
Workie-Talkie: Accelerating Federated Learning by Overlapping Computing and
Communications via Contrastive Regularization

Rui Chen1, Qiyu Wan1, Pavana Prakash1, Lan Zhang2, Xu Yuan3, Yanmin Gong4, Xin Fu1, and Miao Pan1

1University of Houston, 2Michigan Technological University, 3University of Delaware, 4University of
Texas at San Antonio

Abstract

Federated learning (FL) over mobile edge devices is a
promising distributed learning paradigm for various mobile
applications. However, practical deployment of FL over
mobile devices is very challenging because (i) conventional
FL incurs huge training latency for mobile edge devices
due to interleaved local computing and communications of
model updates, (ii) there are heterogeneous training data
across mobile edge devices, and (iii) mobile edge devices
have hardware heterogeneity in terms of computing and
communication capabilities.

To address aforementioned challenges, in this paper, we
propose a novel “workie-talkie” FL scheme, which can
accelerate FL’s training by overlapping local computing
and wireless communications via contrastive regularization
(FedCR). FedCR can reduce FL’s training latency and almost
eliminate straggler issues since it buries/embeds the time
consumption of communications into that of local training.
To resolve the issue of model staleness and data heterogene-
ity co-existing, we introduce class-wise contrastive regular-
ization to correct the local training in FedCR. Besides, we
jointly exploit contrastive regularization and subnetworks to
further extend our FedCR approach to accommodate edge de-
vices with hardware heterogeneity. We deploy FedCR in our
FL testbed and conduct extensive experiments. The results
show that FedCR outperforms its status quo FL approaches
on various datasets and models.

1. Introduction

Thanks to the hardware advance, edge devices are be-
coming capable of training deep neural networks (DNNs)
on-device [8, 1]. Meanwhile, federated learning (FL) has
been emerging as a powerful distributed learning framework
which enables collaborative training without sharing the data.
FL over edge devices is promising to provide various appli-

cations, including e-Healthcare [2], map construction for
autonomous driving [36], smart farming in agricultural IoT,
etc. One of the most important challenges hindering FL over
edge devices from flying is the huge latency of FL train-
ing, which is mainly caused by wireless communications
between FL server and edge devices, data heterogeneity, and
hardware heterogeneity of edge devices.

Popular FL frameworks consider to interleave the com-
puting of local model training and communications of local
model updates for FL training [22, 16]. If such FL training
is carried out across GPU clusters with Ethernet connection
(50-100 Gbps [32]), the network latency (≤1 ms) is negligi-
ble. Nevertheless, FL over edge devices are connected wire-
lessly, so the transmission bandwidth is limited and network
latency is too big to ignore. To cut the network latency in
wireless communications of model updates, recent research
efforts in [38, 37] overlapped local training phase with the
wireless transmission phase of model update. The update
correction scheme [38] was also developed to handle the is-
sue of model staleness [4], which means using an old version
of global model to perform local training during FL training.
As demonstrated in our empirical studies (Section 3.1), the
existing update correction schemes face significant accuracy
drops and fail to improve the system efficiency when the
training data of edge devices are heterogeneous.

For most FL cases, local data distributions of edge de-
vices are different from the overall global distribution. When
FL clients conduct local training on their own data, the local
model updates point to the direction towards the local optima,
which may not be consistent with the objective of the aggre-
gated global model. It is called model drift issue [13, 17, 18],
and result in unstable FL training, which can severely slow
down the FL convergence. To address data heterogeneity
issue, existing approaches chose to share data across a subset
of devices [6], or to correct the local updates via variance
reduction [13]. However, those FL methods above cannot
deal with the model staleness issue. Besides, they do not
consider the hardware heterogeneity of edge devices.

This ICCV paper is the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it is identical to the accepted version;

the final published version of the proceedings is available on IEEE Xplore.

16999

FL clients vary a lot in terms of computing (i.e., CPU,
GPU, memory, etc.), and wireless communication (i.e., chan-
nel conditions, wireless accessing technologies, etc.) capa-
bilities. Such hardware heterogeneity of edge devices, or
device heterogeneity for short, results in huge performance
differences among participating edge devices, which occurs
straggler problem in FL system, and thus causes huge FL
training latency. To handle the straggler issue, some works
in the literature [26] developed deadline based schemes that
exclude the slow devices after a pre-set timestamp or allow
partial updates from the stragglers, which may lead to biased
gradient updates that affect FL accuracy.

Aiming to address aforementioned three associated chal-
lenges at one strike and reduce the latency of FL over edge
devices, in this paper, we propose a novel “workie-talkie”
FL scheme, which can accelerate FL’s training by overlap-
ping local computing and communications via constrastive
regularization (FedCR). To address the high communica-
tion latency and data heterogeneity issues, FedCR overlaps
computing and communications, and novelly integrates con-
strastive learning (CL) into FL local training to reduce the
potential training accuracy loss. Since CL helps local models
learn close to the global model, it can overcome the model
drift issue caused by data heterogeneity. To deal with the
model staleness caused by the overlapping scheme, we de-
velop a novel class-wise contrastive loss in the model level to
smooth the stale global model. In this way, FedCR can fully
exploit the benefits of contrastive regularization to achieve a
fast and stable FL training over edge devices. Moreover, to
reduce corresponding computing overheads in CL and tackle
device heterogeneity issue, we extend our FedCR to enable
heterogeneous local model training over edge devices. That
helps to reduce local computing time and the size of model
updates for communications throughout FL training process.
Our salient contributions are summarized as follows.

• To address high communication latency and data hetero-
geneity issues, we propose FedCR, a novel FL approach
to accelerate FL’s training over edge devices by overlap-
ping computing and communications and integrating
CL into local training to regularize local updates.

• To resolve model staleness issue, we propose a class-
wise contrastive regularization method. By assigning
class-wise temperature for each edge device, we aim to
properly align the local models with the global model.

• To address device heterogeneity issue, FedCR allows
edge devices to select and train a subnetwork of the
original DNN based on their available resources. We
develop a temperature scaling strategy to accommodate
heterogeneous local model training in FedCR.

• We set up testbeds and conduct extensive experiments
to verify the effectiveness of the proposed FedCR ap-

proach under various learning models, different data
distributions across heterogeneous edge devices, and
multiple wireless transmission settings.

2. Background
2.1. Federated Learning

We consider an FL system consisting of one FL server and
N edge devices. Each device has its own dataset with Dn

samples. All edge devices attempt to jointly learn a global
DNN model w under the coordination of the FL server. A
standard global objective of FL is

min
w∈Rd

F (w) :=
∑N

n=1
πnFn(w), (1)

where πn = Dn/
∑N

n=1 Dn is the aggregation weight of de-
vice n and Fn(w) is the local loss function of device n. Fe-
dAvg was proposed in [22] to solve the problem in Eqn. (1).
In each round r, the FL server first broadcasts global model
wr

g to the participating devices. Then, each edge device n
let wr,0

n = wr
g and then perform K local training iterations

with its local dataset. Last, the FL server aggregates the
local models, {wr,K

n }Nn=1 to produce the new global model,
wr+1

g and send it back to the devices. This procedure repeats
until FL global model converges. The overall training time
of synchronous FL is

Tsync = Rsync · max
1≤n≤N

{K · T cp
n + T cm

n }, (2)

= Rsync · (K · T cp
n + T cm

n + Twait
n),∀n. (3)

Here, Rsync is the total communication rounds, T cp
n and

T cm
n are the average computing time for one training itera-

tion and the average communication time per FL round of
n-th device, respectively. Given straggler issues in synchro-
nized FL systems, per-round training time is determined by
the slowest device. In other word, besides the computing and
communication time, participating devices also have waiting
time Twait

n ≥ 0.

2.2. Computing and Communication Overlapping

An efficient scheme for reducing Tsync in Eqn.(2) is to
overlap local model training and model aggregation to mask
out the communication time and waiting time. Generally
speaking, different from FedAvg, instead of waiting for the
global model of the next communication round, every de-
vice n immediately starts performing local training using
its local model wr,K

n . Specially, when edge devices receive
the global model wr+1

g in the (t + 1)-th round, device n
has already run additional Sn local training iterations and
updated the model to wr,K+Sn

n . In other words, the resul-
tant weights are typically computed with respect to outdated
parameters (i.e., the global parameters from the previous

17000

round). Denote staleness of device n as the number of local
training iterations performed during the model transmission,
i.e., Sn =

⌈
(T cm

n + Twait
n)/T cp

n

⌉
. The staleness of system

is determined by the device with largest staleness level, i.e.,
S = maxn{Sn}.

The overall training time, denoted as Tol, of those overlap
FL training framework is given as,

Tol = max
1≤n≤N

{Rol ·K · T cp
n + T cm

n }, (4)

≈ max
1≤n≤N

{(Rol ·K + Sn)T
cp
n }, (5)

where Rol is the total number of communication rounds
run in the overlapping learning process. Hence, the system
speedup can be derived as,

Ratio =
Tsync

Tol
=

Rsync maxn{(K + Sn)T
cp
n }

maxn{(RolK + Sn)T
cp
n }

. (6)

Overlapping learning can be achieved by either identi-
fying the optimal gradient transfer order [9], using staled
model weights [20], or using delayed model updates [27, 38].
In particular, DGA [38], the state-of-art overlapping scheme,
aimed to correct the mismatch caused by the overlapping.
DGA replaced the old local gradients from several itera-
tions before with stale averaged gradients. The comparison
of training timeline between synchronization and different
overlapping schemes is shown in Supplementary Material.

However, existing overlapping learning frameworks have
three main weaknesses. 1) Many of these methods incur
substantial overheads especially in memory. For instance, in
DGA, each edge device has to locally store multiple copies
of its old local model updates for update correction. Thus,
the memory consumption increases linearly with the stale-
ness level (See Supplementary Material for more details).
It becomes difficult to implement FL algorithm on resource
limited edge devices in wireless network environment. 2) Ex-
isting overlapping designs fail to consider data heterogeneity
issue. Hence, when data heterogeneity and severe staleness
issues co-exist, it would extremely slowdown convergence
and fail to reach the desired accuracy. Thus, it is possible that
the overlapping designs based on model update correction
perform worse than FedAvg (i.e., Ratio < 1 in Eqn.(6)).
3) Since the correction design in the existing overlapping
scheme requires the local model to have the same model
architecture as the global model, it is difficult for these low-
end devices to participate in the large model training. Even
if they can participate, those low-end devices will easily be-
come stragglers, which may aggravate the staleness issue in
existing overlapping approaches.

(a) S = 0. (b) S = 40.

(c) S = 0. (d) S = 40.

Figure 1: CKA similarities vs staleness. Client ID G repre-
sents the global model. (a)-(b): using DGA for FL training;
(c)-(d): using contrastive learning for local training in FL.

3. Overlapping FL with Contrastive Regular-
ization

3.1. Motivation

The memory inefficiency and accuracy degradation of
DGA root from the fact that its design of one-step compen-
sation for the local gradients after the local training cannot
effectively reduce the huge model divergence issue. Theo-
retically, the divergence between the local updates and the
aggregated updates in DGA is upper bounded with a factor
of staleness level S (as stated in Lemma 2.2 in [38]). A
large S value leads to a loose upper bound, indicating slow
convergence. More importantly, this upper bound becomes
more loose under data heterogeneity scenarios. However,
the gradient compensation cannot further reduce the model
divergence.

We next empirically examine how staleness affects the
feature space of the local and global models by training a
ResNet20 on CIFAR-10 dataset (please see Supplementary
Material for more experiment details). Here, we use Cen-
tered Kernel Alignment (CKA) [14] to measure the similarity
of the output features between local models and the global
model, given the same testing datatset. The results are shown
in Fig. 1. CKA outputs a similarity score between 0 (not
similar at all) and 1 (identical). From Figs. 1a and 1b, we can
observe that the average similarity between the local models
and the global model greatly decreases (from 0.72 to 0.51)
as the staleness level increases (from S = 0 to S = 40). It
suggests that the gradient correction in DGA fails to reduce
the model drifts issue when a large staleness occurs. Thus, it
results in a poor global model performance.

17001

Instead, we want to regulate the local model during the
local training by introducing a feature-aligned regulariza-
tion term. A fascinating attribute of feature-aligned local
training is the preservation of global information that is ab-
sent from the local data distribution during local training.
From Figs. 1a and 1b, FedCR achieves much higher pairwise
CKA similarity compared with DGA at different staleness
levels. As expected, the feature learn from local models
is more aligned with the global feature space, which will
reduce model drift. It is especially beneficial in FL with
overlapping designs.

3.2. FedCR Design

The goal of FedCR is to reduce the training latency by
overlapping communication and computation in FL train-
ing. To deal with model divergence when data heterogeneity
and staleness issues co-exist, we introduce a class-wise con-
trastive regularization (CR) into local training. This class-
wise CR provides guidance to local training so that the rep-
resentations of local models to be well aligned to the global
model. As such, edge devices are no longer required to store
multiple copies of old model updates, which saves memory
footprint in the case of high network latency or severe strag-
gler issues. In the following sections, we present the network
architecture, the class-wise CR design, and the learning pro-
cedure. Then, we describe how to incorporate subnetwork
scheme in FedCR to address device heterogeneity issue.

Network architecture. The deep neural network in
FedCR is decoupled into three parts: a network encoder
fenc : X → H that maps the input space X to the represen-
tation space H, a projection head fpjt : H → Z that maps
the high-dimensional representation to a low-dimensional
embedding, and a linear classifier fcls : Z → Y to produce
classification output at the target space Y . Note that given
the limited resource of edge devices, we consider a simple
and fixed projection head that outputs a sub-vector of the
representation vector. Recent study in [12] shows that such
fixed low-rank diagonal projector can outperform a linear
trainable projector.

Let zglob
j,n = zglob

j = fpjt(fenc(w
r
g, xj)),∀n be the pro-

jected representation of the input xj in global model wr
g,

zcur
j,n = fpjt(fenc(w

r,k
n , xj)) be the representation vector of

the input xj in current local model wr,k
n of device n, and

zprev
j,n = fpjt(fenc(w

r,K
n , xj)) be the representation vector of

the input xj in previous local model wr,K
n of device n. All

embeddings are ℓ2-normalized for inner product.

Class-wise CR design. The goal of CR is to enforce
the representation of local model (i.e., zcur

j,n) be close to the
one of the global model (i.e., zglob

j,n) to handle the model
drift issue. Inspired by MOON [18], we define feature-align

Figure 2: Local training in FedCR.

regularization of one data sample xj as follows,

Rn(xj , τn) = − log
exp (zglob

j,n · zcur
j,n /τn)∑

i∈{glob,prev} exp (z
i
j,n · zcur

j,n /τn)
, (7)

where τn is temperature parameter of device n. The numer-
ator in Eqn. (7) aims to maximize the similarity between
current local model and global model and the denominator
in Eqn. (7) minimize the similarity between current local
model and previous local model. Different from MOON
that uses a constant and identical temperature τ to all the
edge device, we consider adaptive temperature assignment
to capture the difference between the local data distribution
of each device and the global distribution, and the change of
feature learned by the global model.

In Eqn. (7), τn controls the strength of encouraging the
feature learned by the device n’s local model to be similar
to that of the global model. When the local model lacks
of sufficient training samples to learn the comprehensive
representation and the global model is reliable, we can adjust
the τn to encourage the local models learn from the more
established global model. Hence, we define the class-wise
temperature tc in class c ∈ Y as

τ cn = pc,g ·
Dn

|Sc
n|+ α

(8)

where Sc
n denotes the set of indices satisfying y = c in

device n’s local dataset. α is a large non-zero value. Here,
pg = [p1,g, · · · , p|Y|,g] is validation accuracy evaluated on
the auxiliary dataset A in the server side and the p is send
to the devices along with the global model. It reflects the
performance of the global model wr

g on class c. When |Sc|
is small and accuracy of global model in class c, pc,g is high,
the penalty strength of feature dissimilarity with large τ cn are
down-scaled, pulling the local model closer to the global one.
On the contrary, the penalty strength of feature dissimilarity
with small τ cn are up-scaled, thus less encouraged to approach
the global model.

17002

Local objective. The class-wise CR of device n with
local dataset Dn is formulated as

Rn =
∑
c∈Y

∑
j∈Sc

n

− log
exp (zglob

j,n · zcur
j,n /τ c

n)∑
i∈{glob,prev} exp (z

i
j,n · zcur

j,n /τ c
n)

.

(9)

The local objective of device n in FedCR is formulated as

Fn(wn) = LCE
n (wn) + λRn, (10)

where λ is to control the weight of contrastive regularizer.
The first part is a cross-entropy loss term in supervised learn-
ing denoted as LCE

n . The second part is our proposed CR
term denoted as Rn. The consequent benefits are obvious:
it saves massive memory footprint, since edge devices no
longer need to store multiple copies of old local model up-
dates. It comes at the cost of additional but constant compu-
tation overheads regardless of staleness levels. In particular,
since the local model trained with one edge device’s own
dataset is better aligned with the global model that aggre-
gates the knowledge from all edge devices’ data, it also
mitigates model drift problems caused by data heterogeneity.
The overall framework of local training is shown in Fig. 2.

Heterogeneous subnetwork training. FedCR re-
quires additional requirement of storing three full-size mod-
els, which may be overwhelming for low-end edge devices.
To solve this issue, a straightforward solution is to train
customize models on edge devices based on their available
resources. Luckily, FedCR does not require the network
architecture to be exactly the same on different devices since
FedCR uses a fixed projector to maps the feature represen-
tation of an arbitrary shape into a fixed dimension. In this
way, FedCR can be easily extended to support heterogeneous
local model training.

Following [11], we consider to use a sub-structure of the
original network encoder as a new encoder that can satisfy
the computing and memory requirement of one edge device.
The new encoder along with the projection head and the
classifier are defined as a subnetwork. The subnetwork de-
sign is parameterised w.r.t the partition rate p ∈ (0, 1] per
layer. More specifically, given a specific partition rate p, for
each layer l with width dl, the neurons with index {0, 1, . . . ,
⌈p · dl − 1⌉} kept in layer l and drops out the rest neurons.
Partition is not applied on the input, the fixed projector for
CR, and last layer to maintain the same dimensionality. Un-
der such nested order subnetwork partitioning, the left-most
features are always used for all the devices during training.
As such, our fixed projector head in CR can help the small
local model learn the representation be to aligned with that
of the global model.

There is a potential issue if we use smaller local subnet-
work. Intuitively, large models learn better representation
than small ones. In the FL scenario, a subnetwork with

Figure 3: Overall framework of FedCR.

Figure 4: FedCR testbed in our lab.

smaller size should pay more attention to penalize its local
model, if it’s far away from the large global model. Here, we
reweight the temperature strategy of device n by multiplying
τn with the partition ratio p. Therefore, τn is designed to
decrease when the devices choose a smaller local model.

4. Implementation

Figure 3 illustrates the overall framework of FedCR.
Specifically, after an edge device n completes K local up-
dates, it sends its updated local model w0,K

n to the FL server.
During the model uploading, device n will not stop and wait,
but continue local training until the new global model is
received. After the first communication round, each device
utilize the evulation of the global model and the proposed
class-wise CR to guide the local model training. On the FL
server side, he aggregates the global model using weighted
averaging and evaluate the aggregated global model using
a public dataset. The the new global model and evaluation

17003

vector of global model will be sent back to the edge devices.
The FedCR is implemented on testbed. As illustrated

in Fig. 4, it consists of an FL aggregator and several FL
clients. On FL edge server side, we use a NVIDIA RTX 8000
with 4 GPUs. The FL server and FL clients are wirelessly
connected via a Wi-Fi 5 router. On FL edge device side,
we consider three types of edge devices: NVIDIA Jetson
Xavier NX, NVIDIA Jetson TX2, and NVIDIA Jetson Nano.
Their profiles are summarized in Supplementary Material.
For the communications between FL aggregator and clients,
we follow the WebSocket [7] communication protocol and
use bmon [23] to measure wireless transmission speed.

5. Evaluation
5.1. Experiment Setup

Datasets and models. Our experiments consider three im-
age classification tasks, three CNN models: CNN, ResNet20,
and ResNet34 [10], and three open datasets: CIFAR-10,
CIFAR-100, and Tiny-ImageNet1. For CIFAR-10, we use
a CNN network which has two 5x5 convolution layers fol-
lowed by 2x2 max pooling and two fully connected layers
with ReLU activation. For CIFAR-100, we use ResNet20
model as the base encoder. For Tiny-ImageNet, we use
ResNet34 model as the base encoder. The auxiliary dataset
in the FL server side consists a small number of data samples
with size of 32 for different classes. In our experiments, we
follow the strategy from [31] to sample auxiliary data for
CIFAR-10 and CIFAR-100, Tiny-ImageNet. The number of
local training iterations K = 20 for all the datasets. Other
hyper-parameter settings are provided in Supplementary Ma-
terial.
Data partition. We consider FL training with non-IID cases.
We use Dirichlet distribution with four different concentra-
tion parameters β ∈ {0.1, 0.5, 1, 5}. A small β indicates a
high data heterogeneous level. Without specific explanations,
we consider β = 0.5 in the following experiments.
Device distribution. The proportion of these three device
categories is 0.1 : 0.4 : 0.5, which is representative of in-the-
field system performance distribution [33]. According to the
testbed configuration, we consider Xavier NX as high-end
devices, TX2 as medium-end devices, and Nano as low-end
devices. We consider the high-end devices to train the model
with p = 1 (full size), the medium-end devices with p = 0.6,
and the low-end devices with p = 0.2. Hence, only 10%
clients train the network with p ≤ 1, 40% clients train with
p ≤ 0.6 and the rest clients train with p ≤ 0.2.
Wireless transmission settings. We consider two different
wireless transmission scenarios: indoor and outdoor envi-
ronments, where the transmission speeds are 100Mbps and
20Mbps, respectively. According to the model size and de-
vices used in our experiments, we estimate the corresponding

1https://www.kaggle.com/c/tiny-imagenet

staleness levels are 10 and 40 for CIFAR-10, respectively.
Without specific explanations, we consider outdoor environ-
ment in the following experiments.
Peer FL designs for comparison. We compare FedCR
with DGA [38], LGC [34], Overlap-Prox [19], Overlap-
MOON, and Overlap-HeteroFL. LGC [34] allows straggler
devices to postpone their (partial) model updates by one
communication round. In Overlap-Prox,Overlap-MOON
and Overlap-HeteroFL, we slightly modify original Fed-
Prox [18], MOON [18], and HeteroFL [5] by overlap-
ping the computing and communications, respectively. For
Overlap-Prox, there is a hyperparameter µprox to con-
trol the weight of its proximal regularizer (i.e., Fprox =
LCE+µproxRprox). We set µprox to 0.1 by default like [19].
For local model in Overlap-MOON, we follow the original
MOON [18] and use 2-layer MLP as a trainable projector
head to construct positive and negative pairs. The output
dimension of the projection head is set to 256 and the tem-
perature parameter τ is 0.5 for all devices and λ is 5.

5.2. FL Performance Comparison

Convergence rate vs overall training time. Figure 5 shows
the comparison of different FL schemes in terms of testing
accuracy vs communication rounds/FL training time. In
general, we observe that FedCR outperforms its peer FL
schemes across different image classification tasks. Take
CIFAR-100 as an example in Fig.5b and Fig.5e, FedCR
speedups the training process by 1.52× and 2.01× for reach-
ing target accuracy of 58.8%, compared to DGA and LGC,
respectively. FedCR increases the testing accuracy by 5.8%
and 2.8% with 700 rounds, compared with DGA and LGC,
respectively. FedCR uses 1.65× and 2.67× less communica-
tion rounds on Tiny-ImageNet for reaching target accuracy
of 20% as shown in Fig. 5a, compared to DGA and LGC,
respectively.

As expected, FedCR outperforms DGA. As discussed
in Sec. 3.1, when DGA fails to tightly control the model
divergence (See Fig. 1), it makes the latency reduction of
overlapping communication with computing less effective.
By contrast, FedCR can mitigate the model divergence to
reduce the total number of FL rounds and training time.

FedCR outperforms LGC, since LGC aims to overcome
the straggler issue but still cannot handle the big latency of
wireless communications. The devices still need to wait for
the new aggregated global model to start the local training
for the next round. FedCR, on the other hand, buries the
communication latency into the local computing time to
address both communication latency and straggler issues.
Fixed and Dynamic Regularization. We evaluate the effec-
tiveness of the proposed class-wise CR. We compare FedCR
with Overlap-Prox, DGA, and Overlap-MOON. Overlap-
Prox aims to align the weights of local model with those of
the global one and has a small memory overhead (only store

17004

0 200 400 600

communication rounds

0

0.2

0.4

0.6

0.8

1
T

e
s
ti
n

g
 a

c
c
u

ra
c
y

LGC
DGA
FedCR

(a) CIFAR-10

0 200 400 600

communication rounds

0

0.1

0.2

0.3

0.4

0.5

0.6

T
e

s
ti
n

g
 a

c
c
u

ra
c
y

LGC
DGA
FedCR

(b) CIFAR-100

0 20 40 60 80 100

communication rounds

0

0.05

0.1

0.15

0.2

0.25

T
e
s
ti
n
g
 a

c
c
u
ra

c
y

LGC
DGA
FedCR

(c) Tiny-ImageNet

0 5 10 15 20
Training time (10

2
 s)

0

0.2

0.4

0.6

0.8

1

T
e

s
ti
n

g
 a

c
c
u

ra
c
y

LGC
DGA
FedCR

(d) CIFAR-10

0 20 40 60
Training time (10

2
 s)

0

0.1

0.2

0.3

0.4

0.5

0.6

T
e
s
ti
n
g
 a

c
c
u
ra

c
y

LGC
DGA
FedCR

(e) CIFAR-100

0 50 100 150
Training time (10

2
 s)

0

0.05

0.1

0.15

0.2

0.25

T
e

s
ti
n

g
 a

c
c
u

ra
c
y

LGC
DGA
FedCR

(f) Tiny-ImageNet

Figure 5: The convergence of testing accuracy over iterations and time. (a)-(c) illustrate the accuracy after training for a given
round (i.e., 600 rounds for CIFAR-10, 700 rounds for CIFAR-100, and 100 rounds for Tiny-ImageNet). (d)-(f) show the overall
training time for reaching the target accuracy (i.e., 81% for CIFAR-10, and 58.8% for CIFAR-100, 21% for Tiny-ImageNet)

.

Table 1: The number of parameters are counted for each
communication round (# Para). The ‘M’ after metric values
means ×106. The speedup is evaluated using Eqn. (6). The
testing accuracy is on CIFAR-100. We run three trials and
report the mean and standard derivation.

Methods Acc #Para Speedup

DGA 58.8% ± 1.1% 163M 2.82

Overlap-Prox 56.1% ± 0.4% 86M 2.82

Overlap-MOON 63.6% ± 0.8% 127M 2.18

FedCR 62.3% ± 0.5% 122M 2.58

two models locally). FedCR and Overlap-MOON have both
demonstrated significant improvements in accuracy com-
pared to Overlap-Prox and DGA. It indicates that using CR
is more effective than using gradient correction and weight
alignment in the situations of large network latency. Overlap-
MOON with the trainable projector has better testing accu-
racy, while the training time is longer, compared with the
proposed FedCR. In Table 1, it is observed that the accuracy
gain of Overlap-MOON is 1.02×, while the training time
per iteration increases by 1.2×. This is because although
Overlap-MOON introduces a trainable projector in CR, it

Table 2: The test accuracy with different temperature assign-
ments.

Methods CIFAR-10 CIFAR-100

β = 0.5 β = 5 β = 0.5 β = 5

Fixed τ 82.2% 87.2% 61.3% 64.7%

Avg τn 82.7% 87.8% 61.9% 65.1%

Class-wise τn 83.1% 88.2% 62.3% 65.4%

extracts good representation of learned models at the cost of
higher model complexity, leading to longer training time per
local iteration and more memory usage. By contrast, FedCR
uses a fixed and non-trainable projector, and class-wise CR
to accelerate local training. More experiments related to the
impact of training budget can be found in Supplementary
Material. Compared with the peer schemes, FedCR achieves
the best trade-off among the learning performance, memory
size and training time speedup.
Temperature Design. Here we compare different temper-
ature strategies. ‘Fixed τ ’ assigns the fixed and same tem-
perature to all the devices; ‘Avg τn’ is the average value of
τ cn in Eqn. 8 and does not consider the class-aware infor-
mation; ‘Class-wise τn’ is our proposed scheme in FedCR.
For ‘Fixed τ ’, we tune τ from {0.2, 0.5, 1} and select the

17005

0 10 20 30 40
Staleness

40
45
50
55
60
65
70
75

Te
st
 a
cc
ur
ac

y
(%

)

DGA
FedCR
LGC

Overlap-MOON
Overlap-Prox

43 MB

95 MB

146 MB

198 MB

Figure 6: The test accuracy and memory
usage with varying stalenessß.

β = 0.1 β = 0.5 β = 1 β = 5
Non-iid Level

1.0

1.1

1.2

1.3

1.4

1.5

1.6

1.7

Sp
ee

du
p

Overlap-Prox
FedCR
Overlap-MOON

DGA
LGC

Figure 7: Training speedup with varying
β values.

25 50 75 100 125
Memory usage (MB)

40

45

50

55

60

Te
st
 a
cc
ur
ac
y
(%

)

FedCR
Overlap-HeteroFL
Overlap-MOON

p=0.2

p=0.6

p=1.0

Figure 8: The testing accuracy and mem-
ory usage under different p-subnetwork.

one with highest testing accuracy. The results are shown
in Table 2. We can observe that FedCR benefits from the
class-wise temperature assignment. As β becomes smaller,
the accuracy improvement of class-wise temperature assign-
ment becomes larger. It indicates that the class-wise scheme
is effective, especially when the client data distribution is
highly class-imbalanced.

Impact on Staleness According to the staleness defini-
tion in Sec. 2.2, we denote the the comm./comp. ratio
as S

K
= Tcm+Twait

KTcp
. For different bandwidth and learning

task settings, we can generally categorize the ratio into three
cases: (1) S

K
= 0, (2) 0 < S

K
≤ 1, and (3) S

K
> 1. For

Case 1, FedCR is the same as FedAvg. For Cases 2 & 3,
FedCR can save a lot of memory spaces during FL training
process since it uses CR with fixed projector. Fig. 6 show the
testing accuracy under the given time budget (i.e., 2500s).
We can observe that the memory usage of DGA linearly
grows as staleness increases due to its gradient correction
design. Moreover, FedCR can achieve higher testing accu-
racy with smaller memory usage compared with DGA and
Overlap-MOON. Since LGC is not a overlapping scheme, it
has the least memory usage while suffering from low testing
accuracy. Similar trend can be observed in Overlap-Prox.
Compared with Overlap-MOON, FedCR has slightly lower
accuracy with less memory usage when the staleness levels
is small. We later show that Overlap-MOON incurs much
longer training time than FedCR to achieve the same accu-
racy.

Data Heterogeneity We show the training speedup of dif-
ferent schemes to reach the same testing accuracy in Fig. 7.
We study the impacts of data heterogeneity by varying β
from 0.1 to 5 on CIFAR-100. For a smaller β, the partition
will be more unbalanced. Compared with the peer schemes,
FedCR achieves much better speedup among different levels
of data heterogeneity. The regularization methods, FedCR,
Overlap-MOON, and Overlap-Prox, are more time-efficient,

compared with DGA and LGC. Compared with Overlap-
Prox, the contrastive regularizor can further speedup the
training time. Compared with Overlap-MOON, FedCR use
fixed and non-learnable projection to reduce the training
time to achieve the same testing accuracy.

Device heterogeneity. Next, we consider FL with hetero-
geneous model training. Since the peer schemes except
for Overlap-HeteroFL cannot support heterogeneous model
training, we consider FL training for each p-subnetwork for
those peer schemes. In this experiment, we only compare
with Overlap-MOON since it has the best testing accuracy
in previous experiments. From Fig. 8, we can observe that
as p increases, FedCR can improve the testing accuracy of
p-subnetwork. Compared with Overlap-HeteroFL, FedCR
increases the test accuracy by 23%, 15%, 37% on different
p-subnetworks, respectively. Surprisingly, the subnetwork
training improves the testing accuracy of global model in
our FedCR. Our global model with p = 1 has the best accu-
racy with 61.9%, which is better than Overlap-MOON with
60.3%. It is worth a further analysis and we would like to
leave it as future work. Besides, FedCR also improves the
accuracy of small network (i.e., p = 0.2).

Training Throughput Comparison In Fig. 9, we report the
throughput degradation of training a ResNet20 with different
wireless transmission speeds. Fig. 9a shows local model
training with full local model size. It is observed that when
wireless transmission speed gradually decreases (transmis-
sion time increases), LGC’s performance degrades sharply.
On the other hand, DGA and our proposed FedCR yields a
relatively stable speed. Both of them has similar and good
performance. However, DGA cannot support the hetero-
geneous local model training. By contrast, our proposed
FedCR enables heterogeneous training to further boost the
training throughput. Fig. 9b shows the training throughput
of FL training with heterogeneous local model sizes. It is
observed that the training throughput of FedCR remains high

17006

10
2

10
3

Transmission time (ms)

0.75

0.8

0.85

0.9

0.95

1

T
h
ro

u
g
h
p
u
t
D

e
g
ra

d
a
ti
o
n

DGA
LGC
FedCR
Overlap-MOON

(a) Homogeneous local model.

10
1

10
2

Transmission time (ms)

0.6

0.7

0.8

0.9

1

T
h
ro

u
g
h
p
u
t
D

e
g
ra

d
a
ti
o
n

Overlap-HeteroFL
FedCR

(b) Heterogeneous local model.

Figure 9: Training throughput degradation under different
transmission times, which is calculated based on the mea-
sured transmission speed.

Table 3: The accuracy with 64 devices and 128 devices (sam-
ple fraction = 0.2) on CIFAR-100 under two time budgets
(10× 102s and 25× 102s).

Methods N=64 N=128

10 25 10 25

LGC 42.65% 37.82% 41.65% 48.82%

Overlap-Prox 46.12% 52.79% 45.57% 52.12%

DGA 42.89% 51.98% 41.56% 50.12%

Overlap-MOON 51.12% 58.01% 50.47% 56.14%

FedCR 56.27% 64.68% 55.47% 61.58%

and steady even under slow wireless communications. More
experiments regarding a dynamic communication condition
can be found in Supplementary Material.
Impacts of Device Numbers We evaluate the impact of the
number of participating edge devices in each communication
round on FedCR performance. Specifically, we consider two
different simulation settings: (1) We partition the dataset
into 64 devices and all devices participate in each round. (2)
We partition the dataset into 128 devices and randomly sam-
ple 20% devices to participate in each round. As shown in
Table 3, using CR in local training is more effective than us-
ing gradient correction and proximal regularization, FedCR
reaches the highest testing accuracy given a target time bud-
get, especially when it has large number of devices in FL
system.

6. Related Work

Recognizing that training large-scale FL models over
edge devices is a time consuming task, several research ef-
forts have been made on decreasing these costs via device
scheduling [15], network optimization [35, 25] and resource
utilization optimization [30, 28, 29, 24]. For example, Lai et
al. in [15] proposed a client selection scheme for FL train-
ing based on both the hardware capabilities and the training

quality of clients. Luo et al. in [21] studied the tradeoffs
between FL training latency and energy and proposed cost-
efficient design to determine the design the number of local
updates for minimizing both training latency and energy. Rui
et al. in [3] and Shi et al. in [28] have made efforts on time-
efficient FL design on how to determine the optimal learning
parameters (e.g., quantization level and the number of lo-
cal updates). However, the previous works only consider
a FL setting with interleaved computing and communica-
tion. Our study is orthogonal to them and potentially can be
combined with these techniques to further boost the training
efficiency as our design proposes to overlap computing and
communication in FL. Close to our work, DGA [38] and
CoCoD-SGD [27] also consider a overlapping scheme to
reduce the training latency. As stated before, there is limited
performance gain when directly applying these techniques to
non-iid data distribution across devices. Besides, they do not
deal with device heterogeneity. Such limited performance
gain motivates us to rethink the computing and communi-
cation overlapping framework design for federated training
over edge devices that takes data and device heterogeneity
into account.

7. Conclusion

In this paper, we have presented a novel FL approach,
FedCR, which accelerates FL training over edge device
while maintaining high training accuracy. Our key idea
is to overlap local model communications (i.e., transmitting
local model updates) with local training to reduce the latency
of wireless communications, and introduces CR into local
training to address data heterogeneity issue. Furthermore,
we have developed class-wise CR and heterogeneous sub-
network training methods to deal with the model staleness
and device heterogeneity issues in FedCR, respectively. Ex-
tensive experimental results have demonstrated that FedCR
not only effectively reduces FL training latency, but also
achieves higher training accuracy and smaller memory foot-
prints than the state-of-the-art solutions.

Acknowledgement

The work of R. Chen and M. Pan was supported in part
by the National Science Foundation Grants (NSF) under
Grant CNS-2107057. The work of Q. Wan and X. Fu was
partially supported by NSF under Grants CCF-2130688,
CCF-1900904, and CNS-2107057. The work of L. Zhang
was supported in part by NSF CCF-2106754, CCF-2221741,
CCF- 2153381, and CCF-2151238. The work of X. Yuan
was supported in part by NSF under Grant 2146447. The
work of Y. Gong was supported in part by the US National
Science Foundation under grant CNS-2047761 and CNS-
2106761.

17007

References
[1] Apple. Coreml on device training, mar 2021.
[2] Theodora S Brisimi, Ruidi Chen, Theofanie Mela, Alex Ol-

shevsky, Ioannis Ch Paschalidis, and Wei Shi. Federated
learning of predictive models from federated electronic health
records. International journal of medical informatics, 112:59–
67, 2018.

[3] Rui Chen, Dian Shi, Xiaoqi Qin, Dongjie Liu, Miao
Pan, and Shuguang Cui. Service delay minimization for
federated learning over mobile devices. arXiv preprint
arXiv:2205.09868, 2022.

[4] Wei Dai, Yi Zhou, Nanqing Dong, Hao Zhang, and Eric P
Xing. Toward understanding the impact of staleness in dis-
tributed machine learning. arXiv preprint arXiv:1810.03264,
2018.

[5] Enmao Diao, Jie Ding, and Vahid Tarokh. Heterofl: Compu-
tation and communication efficient federated learning for het-
erogeneous clients. arXiv preprint arXiv:2010.01264, 2020.

[6] Moming Duan, Duo Liu, Xianzhang Chen, Renping Liu, Yu-
juan Tan, and Liang Liang. Self-balancing federated learning
with global imbalanced data in mobile systems. IEEE Trans-
actions on Parallel and Distributed Systems, 32(1):59–71,
2020.

[7] Ian Fette and Alexey Melnikov. The websocket protocol,
2021.

[8] Andrew Hard, Chloé M Kiddon, Daniel Ramage, Francoise
Beaufays, Hubert Eichner, Kanishka Rao, Rajiv Mathews, and
Sean Augenstein. Federated learning for mobile keyboard
prediction, 2018.

[9] Sayed Hadi Hashemi, Sangeetha Abdu Jyothi, and Roy Camp-
bell. Tictac: Accelerating distributed deep learning with com-
munication scheduling. In Proceedings of Machine Learning
and Systems, volume 1, pages 418–430, Stanford, CA, March
2019.

[10] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.
Deep residual learning for image recognition. arxiv 2015.
arXiv preprint arXiv:1512.03385, 2015.

[11] Samuel Horvath, Stefanos Laskaridis, Mario Almeida, Ilias
Leontiadis, Stylianos Venieris, and Nicholas Lane. Fjord:
Fair and accurate federated learning under heterogeneous
targets with ordered dropout. Advances in Neural Information
Processing Systems, 34:12876–12889, 2021.

[12] Li Jing, Pascal Vincent, Yann LeCun, and Yuandong Tian.
Understanding dimensional collapse in contrastive self-
supervised learning. In Proceedings of the 10th International
Conference on Learning Representations (ICLR’22), Balti-
more MD, July 2022.

[13] Sai Praneeth Karimireddy, Satyen Kale, Mehryar Mohri,
Sashank Reddi, Sebastian Stich, and Ananda Theertha Suresh.
Scaffold: Stochastic controlled averaging for federated learn-
ing. In International Conference on Machine Learning, pages
5132–5143. PMLR, 2020.

[14] Simon Kornblith, Mohammad Norouzi, Honglak Lee, and
Geoffrey Hinton. Similarity of neural network representations
revisited. In International Conference on Machine Learning
(ICML’19), pages 3519–3529, Long Beach, California, June
2019. PMLR, JMLR.

[15] Fan Lai, Xiangfeng Zhu, Harsha V Madhyastha, and
Mosharaf Chowdhury. Oort: Efficient federated learning
via guided participant selection. In 15th {USENIX} Sym-
posium on Operating Systems Design and Implementation
({OSDI} 21), pages 19–35, 2021.

[16] Liang Li, Dian Shi, Ronghui Hou, Hui Li, Miao Pan, and
Zhu Han. To talk or to work: Flexible communication com-
pression for energy efficient federated learning over hetero-
geneous mobile edge devices. In Proc. IEEE Conference on
Computer Communications (INFOCOM), pages 1–10, Virtual
Conference, May 2021.

[17] Qinbin Li, Yiqun Diao, Quan Chen, and Bingsheng He. Fed-
erated learning on non-iid data silos: An experimental study.
arXiv preprint arXiv:2102.02079, 2021.

[18] Qinbin Li, Bingsheng He, and Dawn Song. Model-contrastive
federated learning. In Proceedings of the IEEE/CVF Confer-
ence on Computer Vision and Pattern Recognition (CVPR’21),
pages 10713–10722, Virtual, June 2021. IEEE.

[19] Tian Li, Anit Kumar Sahu, Manzil Zaheer, Maziar Sanjabi,
Ameet Talwalkar, and Virginia Smith. Federated optimiza-
tion in heterogeneous networks. In Proceedings of Machine
learning and systems, volume 2, pages 429–450, 2020.

[20] Youjie Li, Mingchao Yu, Songze Li, Salman Avestimehr,
Nam Sung Kim, and Alexander Schwing. Pipe-sgd: A de-
centralized pipelined sgd framework for distributed deep net
training. In Advances in Neural Information Processing Sys-
tems(NeurIPS’18), volume 31, Montréal, Canada, December
2018.

[21] Bing Luo, Xiang Li, Shiqiang Wang, Jianwei Huang, and
Leandros Tassiulas. Cost-effective federated learning design.
In IEE Conference on Computer Communications, pages 1–
10. IEEE, June 2021.

[22] Brendan McMahan, Eider Moore, Daniel Ramage, Seth
Hampson, and Blaise Aguera y Arcas. Communication-
efficient learning of deep networks from decentralized data. In
Artificial Intelligence and Statistics (AISTATS’17), Ft. Laud-
erdale, FL, April 2017.

[23] Mahesh Pawar, Anjana Panday, Ratish Agrawal, and Sachin
Goyal. Developing a big-data-based model to study and
analyze network traffic. In Big Data and Knowledge Sharing
in Virtual Organizations, pages 198–223. IGI Global, 2019.

[24] Pavana Prakash, Jiahao Ding, Rui Chen, Xiaoqi Qin, Minglei
Shu, Qimei Cui, Yuanxiong Guo, and Miao Pan. Iot device
friendly and communication-efficient federated learning via
joint model pruning and quantization. IEEE Internet of Things
Journal, 9(15):13638–13650, 2022.

[25] Pavana Prakash, Jiahao Ding, Maoqiang Wu, Minglei Shu,
Rong Yu, and Miao Pan. To talk or to work: Delay efficient
federated learning over mobile edge devices. In 2021 IEEE
Global Communications Conference (GLOBECOM), pages
1–6, 2021.

[26] Anit Kumar Sahu, Tian Li, Maziar Sanjabi, Manzil Zaheer,
Ameet Talwalkar, and Virginia Smith. On the convergence
of federated optimization in heterogeneous networks. arXiv
preprint arXiv:1812.06127, 3:3, 2018.

[27] Shuheng Shen, Linli Xu, Jingchang Liu, Xianfeng Liang,
and Yifei Cheng. Faster distributed deep net training: Com-
putation and communication decoupled stochastic gradient

17008

descent. In International Joint Conference on Artificial Intel-
ligence (IJCAI’19), Macao, China, August 2019.

[28] Dian Shi, Liang Li, Rui Chen, Pavana Prakash, Miao Pan, and
Yuguang Fang. Towards energy efficient federated learning
over 5G+ mobile devices. arXiv preprint arXiv:2101.04866,
2021.

[29] Wenqi Shi, Sheng Zhou, Zhisheng Niu, Miao Jiang, and
Lu Geng. Joint device scheduling and resource allocation
for latency constrained wireless federated learning. IEEE
Transactions on Wireless Communications, 2020.

[30] Tung T Vu, Duy T Ngo, Nguyen H Tran, Hien Quoc Ngo,
Minh N Dao, and Richard H Middleton. Cell-free massive
mimo for wireless federated learning. IEEE Transactions on
Wireless Communications, 19(10):6377 – 6392, 2020.

[31] Lixu Wang, Shichao Xu, Xiao Wang, and Qi Zhu. Addressing
class imbalance in federated learning. In Proceedings of
the AAAI Conference on Artificial Intelligence, pages 10165–
10173, 2021.

[32] Wei Wen, Cong Xu, Feng Yan, Chunpeng Wu, Yandan Wang,
Yiran Chen, and Hai Li. Terngrad: Ternary gradients to
reduce communication in distributed deep learning. Advances
in neural information processing systems, 30, 2017.

[33] Carole-Jean Wu, David Brooks, Kevin Chen, Douglas Chen,
Sy Choudhury, Marat Dukhan, Kim Hazelwood, Eldad Isaac,
Yangqing Jia, Bill Jia, et al. Machine learning at facebook:
Understanding inference at the edge. In 2019 IEEE interna-
tional symposium on high performance computer architecture
(HPCA), pages 331–344. IEEE, 2019.

[34] Jian Xu, Shao-Lun Huang, Linqi Song, and Tian Lan. Live
gradient compensation for evading stragglers in distributed
learning. In IEEE INFOCOM 2021-IEEE Conference on
Computer Communications, pages 1–10. IEEE, 2021.

[35] Kai Yang, Tao Jiang, Yuanming Shi, and Zhi Ding. Federated
learning via over-the-air computation. IEEE Transactions on
Wireless Communications, 19(3):2022–2035, 2020.

[36] Dongdong Ye, Rong Yu, Miao Pan, and Zhu Han. Federated
learning in vehicular edge computing: A selective model
aggregation approach. IEEE Access, 8:23920–23935, 2020.

[37] Chun-Hsiao Yeh, Cheng-Yao Hong, Yen-Chi Hsu, Tyng-Luh
Liu, Yubei Chen, and Yann LeCun. Decoupled contrastive
learning. arXiv preprint arXiv:2110.06848, 2021.

[38] Ligeng Zhu, Hongzhou Lin, Yao Lu, Yujun Lin, and Song
Han. Delayed gradient averaging: Tolerate the communica-
tion latency for federated learning. In Advances in Neural
Information Processing Systems (NeurIPS’21), volume 34,
New Orleans, Louisiana, December 2021.

17009

