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Abstract

Cracks are usually curve-like structures that are the fo-
cus of many computer-vision applications (e.g., road safety
inspection and surface inspection of the industrial facili-
ties). The existing pixel-based crack segmentation meth-
ods rely on time-consuming and costly pixel-level annota-
tions. And the object-based crack detection methods exploit
the horizontal box to detect the crack without considering
crack orientation, resulting in scale variation and intra-
class variation. Considering this, we provide a new per-
spective for crack detection that models the cracks as a se-
ries of sub-cracks with the corresponding orientation. How-
ever, the vanilla adaptation of the existing oriented object
detection methods to the crack detection tasks will result in
limited performance, due to the boundary discontinuity is-
sue and the ambiguities in sub-crack orientation. In this
paper, we propose a first-of-its-kind oriented sub-crack de-
tector, dubbed as CrackDet, which is derived from a novel
piecewise angle definition, to ease the boundary disconti-
nuity problem. And then, we propose a multi-branch an-
gle regression loss for learning sub-crack orientation and
variance together. Since there are no related benchmarks,
we construct three fully annotated datasets, namely, ORC,
ONPP, and OCCSD, which involve various cracks in road
pavement and industrial facilities. Experiments show that
our approach outperforms state-of-the-art crack detectors.

1. Introduction

Crack is a type of defect that appears on the surfaces
of many physical structures, e.g., the road pavement [41],
the industrial facilities [8]. Inspecting and repairing cracks
are crucial tasks for avoiding expansion of the harm to
these structures [77]. Besides, a recent study reveals that
recognizing the surface cracks caused by earthquakes in
time can avoid secondary damage to people’s properties
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(a) Visualization of different perspectives for crack detection

(b) Boundary discontinuity (c) Ambiguities in orientation
Figure 1. Cracks tend to be curve-like structures [77] in real-world
applications. (a) We compare our orientation-based perspective
with others for crack detection. (b) Boundary discontinuity issue
in the existing 180-degree definition. (c) The sub-crack orientation
is ambiguous in some cases due to the irregular sub-crack shape.

and lives [67]. However, manual inspection is costly, time-
consuming, and prone to human error [34]. Hence, auto-
matic image-based crack detection plays an essential role in
a real-world application of crack identification [22, 67].

Currently, image-based crack detection methods can be
roughly divided into three categories [36]: patch-level clas-
sification [4, 8], object-level detection [54, 31], and pixel-
level crack segmentation [76, 49]. Although the first two
methods take less labeling cost than the last one, they can
only provide a coarse crack localization. Moreover, we are
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motivated by the fact that a crack is a line object that has a
certain width from a local perspective [77]. Then, we are
encouraged to start from an orientation-based perspective
that models the cracks as a series of oriented sub-cracks (see
Fig. 1 (a)). The advantage of this perspective is three-fold:
(1) eliminating the scale variation, (2) reducing the intra-
class variation, and (3) taking less labeling cost than the
segmentation methods. More specifically, in the case of
our practice, the price and time cost of the pixel-level anno-
tations are 15× and 30× higher than our oriented sub-crack
annotations, respectively. Besides, considering real-world
applications, existing works [33, 35] show great power by
taking a detection-then-segmentation strategy, i.e., it first
identifies and localizes cracks by a detector and then ob-
tains crack details by segmentation-based methods. Hence,
the detector based on our perspective can serve as a com-
plement to segmentation-based methods, as it can provide a
more fine-grained localization (see Fig. 1 a).

However, it is difficult to directly adopt the state-of-
art oriented detectors [16, 39, 23, 37] to crack detection.
The reason is two-fold: (1) several existing works (e.g.,
ReDet [16], DRN [39]) simply ignore the boundary dis-
continuity problem, and (2) although the remaining works
make great efforts on the above problem, these works still
suffer from ambiguity issue in the sub-crack orientation.
Among existing oriented detection methods, those detec-
tors based on five parameters (x, y, h, w, θ) dominate [58],
where (x, y) indicates the center point and (h,w, θ) de-
notes height, width, and angle, respectively. As shown in
Fig. 1 (b), the boundary discontinuity problem indicates
that small rotations for oriented objects around the angle
period’s boundary result in a sudden sharp increase of loss
[61]. Moreover, Fig. 1 (c) provides some cases to illustrate
the inherent ambiguities in sub-crack orientation. When the
growth direction of a crack changes frequently, the orienta-
tion of the sub-crack is unclear to judge, making it hard to
learn regression functions for estimating orientation.

This paper starts from a new perspective for crack de-
tection that models the cracks as a series of oriented sub-
cracks. After that, we adopt CenterNet [73] as our baseline
due to its simplicity. Next, we propose a new piecewise
angle definition to ease the boundary discontinuity issue.
Based on our piecewise definition, we propose the Crack-
Det that contains a parallel multi-branch architecture, each
of which is responsible for predicting a fixed range of an-
gles. Then, to address the ambiguities in sub-crack orienta-
tion, we propose a novel multi-branch angle regression loss,
namely MAR Loss, which is based on Wasserstein distances
[1] for both angle regression and angle variance estimation.
The advantage of coupling CrackDet with MAR Loss is
three-fold: (1) the ambiguities in sub-crack orientation can
be captured to a certain extent. (2) The learned variance
from each branch is beneficial during the post-process. We

acquire the estimated variances from each branch and obtain
the detection results by variance voting. (3) Since crack ori-
entation is significant in a real-world application [38], the
learned variances reveal the level of confidence in the an-
gle prediction, it can potentially help to judge the overall
crack orientation. Our main contributions are summarized
as follows:

(1) To the best of our knowledge, we are the first ones
to start from an oriented sub-crack detection perspective for
crack detection by modeling cracks as a series of sub-cracks
with their inherent orientations.

(2) Propose a first-of-its-kind oriented sub-crack detec-
tor, called as CrackDet, which stems from the proposed
piecewise angle definition (see Sec. 3.1), to ease the bound-
ary discontinuity issue.

(3) Propose a multi-branch angle regression loss that en-
ables CrackDet to capture ambiguities in sub-crack orienta-
tion via jointly learning sub-crack orientation and the corre-
sponding orientation variance (see Sec. 3.2 and 3.3).

(4) A tale of three datasets has been constructed, namely,
ORC, ONPP, and OCCSD. These datasets contain orien-
tation annotations of the sub-cracks in real-world indus-
trial facilities and road pavements, to facilitate the research
about oriented sub-crack detection.

2. Related work
By following the previous study [36], the vision-based

crack detection can be roughly clustered into three cate-
gories: patch-level classification [4, 8], object-level detec-
tion [54, 31], and pixel-level segmentation [77, 48].
Patch-level crack classification. Recently, deep learning-
based methods are more powerful than the traditional meth-
ods (e.g., HOG [42], LBP[42], Gaussian process, SVM
[42]) in the patch-level crack classification tasks [36].
Among deep learning-based methods, variants of convolu-
tional neural network (CNN) followed by a fully connected
(FC) layer are used to recognize patch-level crack samples.
Typically, ResNet [17] and VGG [47] are popular back-
bones among existing backbones. Moreover, focal loss [26]
focuses on the hard samples to learn discriminative features.
However, patch-level methods fail in providing orientation
and the fine-grained localization of crack objects [36].
Object-level crack detection. For object-level crack de-
tection, a bounding box is exploited to describe the location
and the coarse size of a crack object. Most existing crack
detectors mainly adopt the general object detectors, such as
Faster R-CNN [44], RetinaNet [26], Yolo [43], CenterNet
[12], and SSD [28]. Specifically, Fen et al. [13] first de-
sign a hybrid approach that uses Faster R-CNN to detect the
crack patch. Then, as the crack orientation is important in
the post-process, a deep CNN is exploited to obtain the ori-
entation of each detected patch. Ma et al. [31] design an au-
tomatic crack detection system by using YOLO v3 [75]. To
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detect various cracks, Wang et al. [51] propose a crack de-
tection model by using CenterNet to extract crack features.
Moreover, a RetinaNet-based crack detector is proposed to
detect the crack in asphalt pavement [50]. Unfortunately,
as shown in Fig. 1, the object-level crack detection methods
suffer from scale variation and intra-class variation. More-
over, it also can not directly provide the orientation and the
fine-grained localization of cracks.
Pixel-level crack segmentation. Since those horizontal
bounding boxes can not describe the exact shape of the
crack, segmentation-based methods are proposed to detect
cracks at the pixel level. Yang et al. [59] design an au-
tomatic crack segmentation pipeline by using fully con-
volutional networks [30] and achieve a noticeable perfor-
mance gain over traditional approaches [76, 46]. By cou-
pling with Deeplab v3+ [5], CrackSeg [48] is proposed to
learn rich features for different scales. Moreover, aiming
to learn high-level crack representations, DeepCrack [77]
is proposed to capture the line structures by feature fusion.
Considering different receptive fields, FPHBN [57] makes
great efforts for crack detection by aggregating pyramid
features. Besides, by addressing the imbalance problem,
Li et al. [22] propose an adaptive weighted cross-entropy
loss function, which serves as a complement to the exist-
ing methods. However, these segmentation-based methods
heavily rely on high-quality labeled datasets [6, 72], which
involves a high labeling cost.

Compared to the above methods, we start from a new
perspective that turns crack detection into oriented sub-
crack detection. Based on this perspective, we are al-
lowed to provide a fine-grained localization of crack ob-
jects (See details in Fig. 1), instead of a coarse localiza-
tion by the patch-level classification or object-level detec-
tion methods. Hence, considering the existing detection-
then-segmentation strategy [33, 35], the detector based on
our perspective can serve as a better candidate for the
segmentation-based methods. Besides, when considering
a dynamic field without historical human supervision, our
perspective can greatly ease the labeling cost than the pixel-
level segmentation methods.
Oriented object detection. Since our oriented sub-crack
detection perspective belongs to the oriented object detec-
tion category, we give a brief review of related research on
this scope. Recently, many powerful rotation detectors are
mainly derived from horizontal object detectors by adding
an orientation regression branch [23]. For example, ICN
[2], ROI-Transformer [11], SCRDet [64], CAD-Net [70],
CSL[60], R3Det [62], ReDet [16], Oriented R-CNN [55],
and DCL [58] bring satisfied detection results on DOTA
dataset [53] and HRSC2016 dataset [29]. Gliding Vertex
[56] and RSDet [40] share the same purpose of considering
quadrilateral regression prediction. Note that, the bound-
ary discontinuity problem is caused by the periodicity of the

angle when dealing with the angel-based orientation estima-
tion. Then, Yang et al. [60] take a new perspective that turns
the angular regression tasks into the angular classification
tasks [58]. Moreover, Oriented RepPoints [23] utilize the
flexible adaptive points as the box representation to achieve
oriented object detection. Unlike these methods, our Crack-
Det addresses the boundary discontinuity problem via the
new piecewise angle definition, which is motivated by the
divide-and-conquer strategy. Besides, although KLD [65]
and GWD [63] also start from a distribution perspective,
it converts the center point, height, width, and orientation
of a rotated bounding box as a 2-D Gaussian distribution,
and does not focus on learning angle variance. Instead, the
proposed CrackDet assumes that the ground-truth orienta-
tion obeys a single-variate gaussian distribution, and aims
to learn the sub-crack orientation and its variance together.

3. Our method and datasets
The overall framework is shown in Fig. 2. We first intro-

duce the piecewise angle definition in Sec. 3.1, and the net-
work architecture of CrackDet in Sec. 3.2. Then, we give
the details of the proposed MAR Loss for estimating am-
biguities in sub-crack orientation in Sec. 3.3. Finally, we
present the inference step of CrackDet with estimated angle
variances in Sec. 3.4, and the proposed datasets in Sec. 3.5.

3.1. Piecewise angle definition

In this section, we recap the boundary discontinuity
problem and inconsistency regression problem in the exist-
ing 180-degree five-parameter definition. Then, we discuss
the details of the proposed piecewise angle definition.
Rethinking the five-parameter definition. Fig. 2 (a)
shows that the existing five-parameter definition [53] with
the 180-degree angular range includes (x, y, h, w, θ), where
(x, y) indicates the center point and [h,w, θ] denotes height,
width, and angle, respectively. Then, the boundary dis-
continuity problem refers to a sharp increase of loss at the
boundary caused by the periodicity of the angle. As shown
in Fig. 3 (a), it can be further explained that when the an-
gle of a rotated box is close to 180◦, the angle under the
five-parameter definition will suddenly change from 180◦

to 0◦, resulting a sharp increase of angle regression loss.
Moreover, the inconsistency regression problem can be at-
tributed to the rotation symmetry in object detection, which
includes the equivariant orientation and invariant shape esti-
mation for a rotated bounding box [68]. Specifically speak-
ing, rotation-equivariant features are desired for orientation
estimation. In contrast, the shape of the bounding box does
not change after a rotation. Thus, rotation-invariant features
are needed for predicting its invariant height and width [16].
Discussion on our piecewise angle definition. We are
inspired by the divide-and-conquer strategy [7] and pro-
pose the following piecewise angle definition, shown in
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Figure 2. (a) The existing five-parameter definition with long-side definition. (b) Our piecewise angle definition is inspired by the divide-
and-conquer strategy and built upon the above five-parameter definition. It breaks down the existing 180-degree regression tasks into four
sub-tasks for addressing the discontinuity problem. (c) Based on our piecewise angle definition, we present an overview of CrackDet that
can estimate standard deviations (std) along with angle regression for capturing ambiguities in the sub-crack orientation. Note that, the
heatmap branch and offset branch are responsible for the center (i.e., x and y) of the predicted bounding box as in the original CenterNet.
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(a) The 180-degree definition (b) Our piecewise definition
Figure 3. The horizontal axis denotes the angle of a rotated box
in anti-clockwise order. And the vertical axis denotes the angle
definition in different methods. Due to the periodicity of the angle,
Figure (a) shows that there is a sudden change when the angle of a
rotated box closes to 180◦ with the 180-degree definition.

Fig. 2 (b). On the one hand, Fig. 3 (b) shows that there
is no sudden change of the angle in our piecewise angle
definition. Thus, ours is free of the boundary discontinuity
problem. On the other hand, rotation equivariance can be
easily achieved by group convolutions [52], while rotation
invariance relies on a larger capacity network or a larger
number of training samples. Hence, we focus on rotation-
equivariant features. And then, we are allowed to transform
the invariant size estimation into equivariant size estima-
tion by adding a factor sin(θ) or cos(θ) to the height and
width (see Fig. 2 (b)). That way, the box size is enforced to
change equivalently when the box orientation changes. Ac-

cordingly, both box size and angle regressions can benefit
from rotation-equivariant features.

3.2. Network architecture

As discussed before, we aim to extract rotation-
equivariant features for box size regression and angle re-
gression. Therefore, we adopt rotation-equivariant networks
as the backbone to extract rotation-equivariant features.
Then, we design a parallel multi-branch architecture based
on the proposed piecewise angle definition. The overall ar-
chitecture of CrackDet is shown in Fig. 2 (c).
Rotation-equivariant backbone. We first adopt CenterNet
[73] as our baseline, which takes an object as a single point
(i.e., the center point of the bounding box) and regresses
the object size and offset. Then, we re-implement all lay-
ers of the fully-convolutional encoder-decoder networks
(i.e., up-convolutional residual networks [20]) in Center-
Net based on e2cnn [52], named as ReEDNet. Importantly,
e2cnn includes rotation-equivariant convolution, rotation-
equivariant up-convolution, and pooling, etc. Thanks to the
rotation weight sharing and group representations in e2cnn,
our ReEDNet takes smaller parameters than the original
encoder-decoder networks in CenterNet and enjoys the ca-
pability of equivariance.
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Figure 4. A visualization of our angle-based variance voting. Firstly, the red, blue, orange, and teal textboxes are the corresponding
standard deviation obtained from branch 1, 2, 3, and 4, respectively. Then, for each oriented bounding box, we select brach i that has the
smallest standard deviation to obtain its final detection result. Note that, the red background box is associated with the selected branch.

Multi-branch architecture. According to our piecewise
angle definition, we define a valid range [li, ri) for each
branch i. During the training, we only select the ground
truth boxes whose angles fall in the corresponding valid
range of one branch. Specifically, referring to the existing
180-degree definition, for an oriented bounding box with
angle θ on the input image, it is valid for branch i when:

li ≤ θ < ri. (1)

As shown in Fig. 2 (c), the valid ranges of four branches are
set to [0◦, 45◦), [45◦, 90◦), [90◦, 135◦) and [135◦, 180◦),
respectively. For branch i, we redefine the ground-truth
θ, height h, and width w in the 180-degree definition into
θi, hi, and wi, according to our piecewise definition in
Fig. 2 (b). Moreover, we aim to estimate the angle and an-
gle confidence together. To this end, each branch of our
parallel multi-branch architecture contains three detection
heads on the top of the rotation-equivariant backbone for
predicting size (i.e., height and width), angle, and angle
confidence. Note that, we simply implement each head with
a fully-connected layer. That way, our network enables us
to predict multiple probability distributions instead of only
one angle. For simplicity, we assume each predicted angle
from each branch is independent and obeys a single-variate
gaussian distribution. The corresponding equation is shown
as follows:

PΘi(θ) =
1√
2πσ2

i

e
−
(θ−θei )

2

2σ2
i , i ∈ {1, 2, 3, 4} (2)

where Θi is the parameters of the angle detection head from
branch i, θei denotes the estimated angle from branch i,
and standard deviation σi measures the angle confidence
of the estimation on branch i. When σi is very close to
0, it means the branch i is extremely confident about the
estimated angle. Accordingly, we suppose to have the re-
defined ground-truth angle θi that is in the valid range of
branch i. Similarly, θi can also be formulated as a gaussian
distributionN (θi, σ

2
gt) with its standard deviation σgt → 0.

Then, this gaussian distribution can be viewed as: P gt
i (θ) =

δ (θ − θi), where δ(·) indicates Dirac delta function.

3.3. The proposed MAR Loss

Suppose the angle of a ground-truth bounding box lies
in the valid range of branch i, our multi-branch angle re-
gression loss (MAR Loss) aims to minimize the distribution
discrepancy between the predicted angle distribution from
branch i and the redefined ground-truth angle distribution.
Meanwhile, we expect the other three branches to be able to
predict larger variance so that we can filter those inaccurate
predictions by variance voting in the inference step. More
specifically, we first exploit the Wasserstein distance as the
distance metric and minimize the distance between PΘi(θ)

and P gt
i (θ). Secondly, we maximize the estimated variance

from the other three branches. The equation is shown as:

LMAR =
DW

(
PΘi(θ)‖P

gt
i (θ)

)
1
2
+ σ2

i

−
4∑

j=1,j 6=i

σ2
j

=
‖θei − θi‖22 + σ2

i

1
2
+ σ2

i

−
4∑

j=1,j 6=i

σ2
j

(3)

where DW (·) is unfolded based on Wasserstein distance
[3]:

DW

(
PΘi(θ)‖P

gt
i (θ)

)
= ‖θei − θi‖

2
2 + σ2

i . (4)

Importantly, we exploit Wasserstein distance instead of
KL-Divergence [18] for angle regression, because KL-
Divergence heavily relies on a non-negligible intersection
between two distributions [1, 18]. Note that, when θei is
estimated accurately, i.e., ‖θei − θi‖

2
2 → 0, the branch i is

expected to predict smaller variance. In addition, a term
1
2 + σ2

i is added for the following reason: due to the ambi-
guities in sub-crack orientation, when the angle θei is es-
timated inaccurately, i.e., ‖θei − θi‖

2
2>

1
2 , we expect the

branch i to be able to predict larger variance σ2
i so that

LMAR will be lower. Moreover, according to our piece-
wise angle definition, the size regression loss Lsize for the
redefined ground truth height hi and width wi is defined as
Lsize = |hei − hi|+ |we

i −wi| where hei and we
i indicate the

estimated height and width from the valid branch i. Then,

6657



the overall training objective is shown below:

LCrackDet = Lk + λoffLoff + λsizeLsize + λMARLMAR

(5)
where Lk and Loff are the losses of center point recogni-
tion and offset regression by following CenterNet [73]. The
hyper-parameter λoff , λsize, and λMAR are constant fac-
tors to control the balance of the above losses.

3.4. Inference

At the inference step, there are four branches, each of
which will predict the height, width, angle, and standard de-
viation. Thus, we can not directly decide which one should
be adopted. Fortunately, with the help of MAR Loss, we
design an angle-based variance voting for obtaining the fi-
nal bounding boxes. Firstly, we extract the peaks in the
heatmap by following CenterNet [73]. Then, we get stan-
dard deviations σ1, σ2, σ3, σ4 from four branches at each
peak. As shown in Fig. 4, for each peak, we choose branch
i that has the minimum estimated variance to obtain the
raw output: i∗ = argmini={1,2,3,4} σ

2
i . Next, according

to CenterNet [73], we obtain the center (i.e., x and y) of
the oriented bounding box according to the above peaks
and the offset branch. Finally, we acquire the final height
ho = hei∗\∆(θei∗), width wo = we

i∗\∆(θei∗), and angle
θo = Γ(θei∗) of the bounding box by the following equa-
tion:

Γ (θei ) ,


θei , i = 1,
90◦ − θei , i = 2,
90◦ + θei , i = 3,
180◦ − θei , i = 4.

(6)

∆ (θei ) ,


cos (θei ) , i = 1,
sin (90◦ − θei ) , i = 2,
sin (90◦ + θei ) , i = 3,
− cos (180◦ − θei ) , i = 4.

(7)

where i denotes the index of the selected branch. θei indicate
the estimated angle from branch i. It is worth noting that the
remaining inference step is the same as CenterNet [73].

3.5. The proposed datasets

To promote the research on oriented sub-crack detection,
we propose ONPP, ORC, and OCCSD datasets, which are
collected from industrial facilities, road pavement, and var-
ious buildings in real-world applications.
ONPP: This dataset is collected from the industrial facili-
ties in real-world applications by a high-resolution camera,
comprising 200 images with the size of 7360 × 4912. The
width of the crack in the collected images varies from 0.05
mm to 10 mm. Moreover, the collected images contain dif-
ferent kinds of noise, such as various concrete types and
light intensity. To extend this dataset without compromising
the resolution, we directly slice these images into 512×512
pixels, constructing a final dataset with 3,104 samples.

ORC: This dataset is collected from road pavement by a
mobile vehicle equipped with a high-resolution camera. It
contains 300 images with a size of 3489×3489. The images
of this dataset include various sizes of cracks in the road. It
also contains a lot of noise, such as well covers and various
appearances of the crosswalk. Similar to ONPP, we slice
these images into 512×512 pixels, constructing a final road
pavement dataset with 1,303 samples.
OCCSD: This dataset is extended from the concrete
crack segmentation dataset [71], which contains 458 high-
resolution images (4032 × 3024 pixels). We construct an
oriented sub-crack detection dataset with 1,875 samples by
slicing these images into 512 × 512 pixels and relabeling
them from an oriented sub-crack detection perspective.

4. Experiments

4.1. Experiment details

Evaluation testbed. We conduct experiments for oriented
sub-crack detection on three datasets, i.e., ONPP, ORC, and
OCCSD. By following the existing crack detection work
[8, 31], we divide each dataset into the training, validation,
and test set, with the proportion of 8 : 1 : 1. Moreover,
to further verify the effectiveness of CrackDet, we also pro-
vide the experiment results on the HRSC2016 dataset [29].
HRSC2016 dataset contains 1,061 samples. Its resolution
ranges from 300× 300 to 1500× 900. For fairness, accord-
ing to previous works [55, 16, 23], we exploit the training
set (436 images) and validation set (181 images) for train-
ing, and the testing set (444 images) for evaluation.
Implementation details. We adopt Adam as the optimizer
for training. The total epoch for training the CrackDet
is set as 60, 60, 60, and 140 on ONPP, ORC, OCCSD,
and HRSC2016 datasets, respectively. For the first three
datasets, the initial learning rate is set to 4e − 4 and re-
duced by a factor of 10 after 20, and 40 epochs. For the
last one, the initial learning rate is 4e− 4 and reduced by a
factor of 10 after 90, and 120 epochs by following the pre-
vious work [39]. The batch size for ONPP, ORC, OCCSD,
and HRSC2016 is set to 32, 32, 32, and 8, respectively.
More importantly, the input resolutions of four datasets are
512 × 512, 512 × 512, 512 × 512, and 768 × 768, respec-
tively. By following the previous work [16], we only use
random flipping for data augmentation. We implement our
ReEDNet based on ResNet50 and e2cnn [52], and denote
it as ReED-R-50. We train all models on four RTX 3090
GPUs and test on a single RTX 3090 GPU. According to
our hyper-parameter sensitivity study, we set λoff = 0.1,
λsize = 0.2, and λMAR = 0.1 in our next experiments.
Evaluation metrics. Following previous works [75, 54],
we evaluate the performance of CrackDet on oriented crack
detection, in terms of Precision and Recall. Moreover, we
adopt the mean orientation error (MOE) to verify the effec-
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Method ONPP ORC
Precision ↑ Recall ↑ MOE ↓ Precision ↑ Recall ↑ MOE ↓

FCrack-O2020 [13] 0.7037 0.8263 0.2785 0.6631 0.8714 0.3397
ReCrack-O2021 [50] 0.7506 0.6719 0.3987 0.7432 0.8254 0.3282
CABF-FCOS-O2021 [69] 0.7893 0.8413 0.3263 0.7630 0.8851 0.3744
Y3Crack-O2022[31] 0.7134 0.7379 0.3350 0.7103 0.8514 0.3632
CenterCrack-O2022 [51] 0.7226 0.6132 0.3574 0.7731 0.8102 0.3085
Yolo-ViT-O2022 [54] 0.7766 0.8379 0.3503 0.7982 0.8461 0.2978
CrackDet 0.8204 0.9106 0.1680 0.8578 0.8926 0.1166

Table 1. Comparison with the state-of-the-art crack detectors on ONPP and ORC. MOE denotes the mean orientation error.

tiveness of the proposed method for estimating crack orien-
tation. For the detection accuracy on the HRSC2016, we
adopt the mean average precision (mAP) as an evaluation
criterion, which is consistent with VOC2007 metrics.

4.2. Comparison with crack detection approaches

In this section, our method is compared to several base-
lines including state-of-the-art robust crack detection meth-
ods: FCrack uses Faster R-CNN to detect the crack patch
[13], Y3Crack designs a intelligent system based on YOLO
v3 for detecting crack [31], CenterCrack proposes a crack
detection model by using CenterNet [51] , ReCrack utilizes
the RetinaNet to find the crack in asphalt pavement [50],
CABF-FCOS proposes a one-stage network that can detect
various defects including crack [69]. Yolo-ViT applies the
Transformer to YOLO v5 for crack detection [54]. Note
that, all of these methods can not detect the orientation of
cracks. For a fair comparison, we add a branch to these
methods for the regression of crack orientation and denote
them as FCrack-O, Y3Crack-O, CenterCrack-O, ReCrack-
O, CABF-FCOS-O, and Yolo-ViT-O respectively. All ex-
periments are independently carried out on ONPP and ORC
datasets. Table 1 provides the performance of various ap-
proaches from our oriented sub-crack detection perspective
for crack detection. Bold denotes the best results. It can
be found that the proposed method compares favorably to
other competitive crack detection approaches. For exam-
ple, compared with the Yolo-ViT-O, the precision and re-
call of CrackDet are 0.8204 and 0.9106 while the Yolo-
ViT-O only achieves 0.7766 and 0.8379 on ONPP dataset.
For the ORC dataset, CrackDet brings performance gains
over Yolo-ViT-O around 6.0% and 4.7% under the preci-
sion and recall metrics. Moreover, in terms of MOE metric,
the proposed CrackDet achieves consistent improvements
on all datasets. The results above together show the neces-
sity that the boundary discontinuity problem and the ambi-
guities in orientation should be treated properly under the
oriented sub-crack detection tasks.

4.3. Discussion on the segmentation-based methods

In this section, considering the detection-then-
segmentation strategy in the real-world application
[33, 35], we further verify that the proposed method can
serve as a complement to segmentation-based methods.
More specifically, for the pixel-level segmentation task,
we replace the oriented box annotation with pixel-level
annotation for the OCCSD dataset. Table 3 shows that
the proposed method can improve the segmentation re-
sults, especially for the segmentation model with limited
performance. The reason attributes that the proposed
method can provide a more fine-grained localization, which
can effectively promote the segmentation model being
influenced by the noise background.

4.4. Comparison with oriented detection methods

To further validate our method, we conduct a series
of experiments on both crack datasets and HRSC2016,
and report quantitative results to verify the effectiveness
of CrackDet. As CrackDet shows the purpose of detect-
ing the oriented object, we compare it with existing state-
of-the-art oriented detectors with the help of [74], includ-
ing Oriented RepPoints [23], Oriented R-CNN [55], SASM
[19], etc.
Results on oriented sub-crack detection. Table 2 provides
the comparison results over the existing powerful oriented
object detectors. We can observe that, first, our Crack-
Det outperforms the existing detectors by a large margin in
terms of Precision. The reason is that the proposed piece-
wise angle definition can promote the proposed detector to
take advantage of rotation-equivariant features and be free
of the boundary discontinuity problem. Secondly, CrackDet
yields significant and consistent improvement on all three
datasets in terms of MOE metric. The reason can be ex-
plained as CrackDet can estimate the angle confidence with
the help of the multi-branch architecture and MAR Loss.
Thus, according to the corresponding angle confidence from
each branch, the angle-based variance voting improves the
angle estimation results.
Results on HRSC2016. For fairness, we follow the same
settings in Oriented RepPoints [23], and report the results
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Method ONPP ORC
Precision ↑ Recall ↑ MOE ↓ Precision ↑ Recall ↑ MOE ↓

CSLECCV’20 [60] 0.7309 0.8146 0.2633 0.7943 0.7437 0.3285
R3Det AAAI’21 [62] 0.7835 0.7433 0.2977 0.7697 0.7312 0.4280
S2ANet TGRS’21 [15] 0.7773 0.7773 0.4133 0.7068 0.7868 0.4640
ReDet CVPR’21 [16] 0.7844 0.8059 0.2743 0.7191 0.8684 0.3335
Beyond Bounding-Box CVPR’21 [14] 0.7790 0.8468 0.3003 0.6076 0.9039 0.3441
Oriented R-CNNICCV’21 [55] 0.8032 0.7355 0.2172 0.7087 0.7416 0.3470
GWD ICML’21 [63] 0.7169 0.7884 0.4401 0.7576 0.8632 0.3014
KLDNeurIPS’21 [65] 0.7466 0.6407 0.3446 0.7424 0.9076 0.2818
SASM AAAI’22 [19] 0.7416 0.8303 0.3062 0.7653 0.9038 0.3489
Oriented RepPoints CVPR’22 [23] 0.7880 0.8782 0.3008 0.7851 0.9101 0.3497
CrackDet 0.8204 0.9106 0.1680 0.8578 0.8926 0.1166

Table 2. We provide a detailed comparison over general oriented detection approaches on ONPP and ORC.

Precision ↑ Crackformer ICCV’21 [27] JTFN ICCV’21 [10] LIOT TIP’22 [45]
w/o CrackDet 0.781 0.754 0.803
w/ CrackDet 0.814 0.798 0.819

Table 3. Segmentation performance with CrackDet on OCCSD.

under the VOC2007 metric. Table 4 shows the compari-
son results. The proposed CrackDet achieves the best per-
formance, even compared with strong FPN-based baselines.
Such results further validate that the proposed CrackDet has
the potential in more oriented object detection tasks.

Methods Backbone mAP50(07) ↑
R3Det AAAI’21 [62] R-101-FPN 89.26
R3Det-DCL CVPR’21 [58] R-101-FPN 89.46
FPN-CSLECCV’20 [60] R-101-FPN 89.62
ReDet CVPR’21 [16] Re-R-50 90.46
DAL AAAI’21 [32] R-101-FPN 89.77
S2A-Net TGRS’21 [15] R-101-FPN 90.17
S2A-Net-DHRec PAMI’22 [37] R-101-FPN 90.22
Oriented R-CNN ICCV’21 [55] R-50-FPN 90.40
Oriented RepPoints CVPR’22 [23] R-50-FPN 90.38

CrackDet ReED-R-50 90.60

Table 4. We report results on the HRSC2016 test set. mAP(07)
denotes detection results under VOC2007 mAP metrics.

4.5. Ablation study

To examine the contribution of each component in our
proposed detector: rotation-equivariant network, the num-
ber of valid ranges in the proposed piecewise angle defini-
tion, and MAR Loss, a series of ablation experiments are
performed on ONPP and ORC datasets.
Evaluation on the rotation-equivariant network. As ex-
pected, CrackDet achieves better results by combining the
rotation-equivariant network. Table 5 shows that it im-
proves the precision, recall, and MOE by 0.91%, 1.5%, and
0.023 with the help of the rotation-equivariant network, re-
spectively. The reason behind this effect is that rotation-

equivariant features extracted by the rotation-equivariant
network are beneficial to size and angle regression within
the proposed piecewise angle definition.

Methods ONPP
Precision ↑ Recall ↑ MOE ↓

w/o Rotation-equivariant network [17] 0.8113 0.8952 0.1914
w/ Rotation-equivariant network 0.8204 0.9106 0.1680

Table 5. Performance comparisons of with- and without rotation-
equivariant backbone on ONPP dataset.

Evaluation on the number of valid angle ranges. We
study the effect of the number of valid angle ranges in our
piecewise angle definition. For fairness, we do not add the
factor sin(θ) or cos(θ) for all settings. Table 6 shows the
results using one to five ranges. The corresponding results
demonstrate that our four ranges definition improves over
the single range (baseline) with a 0.14 decrease. As can be
noticed, the five ranges do not bring further improvement
over the four ranges. By considering the complexity and
performance, we choose four ranges as the default setting.

Num Valid Angle Ranges MOE ↓
1 [0◦, 180◦) 0.33
2 [0◦, 90◦), [90◦, 180◦) 0.30
3 [0◦, 60◦), [60◦, 120◦), [120◦, 180◦) 0.21
4 [0◦, 45◦), [45◦, 90◦), [90◦, 135◦),[135◦, 180◦) 0.19
5 [0◦, 36◦), [36◦, 72◦), [72◦, 108◦), [108◦, 144◦), [144◦, 180◦) 0.22

Table 6. Results from the different number of ranges on ONPP.

Evaluation on MAR loss. It is to be expected that Crack-
Det combined with MAR Loss achieves consistent improve-
ments on ONPP and ORC datasets, shown in Table 7. The
reason is three-fold: (1) KL Loss may fail when two dis-
tributions do not have a non-negligible intersection. (2) By
learning to estimate high variances for the ambiguous crack
orientation during training, our model is able to learn confi-
dence in predicting sub-crack orientation. (3) MAR Loss
incorporates learning angle confidence which can poten-
tially help the network to learn discriminative features. The
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learned variances through our MAR Loss are interpretable
(see Fig. 4). Our network will output higher variances for
ambiguous crack orientation, which can be useful in judg-
ing the overall orientation in real-world applications [38].

Methods ONPP ORC
Precision ↑ Recall ↑ MOE ↓ Precision ↑ Recall ↑ MOE ↓

KL Loss [18] 0.7865 0.8718 0.2425 0.8149 0.8537 0.1986
MAR Loss 0.8204 0.9106 0.1680 0.8578 0.8926 0.1166

Table 7. Performance comparisons of MAR Loss and KL Loss.

5. Conclusion

In this work, by starting from a new perspective for crack
detection, we propose CrackDet, a first-of-its-kind oriented
sub-crack detector that overcomes the boundary disconti-
nuity problem. Meanwhile, we propose the MAR loss to
capture the ambiguities in crack orientation by combining
CrackDet. The experiments demonstrate that our method
outperforms state-of-the-art crack detectors and oriented
detectors. On one hand, as we also construct three datasets
for oriented sub-crack detection, this work should also give
a direction to researchers for designing the crack detector
from the oriented sub-crack detection perspective. On the
other hand, it highlights the key drawback of existing per-
spectives of crack detection (i.e., a high labeling cost of
pixel-level segmentation, and a coarse crack localization
of patch-level classification and object-level detection). We
believe this paper has the potential to inspire the following
works: (1) multi-model learning [24, 25] for boosting the
detection performance in a novel field with limited target
data [21], (2) semi-supervised learning and active learning
[9] to further alleviate its labeling cost in real-world appli-
cations, and (3) oriented sub-crack detection via horizontal
annotations [66].
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A simplified computer vision system for road surface in-
spection and maintenance. IEEE Transactions on Intelligent
Transportation Systems, 17(3):608–619, 2015. 2

[43] Joseph Redmon, Santosh Divvala, Ross Girshick, and Ali
Farhadi. You only look once: Unified, real-time object de-
tection. In Proc. CVPR, pages 779–788, 2016. 2

[44] Shaoqing Ren, Kaiming He, Ross Girshick, and Jian Sun.
Faster r-cnn: Towards real-time object detection with region
proposal networks. In Proc. NeurIPS, 2015. 2

[45] Tianyi Shi, Nicolas Boutry, Yongchao Xu, and Thierry
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