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Abstract

Self-supervised learning has attracted a lot of attention
recently, which is able to learn powerful representations
without any manual annotations. However, self-supervised
learning needs to develop the ability to continuously learn
to cope with a variety of real-world challenges, i.e., Con-
tinual Self-Supervised Learning (CSSL). Catastrophic for-
getting is a notorious problem in CSSL, where the model
tends to forget the learned knowledge. In practice, sim-
ple rehearsal or regularization will bring extra negative ef-
fects while alleviating catastrophic forgetting in CSSL, e.g.,
overfitting on the rehearsal samples or hindering the model
from encoding fresh information. In order to address catas-
trophic forgetting without overfitting on the rehearsal sam-
ples, we propose Augmentation Stability Rehearsal (ASR)
in this paper, which selects the most representative and dis-
criminative samples by estimating the augmentation stabil-
ity for rehearsal. Meanwhile, we design a matching strategy
for ASR to dynamically update the rehearsal buffer. In addi-
tion, we further propose Contrastive Continuity on Augmen-
tation Stability Rehearsal (C2ASR) based on ASR. We show
that C2ASR is an upper bound of the Information Bottleneck
(IB) principle, which suggests that C2ASR essentially pre-
serves as much information shared among seen task streams
as possible to prevent catastrophic forgetting and dismisses
the redundant information between previous task streams
and current task stream to free up the ability to encode fresh
information. Our method obtains a great achievement com-
pared with state-of-the-art CSSL methods on a variety of
CSSL benchmarks.

1. Introduction
Recently, self-supervised learning (SSL) has received

much attention from the community due to its great po-
∗Corresponding authors.

tential [11, 21, 18, 5, 12, 49]. Self-supervised learning
is able to learn beneficial representations for a variety of
downstream tasks without any manual annotations, where
contrastive learning based on dual branch framework is the
mainstream, as shown in Figure 1(a). However, data is often
presented as streams progressively over time in real-world
scenarios. It’s nearly infeasible for self-supervised learn-
ing to collect the whole data streams to train the networks,
since the ever-increasing data makes the notoriously costly
training of self-supervised learning models even more ex-
pensive and sometimes it can’t even access previous data
due to privacy protection. Self-supervised learning needs
to develop continuity to cope with a variety of real-world
challenges, which is also called Continual Self-Supervised
Learning (CSSL) [16], as shown in Figure 1(c).

Continual learning (CL) aims to learn from non-
stationary data distributions, as shown in Figure 1(b).
Catastrophic forgetting is a notorious problem in CL, which
refers to that the model tends to forget what it has already
learned. Many methods [20, 40, 47, 39, 25, 50, 32, 1, 4] are
proposed to alleviate it. CSSL also suffers from catastrophic
forgetting, and some pioneers start to address this problem.
Rehearsal-based method LUMP [33] utilizes rehearsal sam-
ples to augment current task samples by mixup [51], and
regularization-based method CaSSLe [16] encourages cur-
rent model to maintain a consistency with previous state via
a prediction head. However, LUMP which is based on dark
experience sampling strategy for rehearsal tends to overfit
on the rehearsal samples due to the long training epoches of
self-supervised learning [16], and CaSSLe introduces too
much invariance among task streams, which preserves most
information of previous task streams and hinders the model
from learning fresh knowledge.

In order to address catastrophic forgetting without over-
fitting on the rehearsal samples, we propose Augmentation
Stability Rehearsal (ASR) in this paper, which selects the
most representative and discriminative samples by estimat-
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(a) Self-Supervised Learning (SSL)
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(c) Continual Self-Supervised Learning (CSSL)

Figure 1: A simplified illustration of SSL, CL and CSSL.
(a) SSL aims to learn beneficial representations from im-
ages that are not manually labeled, which is usually based
on the popular dual branch framework. (b) The proposi-
tion of CL is to learn from non-stationary data distributions,
investing the neural networks with the ability to cope with
a variety of real-world challenges. (c) CSSL is committed
to investing self-supervised learning with the ability to deal
with non-stationary data distributions, which aims to learn
beneficial representations from non-stationary data distribu-
tions without manual annotations.

ing the augmentation stability for rehearsal. Specifically,
ASR aims to select the samples which are located at the
center and boundary of each category distribution, i.e., the
most representative and discriminative samples, since they
are able to retain the most information of previous task
streams to overcome catastrophic forgetting as well as al-
leviating the overfitting effect. However, we are not able to
obtain the relative position of each sample in corresponding
category distribution, since we cannot access to the class la-
bel under unsupervised scenarios. Instead, we find the aug-
mentation stability (i.e., the average similarity of the pairs
of augmented features) of each sample is positively corre-
lated with its relative position in the feature space. Thus, we

design a rehearsal selection strategy based on the augmenta-
tion stability, i.e., selecting the samples with especially high
score (located at the center of the category distribution) and
low score (located at the boundary of the category distribu-
tion) from the augmentation stability distribution to fill the
rehearsal buffer. Meanwhile, since the traditional queue and
stack update strategy cannot satisfy the requirement that re-
taining the most representative and discriminative samples
for the rehearsal buffer, we develop a matching strategy for
ASR to dynamically update the rehearsal buffer.

Generally, the continual self-supervised model needs to
encode the information of previous task streams to over-
come catastrophic forgetting, as well as the information of
current task to be of the ability to continuously learn. How-
ever, the whole information of previous task streams is not
only redundant for preventing catastrophic forgetting [24],
but also hinders the model from encoding fresh informa-
tion. In order to balance the prevention of catastrophic
forgetting and the ability to continuously learn, we further
propose Contrastive Continuity on Augmentation Stability
Rehearsal (C2ASR) based on ASR, which aims to encour-
age the feature distribution of current model on rehearsal
samples to be consistent with previous states to prevent
catastrophic forgetting and the feature distribution of cur-
rent model on current task samples to be inconsistent with
previous states to free up the ability to continuously learn.
In addition, we show that the proposed C2ASR is an upper
bound of the Information Bottleneck (IB) principle [42, 41],
which suggests that C2ASR essentially preserves as much
information shared among seen task streams as possible to
prevent catastrophic forgetting and dismisses the redundant
information between previous task streams and current task
stream to free up the ability to encode fresh information.
Finally, we introduce the augmentation invariance and sym-
metrization strategy [18, 12] into C2ASR to further increase
the diversity and stability of contrastive continuity pairs.

We validate the effectiveness of our method on sev-
eral popular CSSL benchmarks, e.g., the average accuracy
and average forgetting on Split CIFAR-10, Split CIFAR-
100 and Split Tiny-ImageNet and the average accuracy on
out of distribution (OOD) datasets. Our method achieves
the best performance on most evaluation metrics compared
with state-of-the-art CSSL methods.

2. Related Work

2.1. Continual learning

Continual learning aims to learn from non-stationary
data distributions without forgetting what it has been
learned on seen data. Current popular partition manner
mainly divides existing continual learning methods into
three categories, i.e., regularization-based, architecture-
based and rehearsal-based.
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Regularization-based methods are to regulate the model
parameters during training. EWC [25] alleviates catas-
trophic forgetting by slowing down the learning on the
weights which are important to previous tasks during train-
ing. RWalk [9] proposes an online and efficient version of
EWC. SI [50] introduces the synapses to track the parame-
ter value of previous tasks, and fix the important synapses
to keep the memories of the past. LwF [32] utilizes distilla-
tion to make the output of current network approach to that
of previous networks. Based on network quantization and
pruning, piggyback [34] learns binary masks to selectively
mask the weights of the backbone network, and achieves
better performance on new tasks. UCL [1] designs two reg-
ularization terms to alleviate forgetting by freezing impor-
tant parameters of previous tasks and support future learn-
ing by controlling the active parameters.

Architecture-based methods are to dynamically add ex-
tra network architectures and design task-specific parame-
ters to meet future learning requirements. PNN [39] intro-
duces progressive networks to alleviate catastrophic forget-
ting and designs lateral connections to use learned knowl-
edge to assist future learning. DEN [48] dynamically ex-
pands the capacity of the network according to each task,
so as to effectively capture the shared knowledge among
tasks to prevent forgetting. Utilizing architecture search,
[31] finds the optimal structure for each task to best exploit
the parameters shared among tasks.

Rehearsal-based methods are to replay a fixed number
of previous learned samples during training. [7] stores some
representative samples from previous tasks to alleviate in-
transigence. Based on the constrained optimization view of
continual learning, [2] store the samples which best approx-
imate the feasible region defined by the original constraints.
DER [4] designs a dark experience sampling strategy to se-
lect rehearsal samples and utilizes distillation to match the
output logits on the rehearsal data, thus preserving the mem-
ory of previous tasks. Rainbow Memory [3] focuses on the
diversity of replayed data, and proposes memory manage-
ment strategy based on classification prediction uncertainty
to increase diversity.

Some methods focus on representation continual learn-
ing, which aims to prevent the model from forgetting the
learned representation and utilize it for future learning.
iCaRL [38] utilizes distillation to learn an anti-forgetting
representation. Meta-learning-based approaches OML [23]
and La-MAML [19] learn representations by designing spe-
cial meta-objectives that prevent catastrophic forgetting and
promote future learning. Inspired by contrastive learning,
Co2L [8] designs a supervised contrastive loss to learn a
representation which is of nature resistance to catastrophic
forgetting. LUMP [33] and CaSSLe [16] focus on con-
tinual self-supervised learning, where LUMP uses mixup
[51] to merge rehearsal samples from previous tasks with

the samples in current task and CaSSLe utilizes distillation
mechanisms to associate the current state of the representa-
tion with its previous state via a prediction head to alleviate
catastrophic forgetting.

2.2. Self-supervised learning

Self-supervised learning aims to learn a representation
which is beneficial to various downstream tasks without
any manual annotations. Some early works are devoted to
designing special pretext tasks, e.g., Colorization [28], In-
painting [37], Jigsaw [36], Rotate prediction [17], etc. Con-
trastive learning based on instance discrimination [45] has
become the mainstream in the community in recent years,
whose core idea is to constrain input image to be as close as
possible to its augmented view and far away from other im-
ages in the feature space. SimCLR [11] and MoCo [21] are
the most classical contrastive learning methods, where Sim-
CLR uses a large batchsize to increase the number of nega-
tive samples and MoCo introduces a queue to store a large
number of negative samples and applies the momentum up-
date strategy to ensure the consistency of negative samples.
BYOL [18] argues that comparing with the negative sam-
ples is not indispensable in contrastive learning, and learns
a brilliant representation by only encouraging augmentation
invariance of input image. SimSiam [12] studies the non-
negative-samples framework in detail and finds that siamese
networks play an important role in the framework, where
stop-gradient operation is the key to preventing collapsing.
DINO [6] deploys self-supervised learning to ViT [14] and
gets better results. Instead of applying stop-gradient oper-
ation to avoid collapsed solutions, Barlow Twins [49] con-
strains the cross-correlation matrix between the features of
two augmented views to be the identity matrix, achieving
the same results.

In addition, some self-supervised learning methods[30,
5, 44, 26, 15] add clustering to take account of the relation-
ship among samples in the feature space, and get further
improvements. PCL [30] combines clustering and augmen-
tation invariance and designs an expectation maximization
framework to perform clustering and augmentation invari-
ance respectively, which searches for the semantic proto-
types by K-means in step E and forces different augmented
views of the same sample to be subject to the same proto-
type in step M. SwAV [5] introduces online clustering into
contrastive learning, which obtains pseudo label assign-
ments via online clustering and constrains different aug-
mented views of the same sample to share the assignments.

3. Method
3.1. Augmentation Stability Rehearsal (ASR)

Generally, we should choose the most representative
and discriminative samples for rehearsal [3], i.e., the sam-
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ples which are located at the center and boundary of cor-
responding category distribution. These samples are able
to retain the most information of previous tasks, which can
largely overcome catastrophic forgetting as well as effec-
tively alleviating the overfitting effect caused by the long
training epoches of self-supervised learning [16].

In practice, a naive way to select the target samples is to
determine their relative positions in corresponding category
distribution by calculating the pairwise similarity. However,
we are not able to access to the categories of samples in un-
supervised scenarios, so as not to obtain the relative posi-
tions. Fortunately, we find the augmentation stability (i.e.,
the average similarity of the pairs of augmented features) of
each sample is positively correlated with its relative position
in corresponding category distribution. Therefore, we esti-
mate the relative position distribution by utilizing the aug-
mentation stability, and choose corresponding samples from
the distribution to fill the rehearsal buffer.

Specifically, given an input image x, we first generate
two augmented views T 1 (x) and T 2 (x) via the standard
contrastive learning augmentation strategy T (·). A view
T 1 (x) is fed to online encoder fθ, and outputs the feature
representation z1 = fθ

(
T 1 (x)

)
. Another view T 2 (x) is

fed to target encoder fθ′ and outputs the corresponding fea-
ture z2 = fθ′

(
T 2 (x)

)
. We design a discriminator to es-

timate the augmentation stability, which is essentially a bi-
nary classifier. The discriminator takes the pairwise features
outputted by self-supervised model as input, and outputs the
prediction probability of whether the input pairwise features
is from the same image. During training, we construct the
loss of the discriminator LD as follows:

LD =CE
(
D
(
Concat

(
z1, z2

))
, “0”

)
+

CE
(
D
(
Concat

(
z1, z̄2

))
, “1”

) (1)

where z1 and z2 are the pairwise augmentation features en-
coded by self-supervised model, z̄2 are the augmentation
features from other images, Concat (·) denotes the cascade
operation, D (·) denotes the discriminator, CE (·) denotes
the cross entropy loss. The combined augmentation fea-
ture from one image Concat

(
z1, z2

)
is classified as class

0, while the combined augmentation feature from different
images Concat

(
z1, z̄2

)
is classified as class 1. In sum-

mary, the discriminator aims to discriminate whether the
input pairwise features are from the same image, so as to
learn the ability to capture the augmentation stability.

When storing current data stream, we first utilize the
discriminator to infer its augmentation stability score, i.e.,

p(y = “0”|x) = ET (·) [pD (y = “0”| (zθ, zθ′))] (2)

where zθ and zθ′ obey the augmentation feature distri-
bution based online encoder and target encoder respec-
tively, i.e., zθ ∼ fθ (T (x)) and zθ′ ∼ fθ′ (T (x)),

pD (y = “0”| (zθ, zθ′)) is the prediction probability that the
discriminator classifies the pairwise augmentation features
Concat (zθ, zθ′) as class 0. However, ET (·) is almost in-
feasible to be calculated in practice. We approximate it by
randomly sampling from the augmentation distribution:

p(y = “0”|x) =
∫
zθ

∫
zθ′

pD (y = “0”| (zθ, zθ′ )) dzθdzθ′

≈
∑
i

∑
j

pD
(
y = “0”|

(
zi, zj

)) (3)

where zi and zj is the sample from corresponding aug-
mentation distribution, i.e., zi = fθ

(
T i (x)

)
and zj =

fθ′
(
T j (x)

)
. In practice, we set the actual sampling num-

ber to 20. Then, we use the augmentation stability score to
rank current data stream, and select the appropriate samples
according to the sorted list for rehearsal buffer.

ASR update strategy. We develop a matching update
strategy for ASR to dynamically update the rehearsal buffer.
Specifically, we recalculate the same amount of memory
slots for all seen task streams when storing current data
stream. Then, we discard the excess samples which are lo-
cated in the middle of the augmentation stability sort for
previous task streams (i.e., the least representative or dis-
criminative ones) and load the selected samples of current
data stream. We give the specific update process in Algo-
rithm 1.

Algorithm 1 ASR Update Algorithm
Input: Buffer size: K, data stream of task t: Dt, existing
data in the buffer: Bt−1,

1: Bt = { }
2: kt = bK/tc
3: for i = 1 to t− 1 do
4: Bit−1 = {(x, task id) |task id = i, (x, task id) ∈

Bt−1}
5: SortBit−1 by the augmentation stability computed by

(3)
6: Bt += Bit−1[0 : bkt/2c] + Bit−1[

∣∣Bit−1∣∣ − (kt −
bkt/2c) :

∣∣Bit−1∣∣]
7: end for
8: Sort Dt by the augmentation stability computed by (3)
9: Calculate memory slots of current data stream kDtt =
K − kt ∗ (t− 1)

10: Bt +=Dt[0 :
⌊
kDtt /2

⌋
] +Dt[|Dt|− (kDtt −

⌊
kDtt /2

⌋
) :

|Dt|]
Output: Updated buffer Bt after task stream t

3.2. Contrastive Continuity on Augmentation Sta-
bility Rehearsal (C2ASR)

In practice, continual self-supervised model requires to
encode the information of previous task streams to prevent
catastrophic forgetting, as well as encoding the information
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of current task stream to be of the ability to continuously
learn. One of the simplest ways to alleviate catastrophic for-
getting is to encode the whole information of previous task
streams. However, the whole information of previous task
streams is not only redundant for preventing catastrophic
forgetting [24], but also hinders the model from encoding
fresh information. In order to dismiss the redundant infor-
mation of previous task streams to balance the prevention
of catastrophic forgetting and the learning on current task,
we further propose Contrastive Continuity on Augmenta-
tion Stability Rehearsal (C2ASR), which aims to encourage
the feature distribution consistency on rehearsal samples be-
tween current model and previous states to prevent catas-
trophic forgetting, as well as the feature distribution incon-
sistency between current model and previous states on cur-
rent task samples to free up the ability to continuously learn.
We show that the proposed C2ASR is an upper bound of the
Information Bottleneck (IB) principle [42, 41], which sug-
gests that C2ASR essentially preserves as much information
shared among seen task streams as possible to prevent catas-
trophic forgetting and dismisses the redundant information
between previous task streams and current task stream to
free up the ability to encode fresh information.

Specifically, given current date stream Dt and corre-
sponding buffer Bt−1 where we denote the data of task
stream τ (τ = 1, ..., t− 1) in the buffer by Bτt−1, C2ASR
encourages the feature distribution Zt|τ = ft

(
Bτt−1

)
to

be consistent with Zτ |τ = fτ
(
Bτt−1

)
to prevent catas-

trophic forgetting, and encourages the feature distribution
Zt|t = ft (Dt) to be inconsistent with Zτ |t = fτ (Dt) to
free up the ability to continuously learn, whose loss func-
tion is as follows:

Lτ = − log

exp
∑
Bτ
t−1

log
p
(
zt|τ |zτ|τ

)
p
(
zt|τ

)

exp
∑
Dt

log
p
(
zt|t|zτ|t

)
p
(
zt|t

) + exp
∑
Bτ
t−1

log
p
(
zt|τ |zτ|τ

)
p
(
zt|τ

)
(4)

where zt|τ ∼ Zt|τ , zτ |τ ∼ Zτ |τ , zt|t ∼ Zt|t and
zτ |t ∼ Zτ |t. Formally, C2ASR constrains the density ra-
tio p

(
zt|τ |zτ |τ

)
/p
(
zt|τ
)

which represents the correlation
between zt|τ and zτ |τ to be larger and the density ratio
p
(
zt|t|zτ |t

)
/p
(
zt|t
)

which represents the correlation be-
tween zt|t and zτ |t to be smaller. Theoretically, we show
that Lτ is an upper bound of the Information Bottleneck
(IB) principle[42, 41] at the end of this subsection, which
suggests that C2ASR essentially preserves as much infor-
mation shared among seen task streams as possible to pre-
vent catastrophic forgetting and dismisses the redundant in-
formation between previous task streams and current task
stream to free up the ability to encode fresh information.

In practice, the density ratio p
(
zt|τ |zτ |τ

)
/p
(
zt|τ
)

and
p
(
zt|t|zτ |t

)
/p
(
zt|t
)

are almost infeasible to calculate, and
we model them as exponential feature similarity via a non-

linear head [43]:

exp
(
sim

(
h
(
zt|τ
)
, zτ |τ

)
/ε
)
→

p
(
zt|τ |zτ |τ

)
p
(
zt|τ
) (5)

exp
(
sim

(
h
(
zt|t
)
, zτ |t

)
/ε
)
→

p
(
zt|t|zτ |t

)
p
(
zt|t
) (6)

where h (·) denotes the non-linear head, ε is a hyper-
parameter. With above approximation, we can rewrite (4)
as:

Lτ = − log

exp
∑
Bτt−1

s
(
zt|τ , zτ |τ

)
exp

∑
Dt

s
(
zt|t, zτ |t

)
+ exp

∑
Bτt−1

s
(
zt|τ , zτ |τ

) (7)

where s (·, ·) denotes sim (h (·) , ·) /ε.
Obviously, there is an imbalance between current task

samples Dt and rehearsal samples Bτt−1, i.e., |Dt| �
|Bτt−1|. Thus, we sample a subset Dτt from Dt (|Dτt | =
|Bτt−1|) to address the imbalance problem, as well as reduc-
ing the computational complexity:

Lτ = − log

exp
∑
Bτt−1

s
(
zt|τ , zτ |τ

)
exp

∑
Dτt

s
(
zt|t, zτ |t

)
+ exp

∑
Bτt−1

s
(
zt|τ , zτ |τ

) (8)

Formally, Lτ is similar to the InfoNCE loss in [43, 11, 21].
Inspired by the evolution of infoNCE loss to cosine similar-
ity loss in contrastive learning, we also give the trivial form
of Lτ on similarity level, which has the same optimization
direction and competitive performance:

Lτ = −
∑
Bτt−1

s
(
zt|τ , zτ |τ

)∣∣Bτt−1∣∣ +
∑
Dτt

s
(
zt|t, zτ |t

)
|Dτt | (9)

Meanwhile, we combine C2ASR with augmentation in-
variance to increase the diversity of contrastive continu-
ity pairs. Specifically, C2ASR encourages the augmen-
tation feature distribution Zt|τ = ft

(
T 1
(
Bτt−1

))
to be

consistent with Zτ |τ = fτ
(
T 2
(
Bτt−1

))
, and encourage

the feature distribution Zt|t = ft
(
T 1 (Dt)

)
to be in-

consistent with Zτ |t = fτ
(
T 2 (Dt)

)
. In addition, the

symmetrization strategy [18, 12] is applied to further in-
crease the diversity, as well as reinforcing the stability,
i.e., additionally encourage the augmentation feature dis-
tribution Zt|τ = ft

(
T 2
(
Bτt−1

))
to be consistent with

Zτ |τ = fτ
(
T 1
(
Bτt−1

))
and the feature distribution Zt|t =

ft
(
T 2 (Dt)

)
to be inconsistent with Zτ |t = fτ

(
T 1 (Dt)

)
.

Finally, our C2ASR loss is implemented by performing
Lτ on appropriate previous task stream interval:

LtC2ASR =
1

t−m

t−1∑
τ=m

Lτ , 1 6 m 6 t− 1 (10)
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In practice, we choose previous 2 task streams to calcu-
late C2ASR loss to trade off the computational cost brought
by large task stream interval and the information leakage
brought by small task stream interval:

LtC2ASR =
1

2

t−1∑
τ=t−2

Lτ (11)

Our training loss is constructed by weighted sum of the triv-
ial continual self-supervised learning loss and C2ASR loss:

Lt = LtCSSL + λLtC2ASR (12)

where λ is the weighted parameter which is set to 0.1.
Relation to the Information Bottleneck (IB)

principle[42, 41]. The IB principle argues that a desir-
able representation Z should provide as much important
information related to Y as possible while compressing the
original information from X by dismissing the redundant
part, i.e., increase the mutual information between Z and Y
and decrease the the mutual information between Z and X:

IB = I (Z;X)− βI (Z;Y ) (13)

where I ( ; ) denotes mutual information and β is a hyper-
parameter to trade off the amount of preserved important
information and dismissed redundant part.

We show that Lτ in (4) is an upper bound of the IB
principle, as follows:

Lτ = − log

exp
∑

Bτ
t−1

log
p
(
zt|τ |zτ|τ

)
p
(
zt|τ

)
exp

∑
Dt

log
p
(
zt|t|zτ|t

)
p
(
zt|t

) + exp
∑

Bτ
t−1

log
p
(
zt|τ |zτ|τ

)
p
(
zt|τ

)
(14)

> I
(
Zt|t;Zτ|t

)
−

∣∣∣Bτt−1

∣∣∣
|Dt|

I
(
Zt|τ ;Zτ|τ

) (15)

where the hyper-parameter β is equal to
∣∣Bτt−1∣∣ / |Dt|.

Please refer to Appendix A for the details about the proof.
Based on IB principle, C2ASR essentially encourages

the model to encode as much information shared among
seen task streams as possible by increasing the mutual infor-
mation I

(
Zt|τ ;Zτ |τ

)
and dismiss the redundant informa-

tion between previous task streams and current task stream
by decreasing the mutual information I

(
Zt|t;Zτ |t

)
. It’s

worth noting in IB principle that it doesn’t mean the rep-
resentation Z doesn’t contain the information of X (corre-
sponding to decreasing the mutual information I (Z;X)),
but it needs to dismiss the redundant part of X that is ir-
relevant to I (Z;Y ). The same is true for C2ASR that it
doesn’t mean current ft (·) doesn’t encode the information
of previous state fτ (·) on current task stream (correspond-
ing to decreasing the mutual information I

(
Zt|t;Zτ |t

)
), but

it needs to dismiss the redundant part of fτ (·) that is irrele-
vant to I

(
Zt|τ ;Zτ |τ

)
.

4. Experiments

In this section, we give the experimental results on a
variety of CSSL benchmarks. We first describe the exper-
imental setup in 4.1, and provide the main results in 4.2.
Then, we report the evaluation results on out of distribution
datasets (OOD datasets) in 4.3, and finally we evaluate the
effectiveness and expansibility of the proposed components
in 4.4. In addition, we give more ablation studies and visu-
alization in Appendix B.

4.1. Experimental setup

Datasets. We deploy our experiments on Split CIFAR-
10 [27] (a 10-class dataset with 32×32 images), Split
CIFAR-100 [27] (a 100-class dataset with 32×32 im-
ages) and Split Tiny-ImageNet [13] (a 100-class dataset
with 64×64 images). We follow the division in [33] for
the datasets, i.e., two random classes per task stream for
CIFAR-10, five random classes per task stream for CIFAR-
100 and Tiny-ImageNet.

Implementation details. We use ResNet-18 [22] as
the backbone and SimSiam [12] as the base self-supervised
learning algorithm to make a fair comparison with existing
methods. LUMP’s technique is an effective rehearsal strat-
egy, and we also apply it for rehearsal samples in practice.
We train our method with SGD optimizer for 200 epoches,
whose batchsize is 128, learning rate is 0.015, weight de-
cay is 5e-4, and momentum is 0.9. The buffer size in our
method is set to 200 for CIFAR-10 and CIFAR-100, 256 for
Tiny-ImageNet.

Evaluation metrics. We follow LUMP to utilize the
KNN classifier [45] to verify the quality of the learned rep-
resentation, where ”Average Accuracy” and ”Average For-
getting” are served as the two key indicators. Specifically,
we use a KNN classifier on the frozen pre-trained repre-
sentation after learning each task stream to evaluate the test
accuracy. To allow for simplification, we denote ”the test
accuracy by training on task stream i and testing on task
stream j” by ”TriTej”, ”the forgetting of task stream j”
by ”Fj”, where ”Fj = max

16k6T
TrkTej − TrTTej”, i.e.,

the accuracy decrease of task stream j between its maxi-
mum accuracy and the accuracy after learning the final task
stream T .

The average accuracy after training on task stream t is
defined by the average of the test accuracy on all seen task
streams:

At =
1

t

t∑
j=1

TrtTej (16)

The average forgetting is defined by the average forget-
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Table 1: The main results (Average Accuracy and Average Forgetting) on Split CIFAR-10, Split CIFAR-100 and Split Tiny-
ImageNet. All methods are pre-trained with Resnet-18 as backbone for 200 epoches and evaluated with KNN classifier
[45]. CaSSLe† is the improved reproduced version by incorporating with the replay strategy in LUMP [33] to make a fair
comparison. All the performances are measured by calculating the mean and standard deviation across three trials. The Top-2
results are highlighted in bold and underlined respectively.

Method CIFAR-10 CIFAR-100 Tiny-ImageNet

Accuracy Forgetting Accuracy Forgetting Accuracy Forgetting

Supervised Continual Learning

FINETUNE 82.87(±0.47) 14.26(±0.52) 61.08(±0.04) 31.23(±0.41) 53.10(±1.37) 33.15(±1.22)
PNN [39] 82.74(±2.12) - 66.05(±0.86) - 64.38(±0.92) -

SI [50] 85.18(±0.65) 11.39(±0.77) 63.58(±0.37) 27.98(±0.34) 44.96(±2.41) 26.29(±1.40)
A-GEM [10] 82.41(±1.24) 13.82(±1.27) 59.81(±1.07) 30.08(±0.91) 60.45(±0.24) 24.94(±1.24)

GSS [2] 89.49(±1.75) 7.50(±1.52) 70.78(±1.67) 21.28(±1.52) 70.96(±0.72) 14.76(±1.22)
DER [4] 91.35(±0.46) 5.65(±0.35) 79.52(±1.88) 12.80(±1.47) 68.03(±0.85) 17.74(±0.65)

MULTITASK 97.77(±0.15) - 93.89(±0.78) - 91.79(±0.46) -

Continual Self-Supervised Learning

FINETUNE 90.11(±0.12) 5.42(±0.08) 75.42(±0.78) 10.19(±0.37) 71.07(±0.20) 9.48(±0.56)
PNN [39] 90.93(±0.22) - 66.58(±1.00) - 62.15(±1.35) -
DER [4] 91.22(±0.30) 4.63(±0.26) 77.27(±0.30) 9.31(±0.09) 71.90(±1.44) 8.36(±2.06)

LUMP [33] 91.00(±0.40) 2.92(±0.53) 82.30(±1.35) 4.71(±1.52) 76.66(±2.39) 3.54(±1.04)
CaSSLe† [16] 91.51(±0.38) 2.77(±0.54) 82.65(±1.24) 3.26(±1.39) 77.26(±2.03) 3.27(±0.88)

C2ASR(Ours) 92.47(±0.41) 2.59(±0.58) 83.12(±0.92) 2.22(±1.48) 77.85(±1.87) 3.08(±0.79)

MULTITASK 95.76(±0.08) - 86.31(±0.38) - 82.89(±0.49) -

ting of the first T − 1 task streams:

F =
1

T − 1

T−1∑
j=1

Fj (17)

=
1

T − 1

T−1∑
j=1

(
max
16k6T

TrkTej − TrTTej
)

(18)

4.2. Main results

In this subsection, we report the main results (Av-
erage Accuracy and Average Forgetting) of our method
C2ASR on Split CIFAR-10, Split CIFAR-100 and Split
Tiny-ImageNet, as shown in Table 1. Compared with the
existing continual self-supervised learning methods, our
C2ASR achieves the best performance on all evaluation
metrics. The performance gains are mainly reflected in
two aspects. On the one hand, C2ASR has a better resis-
tance to forgetting. For example, C2ASR obtains 0.33%,
2.49%, 0.46% and 0.18%, 1.04%, 0.19% average forget-
ting drops on Split CIFAR-10, Split CIFAR-100 and Split
Tiny-ImageNet compared with LUMP and CaSSLe† re-
spectively. On the other hand, C2ASR frees up the ability
to continuously learn on new tasks, e.g. it obtains 1.47%,
0.82%, 1.19% and 0.96%, 0.47%, 0.59% average accuracy

improvements on Split CIFAR-10, Split CIFAR-100 and
Split Tiny-ImageNet compared with LUMP and CaSSLe†

respectively.

4.3. Evaluation on OOD datasets

In this subsection, we report the average accuracy of
the proposed C2ASR on out of distribution (OOD) datasets,
where we recognise MNIST [29], Fashion-MNIST (FM-
NIST) [46], SVHN [35], CIFAR-100 and MNIST [29],
Fashion-MNIST (FMNIST) [46], SVHN [35], CIFAR-10 as
the out of distribution datasets for Split CIFAR-10 and Split
CIFAR-100 respectively, as shown in Table 2. The proposed
C2ASR obtains significant improvements and achieves the
best performance on all evaluation metrics compared with
the existing continual self-supervised learning methods,
showing the learned representation by C2ASR can be easily
and effectively applied to unseen data distributions.

4.4. The effectiveness and expansibility of proposed
Augmentation Stability Rehearsal (ASR) and
Contrastive Continuity (CC)

We add extra experiments on Split CIFAR-10 to eval-
uate the effectiveness and expansibility of proposed Aug-
mentation Stability Rehearsal (ASR) and Contrastive Con-
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Table 2: The average accuracy on out of distribution (OOD) datasets. All methods are pre-trained with Resnet-18 as backbone
for 200 epoches on Split CIFAR-10 or Split CIFAR-100 and evaluated with KNN classifier [45] on out of distribution
datasets i.e., MNIST [29], Fashion-MNIST (FMNIST) [46], SVHN [35], CIFAR-100 or CIFAR-10. CaSSLe† is the improved
reproduced version by incorporating with the replay strategy in LUMP [33] to make a fair comparison. All the performances
are measured by calculating the mean and standard deviation across three trials. The Top-2 results are highlighted in bold
and underlined respectively.

In-class CIFAR-10 CIFAR-100

Out of class MNIST FMNIST SVHN CIFAR-100 MNIST FMNIST SVHN CIFAR-10

Supervised Continual Learning

FINETUNE 86.42(±1.11) 74.47(±0.84) 41.00(±0.85) 17.42(±0.96) 75.02(±3.97) 62.37(±3.20) 38.05(±0.73) 39.18(±0.83)
SI [50] 87.08(±0.79) 76.41(±0.81) 42.62(±1.31) 19.14(±0.91) 79.96(±2.63) 63.71(±1.36) 40.92(±1.64) 40.41(±1.71)

A-GEM [10] 86.07(±1.94) 74.74(±3.21) 37.77(±3.49) 16.11(±0.38) 77.56(±3.21) 64.16(±2.29) 37.48(±1.73) 37.91(±1.33)
GSS [2] 70.36(±3.54) 69.20(±2.51) 33.11(±2.26) 18.21(±0.39) 76.54(±0.46) 65.31(±1.72) 35.72(±2.37) 49.41(±1.81)
DER [4] 80.32(±1.91) 70.49(±1.54) 41.48(±2.76) 17.72(±0.25) 87.71(±2.23) 75.97(±1.29) 50.26(±0.95) 59.07(±1.06)

MULTITASK 88.79(±1.13) 79.50(±0.52) 41.26(±1.95) 27.68(±0.66) 92.29(±3.37) 86.12(±1.87) 54.94(±1.77) 54.04(±3.68)

Continual Self-Supervised Learning

FINETUNE 89.23(±0.99) 80.05(±0.34) 49.66(±0.81) 34.52(±0.12) 85.99(±0.86) 76.90(±0.11) 50.09(±1.41) 57.15(±0.96)
DER [4] 88.35(±0.82) 79.33(±0.62) 48.83(±0.55) 30.68(±0.36) 87.96(±2.04) 76.21(±0.63) 47.70(±0.94) 56.26(±0.16)

LUMP [33] 91.03(±0.22) 80.78(±0.88) 45.18(±1.57) 31.17(±1.83) 91.76(±1.17) 81.61(±0.45) 50.13(±0.71) 63.00(±0.53)
CaSSLe† [16] 91.43(±0.33) 80.97(±0.86) 53.31(±1.09) 37.49(±1.46) 91.92(±1.21) 81.87(±0.50) 53.24(±1.19) 66.85(±1.07)

C2ASR(Ours) 92.14(±0.38) 81.48(±0.79) 54.51(±0.84) 39.48(±1.12) 93.09(±1.38) 82.04(±0.54) 56.31(±1.85) 67.74(±0.97)

MULTITASK 90.69(±0.13) 80.65(±0.42) 47.67(±0.45) 39.55(±0.18) 90.35(±0.24) 81.11(±1.86) 52.20(±0.61) 70.19(±0.15)

tinuity (CC). We report the average accuracy, average for-
getting of ASR and the combination between CC and other
data replay methods in Table 3. The proposed rehearsal
strategy ASR obtains superior performance than DER and
LUMP, showing its effectiveness of selecting replayed data.
And C2ASR obtains further improvement based on ASR,
which shows the effectiveness of the proposed regulariza-
tion strategy CC to extract important information. In addi-
tion, CC can also be combined with other data replay meth-
ods, e.g., DER [4] and LUMP [33]. As shown in Table
3, DER + CC and LUMP + CC obtains considerable im-
provements compared with corresponding baseline, which
indicates that the proposed regularization strategy CC can
be effectively extended to existing data replay methods.

5. Conclusion
In this paper, we study how to address catastrophic

forgetting in Continual Self-Supervised Learning without
bringing extra negative effects. We first propose ASR to
store the most representative and discriminative samples for
rehearsal, which helps to prevent catastrophic forgetting as
well as overcoming the overfitting on the rehearsal samples.
Secondly, we further propose C2ASR based on ASR. We
show that the proposed method is an upper bound of the IB
principle. It suggests that C2ASR essentially preserves as
much information shared among seen task streams as pos-
sible to prevent catastrophic forgetting and dismisses the
redundant information between previous task streams and
current task stream to free up the ability to encode fresh
information. The massive experimental results on several

Table 3: The effectiveness and expansibility of pro-
posed Augmentation Stability Rehearsal (ASR) and
Contrastive Continuity (CC). We report the average ac-
curacy, average forgetting of ASR and the combination be-
tween CC and other data replay methods on Split CIFAR-
10. The performances are measured by calculating the mean
and standard deviation across three trials. The best results
are highlighted in bold.

Accuracy Forgetting

FINETUNE 90.11(±0.12) 5.42(±0.08)
ASR (Ours) 91.62(±0.33) 2.74(±0.51)

C2ASR (Ours) 92.47(±0.41) 2.59(±0.58)

DER [4] 91.22(±0.30) 4.63(±0.26)
DER + CC (Ours) 91.85(±0.21) 3.35(±0.34)

LUMP [33] 91.00(±0.40) 2.92(±0.53)
LUMP + CC (Ours) 92.03(±0.36) 2.78(±0.45)

popular CSSL benchmarks show the superiority and com-
petitiveness of the proposed method.
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