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Figure 1. Multi-garment virtual try-on results with different sizes (tucked or untucked). r is the ratio of torso length over shoulder
width, which can be decided by customers in online shopping scenarios. Padding blue backgrounds for better visualizing clothing skeletons.

Abstract
Virtual try-on tasks aim at synthesizing realistic try-on

results by trying target clothes on humans. Most previ-
ous works relied on the Thin Plate Spline or appearance
flows to warp clothes to fit human body shapes. However,
both approaches cannot handle complex warping, leading
to over distortion or misalignment. Furthermore, there
is a critical unaddressed challenge of adjusting clothing
sizes for try-on. To tackle these issues, we propose a
Clothing-Oriented Transformation Try-On Network (COT-
TON). COTTON leverages clothing structure with land-
marks and segmentation to design a novel landmark-guided
transformation for precisely deforming clothes, allowing
for size adjustment during try-on. Additionally, to prop-
erly remove the clothing region from the human image with-
out losing significant human characteristics, we propose
a clothing elimination policy based on both transformed
clothes and human segmentation. This method enables
users to try on clothes tucked-in or untucked while retaining
more human characteristics. Both qualitative and quantita-
tive results show that COTTON outperforms the state-of-
the-art high-resolution virtual try-on approaches. All the
code is available at https://github.com/cotton6/COTTON-
size-does-matter.

1. Introduction

Image-based virtual try-on replaces clothing items on
a person with the desired ones, creating realistic try-on re-
sults and lowering costs associated with on-model photos
for the e-commerce industry1. Additionally, it enables cus-
tomers to use virtual dressing rooms when shopping online,
potentially enhancing the e-commerce experience and in-
creasing conversion rates2. As online shopping becomes
popular, the virtual try-on tasks have received more and
more attention [2,4,5,9,13,17,23,28,29,33,35]. For exam-
ple, to extend the virtual try-on resolution from low (256 ×
192) to high (1024 × 768), the most obvious difficulty is the
misalignment issue. [5] proposed the alignment-aware seg-
ment normalization to remove the misleading information
in the misaligned area. Additionally, [23] further performs
appearance flow-based warping and segmentation map gen-
eration simultaneously to tackle misalignment.

Despite the considerable progress made in previous
works, there are still some challenges that have not been
adequately addressed, as outlined below. i) Handling
complex warping without misalignment: General image-

*These authors contributed equally to this work.
1https://www.zmo.ai/aimodels/
2https://www.revery.ai
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based virtual try-on frameworks [5, 16, 21, 28, 31] typically
employ a clothing deformation module, such as the Thin
Plate Spline (TPS) method, to align clothing images with
the target human pose. However, research [6, 15, 23] has
found that TPS may not effectively handle complex warp-
ing when different garment regions require different de-
formations. In attempts to improve warping results, they
have replaced TPS with dense appearance flows. However,
when the transformation between the garment and corre-
sponding body parts is significant (as illustrated in case II in
Fig. 4), the performance of both TPS (VITON-HD [5]) and
flow-based (HR-VITON [23]) methods deteriorates drasti-
cally. Hence, existing methods still can’t properly address
the challenge of clothing deformation. ii) Adjusting cloth-
ing sizes: Previous works predicted the try-on segmentation
conditioned on the clothing image by only considering the
shape of the clothes without the scale information. Thus,
given a clothing image, it is impossible for previous works
to change the clothing size. This limitation severely restricts
the practical application of virtual try-on because people of-
ten try on different sizes in the fitting room. iii) Appropri-
ate clothing elimination policy: Previous works [5,23,28]
rely on segmentation maps to eliminate the original cloth-
ing region and utilize the remaining area as a guide for try-
ing on target clothes. However, this method can lead to
either excessive or insufficient removal of the original im-
age. For instance, when prior works try on upper clothes,
the lower part of the upper clothes remains intact, which
limits the length of the upper clothes, as shown in Fig. 6.
The lower part of the upper clothing is forced to be tucked
in, which reduces the model’s ability to generate complete
upper clothes, thereby reducing the practicality of virtual
try-on. Additionally, previous works remove the entire arm
of input human images, which eliminates essential human
characteristics such as tattoos and arm width that should be
preserved in the final output, as illustrated in case I of Fig. 5.
Therefore, developing an appropriate clothing elimination
strategy that preserves crucial information while removing
the clothing region is a significant challenge.

To address these challenges, we propose a simple yet
powerful approach called Clothing-Oriented Transforma-
tion Try-On Network (COTTON). Specifically, COTTON
first exploits geometric information with Clothing Land-
mark Predictor and Clothing Segmentation Network to pre-
dict clothing landmarks and segmentation masks respec-
tively. To overcome the first challenge posed by complex
warping, we propose the Landmark-guided Transformation
that first separates clothes into sub-parts via the segmen-
tation mask and then uses clothing landmarks to estimate
homography matrices that fit these sub-parts to the target
human pose. To solve the second challenge, we introduce
a clothing landmarks adjustment approach that allows users
to change clothing sizes. Adjustment of landmarks will al-

ter the homography matrices and then cause clothing size
changes, as demonstrated in Fig. 1, which remarkably en-
hances the practicality of virtual try-on. To address the third
challenge, we employ the transformed clothing images to
identify and remove the areas that would be covered by the
clothes. This enables our proposed Clothing Elimination
Policy to effectively eliminate the clothing region while pre-
serving important details and offer flexibility in tucking the
clothes or not, as shown in Fig. 6. Extensive experiments
show that COTTON achieves superior results than state-of-
the-arts both quantitatively and qualitatively. We summa-
rize our contributions as follows:

• We propose a Clothing-Oriented Transformation Try-
On Network (COTTON), which improves clothing
transformation quality and addresses complex warping
misalignments by leveraging clothing geometry.

• We introduce adjustable clothing landmarks to provide
clothing size information based only on images. To
the best of our knowledge, this is the first work en-
abling 2D-based virtual try-on with different clothing
sizes for approaching real-world try-on.

• To preserve critical information, we propose a Cloth-
ing Elimination Policy to properly remove clothing in-
formation while retaining valuable human characteris-
tics, and offer flexibility in tucking the clothes or not.

• Extensive experiments on the Dress Code dataset [28]
show that our model significantly outperforms SOTAs,
e.g., at least 41.1% improvement in terms of FID.

2. Related Works
2.1. Clothing Deformation

Virtual try-on requires clothing deformation to align
patterns and preserve clothing details. Thin Plate Spline
(TPS) warping is widely used in virtual try-on tasks [5,
16, 21, 28, 31], but it has limited ability to model geomet-
ric changes and result in unnatural deformations. Thus,
[2, 6, 11, 13, 15, 17, 23] conducted appearance flows as an
alternative to TPS, but misalignment still has not be well
addressed. To address misalignment, [5] improved TPS by
eliminating irrelevant clothing texture information in mis-
aligned regions. Meanwhile, [23] improved the deforma-
tion by designing pathways to jointly predict appearance
flows and segmentation features. However, neither TPS
nor appearance flow can deform partial regions of clothing
without affecting other parts, e.g., warping the sleeves to
present arm akimbo without affecting the torso part of the
clothes, since they do not have the structural information
of the clothes. To address this issue, [33] introduced nor-
malized patches to learn spatial-agnostic clothing features
but this approach may destroy the completeness of clothes
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Figure 2. Overview of COTTON. Given a clothing image C, COTTON uses Clothing Landmark Predictor and Clothing Segmentation
Network to predict clothing landmarks KC and a clothing segmentation mask MC . C is then warped by Landmark-guided Transformation
with homography derived from human keypoints KP and KC to obtain the transformed images Ctorso and Climb. r is used to adjust KC

at this step for changing clothing size. The clothing elimination step uses Ctorso and Climb to mask human image I and segmentation
mask S, resulting in clothing-agnostic image Ia and segmentation Sa. The variable t controls whether clothing is tucked in or not. Finally,
Outfit Generator aggregates the previous outputs to predict segmentation mask Ŝ and synthesize the final try-on result Î .

due to lack of semantic information. In contrast, our pro-
posed COTTON separates clothes based on landmarks and
segmentation masks to maintain clothing completeness and
aligns clothes based on specific landmarks to address mis-
alignment. Besides, [8] is a concurrent work. Both of our
works improve garment warping by human-garment corre-
spondence. While [8] relies on the computationally inten-
sive DensePose method, our proposed LT method is more
efficient and enables clothing size adjustment.

2.2. Virtual Try-on

Virtual try-on methods can be categorized into 3D-based
methods [1,14,22,24,26,27,37] and 2D-based methods [5,6,
7,8,9,10,11,12,15,16,17,19,23,28,29,31,33,34,35]. Since
3D-based methods are time-consuming and real-world sce-
narios require fast inference speeds, we focus on 2D-based
methods. [16] proposed a coarse-to-fine network to synthe-
size image-based virtual try-on results based on TPS warp-
ing. However, try-on results synthesized by [16, 31] do not
provide a clear silhouette of human body parts since they
consider the human to be a general mask instead of consid-
ering the semantic information, e.g., legs, head, limbs, etc.
To tackle this problem, [10,20] proposed the first semantic-
guided virtual try-on network, which predicted the target
semantic segmentation to provide human structural infor-
mation for the network to synthesize photo-realistic body
parts. Afterward, many try-on methods [5,6,7,9,23,29,35]
are designed with an individual stage for predicting the tar-
get semantic segmentation before synthesizing virtual try-
on results. However, the individual stage for predicting tar-
get semantic segmentation would lead to error accumulation
as pointed out by [21]. In this paper, we propose an end-to-

end Outfit Generator that updates semantic segmentation
and try-on results simultaneously, and introduce a Clothing
Elimination Policy that retains valuable human characteris-
tics while removing original clothing information.

3. Methodology

Given a human image I and a clothing image C, the goal
of virtual try-on is to obtain a synthetic image Î , which
shows the human of I wearing the clothing of C. We
design a Clothing-Oriented Transformation Try-On Net-
work (COTTON) for generating high-resolution virtual try-
on results. Fig. 2 provides an overview of the proposed
COTTON. We use the Clothing Landmark Predictor and
the Clothing Segmentation Network to respectively capture
clothing landmarks and a clothing segmentation map of C.
Afterward, we separate the clothes into torso part Ctorse

and limbs part Climb according to the clothing segmenta-
tion map. The separation of clothes enables COTTON to
treat each part differently, and thus makes it adapt to han-
dling complex warping well. To align the clothes with the
target human pose, the clothing landmarks are adjusted with
a ratio r to fit human body proportions and used to calculate
homography matrices. COTTON then warps the clothes
with affine transformation. The warped clothes shed light
on how to properly remove the clothing region of image
I without losing necessary information. We use a user-
determined variable t to control whether to eliminate the
overlap region of clothes. In this case, we can generate
tucked-in or untucked try-on results by choosing the value
of t. Finally, the Outfit Generator takes both human and
clothing representation to generate the try-on result Î .

7515



3.1. Clothing Landmark Predictor (CLP)

One of the most challenging problems of virtual try-on is
to transform a clothing image C to fit the target human pose.
To solve this challenge, several approaches have been pro-
posed in previous works, including hyperparameter learning
of TPS warping [5, 16, 28, 31], and flow-based deep defor-
mation [6, 15, 23]. However, these approaches implicitly
learn the underlying geometric information from the train-
ing dataset and only achieve mediocre results when han-
dling complex warping. We argue that explicit geometric
information plays the most critical role in virtual try-on and
can be leveraged to further improve performance. For ex-
ample, by thoroughly understanding the clothes’ geometry,
humans can easily capture the relation between clothes and
humans, even if the clothes are with different textures and
styles. Therefore, we propose the Clothing Landmark Pre-
dictor (CLP) to extract explicit geometric information.

Specifically, to exploit the geometric information of
clothes, our proposed CLP is trained to predict a set of
landmarks KC , which correlate to different parts of human
pose KP , where KP can be obtained from off-the-shelf hu-
man pose estimation methods, e.g., [3]. The ground truth
of KC is labeled manually, and the number of landmarks
varies with regard to the clothing types. For upper cloth-
ing, |KC | = 10, including neck, shoulders, elbows, wrists,
and hips. These landmarks explicitly indicate the relation
between clothes and human pose, and therefore can be used
as a reference to generate transformation matrices. Given
clothing image C, the CLP is trained to output clothing joint
heatmaps M̂JH and Part Affinity Field M̂PAF . Afterward,
the predicted landmarks KC can be obtained from M̂JH

and M̂PAF by using the Hungarian algorithm.

3.2. Clothing Segmentation Network

Each part of clothes has distinct properties that should be
taken into consideration during transformation. For exam-
ple, the sleeves of clothes usually suffer severe distortion
during transformation while the torso part only undergoes
a mild distortion. Another common noise in clothing try-
on is the region around the neckline that must be concealed
when the garment is worn. This region always introduces
undesired variation into try-on results, and as such, should
be eliminated. Though the Clothing Landmark Predictor
provides the connection between the clothes and human
poses, it is difficult to identify different regions with only
a few landmarks. To find the explicit boundary of each part,
pixel-level semantic segmentation is necessary. Therefore,
we propose a Clothing Segmentation Network to predict the
clothing segmentation mask MC , which separates the cloth-
ing into three sub-region, including torso part, sleeve part,
and invisible part around the neckline. As such, each sub-
region can be treated properly based on its characteristics.

Figure 3. Clothing transformation steps. For the torso part, we use
keypoints including shoulders and hips to calculate matrix Htorso

c→p .
For the limbs part, we first create bounding boxes around limbs
and use them to calculate matrices Hlimb,i

c→p , i ∈ {1, 2, 3, 4}.

3.3. Landmark-guided Transformation

Here, we introduce how to leverage the landmarks KC

and segmentation mask MC to achieve high-fidelity cloth-
ing transformation. We first remove the undesired part
around the neckline such as the green region of MC in
Fig. 2, which is invisible in the final try-on result, via the
clothing segmentation map. We then separate the remain-
ing part into two parts, including the torso part and the limbs
part. Let Ktorso

C and Ktorso
P denote the clothing and human

keypoints belonging to the torso part, such as shoulders and
hips. For aligning the torso part, we compute a homography
matrix Htorso

c→p ∈ R3×3 that can project clothing landmarks
to human keypoints, as follows:

  \label {eq:4} k_{p} &= H_{c\rightarrow p}^{torso} k_{c}, \quad \forall k_{c} \in K_{C}^{torso}, \ \forall k_{p} \in K_{P}^{torso}. 
   

   
  (1)

Afterward, this perspective transformation is applied to get
the transformed torso part Ctorso. On the other hand, as the
limbs part usually suffers from severe distortion, it requires
a more sophisticated procedure. Therefore, instead of di-
rectly warping the whole limbs part, we break the limbs part
into four sub-limbs based on the clothing landmarks. Take
a hoodie as an example in Fig. 3. The limbs part is divided
into two upper arms and two forearms. We create bounding
boxes for each sub-limb based on clothing landmarks and
human keypoints to obtain the area of each sub-limb. The
corners of bounding boxes are then used to compute 4 ho-
mography matrices, H limb,i

c→p , i ∈ {1, 2, 3, 4}, which project
each sub-limb to the target human. Finally, the four sub-
limbs are collected as the warped limbs part Climb.

It is worth noting that the predicted clothing landmarks
KC only provide a clothes-human relation in the general
case. However, since body proportion varies from person
to person, the relative size of the same clothing on different
persons may change. To generate a more realistic try-on re-
sult, we can adjust the clothing landmark KC to fit the body
proportion of the target human. For instance, if two people
have the same shoulder width but different torso lengths,
the portion of their bodies covered by clothing should be
different. In that case, the predicted landmarks are adjusted
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accordingly to fit their body proportions. Let r be the ra-
tio of torso length over shoulder width, which can be de-
rived from extra body information provided by customers
in online shopping scenarios. Fig. 1 visualizes the results
of clothing landmarks adjustment with different r, which
shows that the region covered by the clothes is varied with
regards to different r, and can therefore generate try-on re-
sults with different clothing sizes.

3.4. Clothing Elimination Policy

Since the goal of the virtual try-on task is to replace the
clothes of a given person image I with a target one, the in-
formation about the original clothes should be eliminated.
One common approach is eliminating the clothing accord-
ing to the human segmentation S. However, [5] pointed out
that simply removing the clothing from image I leads to a
performance drop for paired data training due to informa-
tion leakage about the clothing shape, and therefore pro-
posed a clothing-agnostic person representation to address
this problem. Nevertheless, this approach may lead to valu-
able information loss, e.g., arm width in case I of Fig. 5,
when whole arms are directly masked during inference.

Hence, we propose a Clothing Elimination Policy for the
inference phase to preserve the important information while
generating clothing-agnostic person representation. The re-
gions that ought to be eliminated in image I are i) the re-
gions of original clothes and ii) the regions covered by tar-
get clothes C when worn. Note that the latter is hard to
measure with previous methods. Fortunately, since we have
already obtained the reliable warped clothing image at the
previous step, we can use it as a reference to find the region
that would be covered after try-on. Specifically, we cre-
ate a clothing-elimination mask Melm by union the original
clothing region and the region covered by the transformed
target clothes, which is then expanded using morphological
dilation to cover the entire body. Moreover, when wearing
tops, we make the clothing tucked or not in the try-on result
by controlling t ∈ {0, 1} to determine whether to elimi-
nate the overlap region of bottoms. As such, we can effec-
tively obtain clothing-agnostic person representation with-
out overly masking the irrelevant regions, i.e.,

  M_{elm} = \mathcal {M}(S^{t} \cup (C^{torse}\cup C^{limb}) - t\cdot (C^{torse}\cap S^{b})),    (2)

where M represents the morphological dilation; St and
Sb denote top and bottom clothing segmentation respec-
tively. Fig. 1 shows the results of different t. After elim-
inating clothing information, we obtain clothing-agnostic
images Ia and segmentation maps Sa. To bridge the per-
formance gap between the training and inference phases,
we randomly mask the whole arms of human images with
a 50% probability during the training phase and apply our
Clothing Elimination Policy only in the inference phase.

3.5. Outfit Generator

In the final stage, the Outfit Generator takes personal
(Ia, Sa and KP ) and clothing (Ctorse and Climb) informa-
tion as input and synthesizes the final try-on result. Since
learning the shape and texture of clothing simultaneously
is challenging for the generator, a segmentation network is
commonly used to predict a segmentation mask as guidance
to lead the try-on generator network [5, 20, 23]. However,
they regarded segmentation prediction as an independent
task and trained the segmentation network and try-on gen-
erator separately. In that case, the optimization of the two
networks may be suboptimal. Moreover, the accumulated
noise from the segmentation network may further deterio-
rate the performance of the final synthesis result [21].

To address the problem, we propose a novel Outfit Gen-
erator by combining the segmentation network and try-on
generator as one end-to-end training multi-task network.3

Specifically, Sa, KP , Ctorse, Climb are first concatenated
and down-sampled to a lower resolution as the input of the
segmentation network to predict segmentation mask Ŝ. Af-
terward, Ŝ is up-sampled back to the original resolution and
combined with Ia as well as Ctorse and Climb as the input
of the synthesis step. Finally, the generator integrates all the
information and renders the synthesis result Î .

  \hat {I}, \hat {S} = G(I_a, S_a, K_P, C^{torse}, C^{limb}).     
  (3)

The objective function of the Outfit Generator includes the
supervision of both the predicted segmentation mask and
the try-on synthesis result. We apply focal loss Lfocal [25]
for segmentation. For try-on results, we use losses including
reconstruction loss Lrec, perceptual loss LV GG, and adver-
sarial loss Ladv . The overall loss functions are as follows:

  \begin {split} \mathcal {L}_{overall} & = \lambda _{rec} \mathcal {L}_{rec} + \lambda _{VGG}\mathcal {L}_{VGG} \\ &\quad + \lambda _{focal}\mathcal {L}_{focal} + \lambda _{adv}\mathcal {L}_{adv}, \
\end {split} \\ \mathcal {L}_{rec} & = \lVert \hat {I} - I \rVert _1, \\ \mathcal {L}_{VGG} & = \sum _{k=1}^5 \lambda _{k} \lVert \phi _k(\hat {I}) - \phi _k(I) \rVert _1, \\ \mathcal {L}_{focal} & = \sum _i - \alpha _i (1- {p}_{i})^\gamma \log ({p}_{i}),\ {p}_{i} \in \hat {S}, \\ \mathcal {L}_{adv} & = \lVert \mathcal {D}(\hat {I}) - \mathbf {1} \rVert _2,     

  


    

 




 






    

    (8)

where ϕk represents the kth layer output of VGG-19 net-
work. αi and pi are respectively the importance weight-
ing for the ith class and the probabilities of pixels be-
longing to the ith class. γ is the focusing parameter.
λrec, λV GG, λfocal and λadv denote the balance weights.
D is the multi-layer discriminators [32].

3The comparison of two-stage and end-to-end training is in supplement.
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4. Experiments

4.1. Experimental Setup

Dataset. We created the Pure Cotton, a high-resolution
(1024×768) outfit dataset, to mitigate the impact of noisy
data on model performance. We strictly employed several
rules to filter out unsuitable data, which are clearly outlined
in the supplements, resulting in 16,428 frontal-view human
models and in-shop clothing pairs, including 10,636 upper
clothes and 5,792 bottom clothes. For training and test-
ing, we divided the upper clothing set into 8,451 and 2,185
pairs, respectively, and the bottom clothing set into 4,626
and 1,166 pairs. To evaluate the model’s robustness, we
also experimented with the public Dress Code dataset [28].

Implementation Details. To train Clothing Landmark Pre-
dictor (CLP) and Clothing Segmentation Network (CSN),
we collected a small clothing dataset with 50 images for
each clothing type, including shirts, turtlenecks, hood-
ies, etc, and manually labeled landmarks and segmenta-
tion masks as ground truth. The architecture of CLP is
based on the one in [3], and that of CSN is based on FCN-
resnet50 [30]. Moreover, Outfit Generator is designed using
an Unet and an encoder-decoder network. To ensure a fair
comparison with previous studies, all figures are generated
in the tucked-in setting unless stated otherwise. This setting
is consistent with prior arts.

Baselines. We compare our proposed method with 3 rele-
vant state-of-the-art baselines, including HR-VITON [23],
VITON-HD [5], and PASTA-GAN [33], by training all the
models with our self-collected Pure Cotton dataset and the
public Dress Code dataset [28]. Specifically, HR-VITON
and VITON-HD both represent SOTA high-resolution vir-
tual try-on methods with different warping modules. HR-
VITON warps clothes with appearance flows and designs a
feature fusion network for eliminating the mismatch issue,
while VITON-HD warps clothes with TPS and proposes
an alignment-aware segmentation normalization method to
deal with the misalignment problem. Meanwhile, PASTA-
GAN represents another warping method, a patch-routed
disentanglement module, which is more related to our pro-
posed clothing deformation method.

Evaluation metrics. We evaluate the model performance
by three widely-used metrics for virtual try-on, including
i) Structural Similarity (SSIM) [38], ii) Learned Percep-
tual Image Patch Similarity (LPIPS) [36], and iii) Fréchet
Inception Distance (FID) [18]. SSIM measures the qual-
ity of three key features: luminance, contrast, and struc-
ture between the reconstruction results and the ground truth.
LPIPS evaluates the perceptual similarity and FID is com-
puted for evaluating the GAN performance.

4.2. Qualitative Results

Fig. 4 and 5 show the visual comparisons in Pure Cot-
ton and Dress Code datasets. Overall, our model achieves
the most visually convincing high-resolution try-on results.
The comparison analysis is discussed as follows.

The previous warping methods, e.g., TPS (VITON-HD)
and appearance flows (HR-VITON), did not consider cloth-
ing skeleton and sleeves segmentation, rendering them inca-
pable of accurately synthesizing clothing patterns and fea-
tures in respective positions, such as hit color mosaic (case
I in Fig. 4) and logo in special positions (case II in Fig. 5).
Additionally, these methods could not tackle regional cloth-
ing warping, such as arm akimbo in complex postures (case
II in Fig. 4). In contrast, our model conducts the Clothing
Landmark Predictor and Clothing Segmentation Network
to obtain clothing structural information. Then, our pro-
posed Landmark-guided Transformation helps to warp the
clothes regionally. As such, our model could synthesize try-
on results with clothing patterns and features located in the
right position that closely follow the target clothing image,
even in complex postures. On the other hand, PASTA-GAN
conducts a regional clothing deformation method similar to
our proposed method. However, there are three differences
between PASTA-GAN and our model. Firstly, we split
the clothes into 5 regions, i.e., torso, right/left upper arms,
and right/left forearms, and kept the torso undivided. Sec-
ondly, we further consider clothing segmentation, includ-
ing neckline and limb segmentation. Thirdly, PASTA-GAN
deforms clothes from clothes on another human image, as
demonstrated on the right-bottom side of the target clothes
columns in Fig. 4. Due to these differences, PASTA-GAN
would produce strange try-on results that highly follow the
original clothing tied up and limb postures (the blue circle
and the red arrow on Fig 4). In contrast, our model leverages
clothing structural information to synthesize natural cloth-
ing wrinkles.
Additional Clothing Control. The elimination policy in
our proposed approach allows for greater flexibility in vir-
tual try-on, with options for both tucked-in and untucked
clothing. As shown in Fig. 6, previous methods would limit
the location of the upper clothes’ lower boundary based on
the original lower clothes’ upper boundary. However, our
approach allows for the clothing to be untucked based on
the clothes’ body length, providing additional cues for cus-
tomers to judge the clothing style.
Partial Clothing Resizing: Apart from demonstrating
COTTON’s clothing size adjustment in Fig. 1, we also
present its ability to adjust partial clothing sizes in Fig. 7.
In the real world, clothing designers would adjust different
sizes only for specific parts, e.g., body or sleeve length, in-
stead of the entire garment. COTTON can smoothly manip-
ulate partial clothing sizes by adjusting the corresponding
landmarks without impacting the rest of the clothing.
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Figure 4. The visual comparison in the Pure Cotton dataset. The left two columns are the inputs and the rest present the results of baselines
and our model. VITON-HD and HR-VITON did not consider sleeve segmentation, resulting in misaligned clothes with wrong pattern
shifts (green dash line in case I) and broken warped clothes (case II). Moreover, without clothing skeletons, VITON-HD and HR-VITON
failed to maintain pattern proportions (red and blue double-headed arrows in case I). PASTA-GAN also had issues in case I, where the
partially tucked-in clothing shape from the original human image was directly copied to the try-on result, and in case II, where the try-on
result had two additional limbs in front of the abdomen due to the human, representing target clothes, crossing their arms over the chest.

Figure 5. The visual comparison in the Dress Code dataset. In case I, our Clothing Elimination Policy well retains valuable human features,
e.g., bulging muscles. For case II, our Landmark-guided Transformation aligns textures better based on the obtained clothing structure.

Figure 6. Additional clothing control for tucked-in or untucked.

4.3. Quantitative Results

Table 1 compares COTTON’s performance with SOTAs
in terms of SSIM, LPIPS, and FID. We evaluated SSIM and
LPIPS on 2,000 random paired test sets from our Pure Cot-

ton dataset and 1,800 test sets from the Dress Code dataset.
FID was evaluated on 2,000 and 1,800 unpaired test sets
from Pure Cotton and Dress Code datasets, respectively.
Human images wearing original clothing served as ground
truth for FID calculation. The results show that COTTON
consistently outperforms the baselines across all evaluation
metrics on both datasets, with at least 18.6% improvement
in LPIPS on Pure Cotton dataset and 41.1% in FID on Dress
Code dataset. The results manifest that our method excels
in generating detailed contents on Pure Cotton dataset and
robust results on Dress Code dataset. Notably, COTTON
shows lower performance with untucked clothes, as it ob-
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Figure 7. Visualization of partial clothing adjustment.

Table 1. Quantitative comparison on the test dataset.
Method Dataset SSIM↑ LPIPS↓ FID↓

PASTA-GAN 0.918 0.1215 29.43
VITON-HD 0.944 0.0566 17.16
HR-VITON Self-collected 0.948 0.0387 11.16
Ours (untucked) Pure Cotton 0.956 0.0349 10.96
Ours (tucked-in) 0.958 0.0315 10.17

PASTA-GAN 0.800 0.3066 33.92
VITON-HD 0.927 0.0906 22.53
HR-VITON Public 0.927 0.0755 20.12
Ours (untucked) Dress Code 0.949 0.0482 12.58
Ours (tucked-in) 0.953 0.0438 11.86

Table 2. The user study shows that COTTON is the most photo-
realistic and remains the most human and clothing characteristics.

Method
PASTA- VITON- HR- COTTON

GAN HD VITON (Ours)

Photo-
9.08% 7.56% 29.82% 53.54%

realistic

Try-on
8.66% 4.62% 27.40% 59.32%

accuracy

scures the upper portion of lower clothing, causing the try-
on results to differ from the ground truth. Nevertheless,
Fig. 6 demonstrates that COTTON can generate more vi-
sually appealing results when clothing is untucked.

Moreover, we conduct a user study on the Pure Cotton

dataset to further evaluate the visual quality by humans.
The experiment involved 127 volunteers. We randomly
sampled 30 image sets and divided them equally into two
groups for evaluating: i) photo-realistic quality and ii) try-
on accuracy. To evaluate the photo-realistic quality, vol-
unteers would see four try-on results (without input infor-
mation) synthesized by four different models, and choose
the most photo-realistic one. Furthermore, for evaluating
try-on accuracy, we provide a source human image, one tar-
get try-on clothing, and four try-on results synthesized by
four different models. Based on the source human and the
target clothes, volunteers should select the best try-on re-
sult. Table 2 shows that COTTON outperforms all other
baselines in both photo-realistic quality and try-on accu-
racy and achieves even higher ratings for try-on accuracy.
Volunteers reported that they mainly used realistic repro-
duced clothing patterns, including loose/fit torso and ac-
curate sleeve length, with fewer artifacts as the criteria to
determine the better model. Our proposed Clothing Land-
mark Predictor and Clothing Segmentation Network effec-
tively retaine clothing characteristics such as patterns and
sleeve length, contributing significantly to COTTON’s su-
perior performance over other state-of-the-art models.

5. Conclusion

This paper presents COTTON, a clothing-oriented trans-
formation try-on network that synthesizes high-resolution
virtual try-on results. By considering the clothing structure
and leveraging it, COTTON improves the clothing transfor-
mation quality and allows for size adjustment during cloth-
ing try-on. Additionally, the proposed elimination policy
enables COTTON to try on outfits untucked or not while
preserving valuable human characteristics. The experi-
ments demonstrate that COTTON outperforms the state-of-
the-art virtual try-on works at 1024 × 768 resolution, both
qualitatively and quantitatively. In future work, we plan to
improve the accessories segmentation and extend the sys-
tem to try on more clothing categories, such as shoes, hats,
and accessories. Overall, the proposed approach shows
great promise for improving the online shopping experience
and reducing the need for physical try-on.
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