary material.

360° Scenes. We use the Synthetic NeRF dataset [47] which is a widely adopted benchmark for neural radiance field reconstruction. We utilize TensoRF [9] as the grid-based part in this experiment. We compare with numerous representative methods in this area, as listed in Table 3. Among them, Instant NGP [48] and TensoRF [9] represent state-of-the-art performance while Factor Fields [10] is concurrent to our work. For Point-NeRF [78], their SSIM metrics are recomputed with a consistent SSIM implementation as other work.
Table 3. **Neural Radiance Field Reconstruction.** We quantitatively compare our method with numerous state-of-the-art methods on the Synthetic NeRF dataset [47]. Best 3 scores in each metric are marked with gold ●, silver ○ and bronze ●. “-” denotes the information is unavailable in the respective paper.

Table 3 comprehensively compares training time, number of parameters and novel view rendering metrics. Our method surpasses competing methods by a noticeable margin in rendering accuracy. Fig. 8 reflects the higher quality of our results, which contain more accurate details and fewer artifacts. Meanwhile, our method retains a moderate model size (same as TensoRF [9]) and comparable training time. After reducing to 3.66M parameters, our model still achieves high rendering accuracy and outperforms other methods that use more parameters (Plenoxels [26], Instant NGP [48], TensoRF [9], Factor Fields [10], K-Planes [25]).

Forward-Facing Scenes. We use the LLFF dataset [46] which contains 8 real unbounded forward-facing scenes. In this experiment, we explore using K-Planes [25] as the grid-based part. As shown in Table 4, our approach achieves the highest PSNR and second-best SSIM. Although Mip-NeRF 360 has a higher score in SSIM, its training time is 7 times longer than ours. Compared to Plenoxels and TensoRF, our method has higher rendering accuracy, fewer parameters and comparable training speed. Fig. 10 shows example novel view synthesis results, where ours contain fewer visual artifacts.
I-NGP TensoRF Ours I-NGP TensoRF Ours GT
Params: 1M 18M

Figure 9. Neural Radiance Field Reconstruction. We compare the novel view synthesis quality under different parameter count on the “Materials” scene. Top is a quantitative comparison of rendering PSNR. Bottom is a qualitative comparison between Instant NGP (“I-NGP”) [48], TensoRF [9] and ours at 1M and 18M parameters.

I-NGP TensoRF Ours I-NGP TensoRF Ours GT
Params: 1M 18M

Figure 10. Neural Radiance Field Reconstruction. Qualitative comparisons on the LLFF Dataset [46].

Table 5. Ablation Study. We ablate on the adaptive RBFs (A-RBF) and multi-frequency sinusoidal composition (MSC). “Ours-PE” replaces MSC with positional encoding [47]. “Ours-SIREN” replaces MSC with sinusoid activation [62].

<table>
<thead>
<tr>
<th>2D Images</th>
<th>3D SDF</th>
</tr>
</thead>
<tbody>
<tr>
<td>PSNR↑</td>
<td>SSIM↑</td>
</tr>
<tr>
<td>IoU↑</td>
<td>NAE↓</td>
</tr>
<tr>
<td>No A-RBF</td>
<td>42.37</td>
</tr>
<tr>
<td>No MSC on RBF</td>
<td>48.19</td>
</tr>
<tr>
<td>No MSC on Feat.</td>
<td>48.46</td>
</tr>
<tr>
<td>No MSC on Both</td>
<td>43.81</td>
</tr>
<tr>
<td>Ours Full</td>
<td>51.53</td>
</tr>
<tr>
<td>Ours-PE</td>
<td>43.72</td>
</tr>
<tr>
<td>Ours-SIREN</td>
<td>45.98</td>
</tr>
</tbody>
</table>

Table 4. Neural Radiance Field Reconstruction. Quantitative comparisons on the LLFF Dataset [46].

6. Conclusion

We have proposed NeuRBF, which provides accurate and compact neural representations for signals. We demonstrate that by simultaneously exploiting the spatial adaptivity and frequency extension of radial basis functions, the representation ability of neural fields can be greatly enhanced. To effectively adapt radial basis functions to target signals, we further devise tailored weighting schemes. Our method achieves higher accuracy than state-of-the-arts on 2D shape fitting, 3D signed distance field reconstruction, and neural radiance field reconstruction, while using same or fewer parameters. We believe our framework is a valuable step towards more expressive neural representations.

By far, we have not explored generalized learning, which would be a promising extension of our framework. Another future direction would be incorporating dictionary learning to further increase model compactness.

Acknowledgements

The authors thank the anonymous reviewers for their valuable feedback, and Anpei Chen and Zexiang Xu for helpful discussions.
References

[34] Bernhard Kerbl, Georgios Kopanas, Thomas Leimkühler, and George Drettakis. 3d gaussian splatting for real-time radiance field rendering. ACM Transactions on Graphics (TOG), 42(4):1–14, 2023. 5

[48] Thomas Müller, Alex Evans, Christoph Schied, and Alexander Keller. Instant neural graphics primitives with a multiresolution hash encoding. ACM Transactions on Graphics (ToG), 41(4):1–15, 2022. 1, 3, 5, 6, 7, 8, 9

