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Figure 1: Overview of our dataset. DNA-Rendering is a large-scale human-centric dataset, with high-quality multi-view images and
videos for various human actors. The dataset comes with grand categories of motion, cloth, accessory, body shape, and human-object
interaction. We hope it could boost the development of human-centric rendering and related tasks.

Abstract

Realistic human-centric rendering plays a key role in
both computer vision and computer graphics. Rapid
progress has been made in the algorithm aspect over the
years, yet existing human-centric rendering datasets and
benchmarks are rather impoverished in terms of diversity
(e.g., outfit’s fabric/material, body’s interaction with ob-
jects, and motion sequences), which are crucial for render-
ing effect. Researchers are usually constrained to explore
and evaluate a small set of rendering problems on cur-
rent datasets, while real-world applications require meth-
ods to be robust across different scenarios. In this work, we
present DNA-Rendering, a large-scale, high-fidelity repos-
itory of human performance data for neural actor render-

*Joint-first authors with W. Cheng.
†Equal advising.

ing. DNA-Rendering presents several appealing attributes.
First, our dataset contains over 1500 human subjects, 5000
motion sequences, and 67.5M frames’ data volume. Upon
the massive collections, we provide human subjects with
grand categories of pose actions, body shapes, clothing,
accessories, hairdos, and object intersection, which ranges
the geometry and appearance variances from everyday life
to professional occasions. Second, we provide rich assets
for each subject – 2D/3D human body keypoints, foreground
masks, SMPLX models, cloth/accessory materials, multi-
view images, and videos. These assets boost the current
method’s accuracy on downstream rendering tasks. Third,
we construct a professional multi-view system to capture
data, which contains 60 synchronous cameras with max
4096 × 3000 resolution, 15 fps speed, and stern camera
calibration steps, ensuring high-quality resources for task
training and evaluation.
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Dataset
Attribute Scale Realism

Ethnicity Age Cloth Motion Interactivity #ID × #Outfit #Motions #View #Frames HRes
Human3.6M [19] ✗ ✗ ✗ ✓ ✓ 11× 1 17 4 3.6M 1000P

CMU Panoptic [24] ✓ ✓ ✗ ✓ ✓ 97× 1 65 31 + 480∗ 15.3M 1080P
ZJU-MoCap [44] ✗ ✗ ✗ ✓ ✗ 10× 1 10 24 180K 1024P

HUMBI [66] ✓ ✓ ✓ ✗ ✗ 772× 1 − 107 26M 1080P
AIST++ [56, 28] ✗ ✗ ✗ ✗ ✗ 30× 1 − 9 10.1M 1080P
THuman 4.0 [51] ✗ ✗ ✓ ✓ ✗ 3× 1 − 24 10K 1150P

HuMMan [5] ✓ ✓ ✓ ✓ ✗ 1000× 1 500 10 60M 1080P
GeneBody [10] ✓ ✓ ✓ ✓ ✓ 50× 2 61 48 2.95M 2048P

DNA-Rendering (Ours) ✓ ✓ ✓ ✓ ✓ 500× 3 1187 60 67.5M 4096P

Table 1: Dataset comparison on attributes and scales. We compare the proposed dataset with previous human-centric multiview datasets
in terms of attribute coverage, scale, and realism. ‘Ethnicity’ denotes whether the dataset contains actors from multiple ethnic groups.
‘Age’ means if there is a wide age range containing elders or infants. ‘Cloth’ separates datasets with only daily costumes or with extra
diverse clothing. ‘Attribute-Motion’ denotes whether it has human motion in different scenarios. ‘Interactivity’ tells whether there contains
human-object interaction. We mark these attributes with ✓ and ✗. In scale, we list the number of key factors with compared dataset, Note
that ‘Scale-#Motions’ means the number of motion categories, and superscript ∗ means low-resolution VGA cameras, we exclude them
during ‘#View’ ranking and ‘#Frames’ calculation. We abbreviate resolution at height as ‘HRes’.

Along with the dataset, we provide a large-scale and
quantitative benchmark in full-scale, with multiple tasks
to evaluate the existing progress of novel view synthesis,
novel pose animation synthesis, and novel identity render-
ing methods. In this manuscript, we describe our DNA-
Rendering effort as a revealing of new observations, chal-
lenges, and future directions to human-centric rendering.
The dataset, code, and benchmarks will be publicly avail-
able at https://dna-rendering.github.io/.

1. Introduction

Understanding humans is an everlasting problem in our
research community, and extensive literature on perceiving
and synthesizing humans shows great efforts toward this
goal. Over the decades, many pioneers have constructed
large-scale and diverse datasets, such as COCO [31] for hu-
man pose estimation, and ActivityNet [4] for analyzing hu-
man action. These datasets have been pivotal in advancing
the development of human-centric perception algorithms.

Yet, when it comes to human-centric rendering, there is
still a noticeable gap in comprehensive datasets. Capturing
high-quality and massive 3D/4D human avatars is difficult
due to the requirements of high-end equipment as well as
an efficient data processing pipeline. Existing datasets [19,
23, 44, 51, 18] partially narrow the gaps but have significant
limitations on sample diversity (e.g., clothing, motion, body
shape, and human-object interaction), or have insufficient
realism (e.g., camera resolution, and capture speed). These
factors are crucial to rendering effects.

To drive advance in human-centric rendering, we con-
tribute a large-scale multi-view human performance capture
dataset, named DNA-Rendering, which includes the fac-
tors that are important to rendering in great diversity and
granularity. On the hardware side, we build a 360-degree
indoor system equipped with 60 calibrated RGB cameras
and 8 synchronized depth sensors. The captured videos

are under the fidelity of up to 12MP (4096 × 3000) reso-
lution and recorded at 15 fps. From the dataset’s footage
design aspect, we intend to cover most attributes that could
reflect the rendering differences with respect to texture, ma-
terials, primary/secondary motion deformation, and cate-
gory priors. In particular, we design over 1500 outfits and
1187 motion types to ensure the comprehensive coverage
of real-world scenarios. We invite 500 actors to partici-
pate in the data capture process. We record each person
with three different outfits and at least nine unique motions.
The full dataset contains 5000 video sequences with over
67.5M frames. Compared with the existing human-centric
dataset like CMU Panoptic [24], ZJU-MoCap [44], THU-
man [51], and Human3.6M [19], DNA-Rendering com-
prises the most multi-view body performance samples and
reaches the highest image quality. The unfold comparisons
between DNA-Rendering and the others are given in Tab. 1.

Meanwhile, we provide essential annotations attached to
each frame to facilitate the application of downstream tasks.
We develop an automatic annotation pipeline encompassing
camera calibration, color correction, image matting, 2D /3D
landmark estimation, and SMPLX model fitting. To ensure
the labeling quality, we developed a series of technical re-
finements to the annotation toolchain. With these efforts,
the automatic pipeline can generate faithful data annotations
both effectively and efficiently.

The unprecedented richness of DNA-Rendering dataset
provides fertile data soil for researchers to develop, and dis-
sect their rendering methods in depth. To set up a kickoff
example, we further construct benchmarks upon the dataset
with extensive experiments. We evaluate the performances
of several state-of-the-art full-body rendering and anima-
tion approaches under three major tasks, i.e., novel view
synthesis, novel pose animation, and novel identity ren-
dering. To better analyze current methods in terms of the
model capacity, module necessity, and methodology gener-
ality, we set up multiple test set splits under different levels
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of challenging aspects. For instance, we divide the easy,
medium, and hard subsets w.r.t. the cloth looseness, the tex-
ture complexity, the motion difficulty, and the human-object
interactivity, respectively. We conclude a series of key ob-
servations based on the benchmarks, such as how human
prior influences the robustness of rendering, how sensitive
the multi-view/frame relationship module design is to data
volume/distribution, and how loss design affects the perfor-
mance in terms of different rendering metrics.

In summary, the DNA-Rendering project fulfills the re-
quirement of a high-fidelity human performance capture
dataset for the research community. We establish by far
the largest multi-view human body performance dataset
for high-fidelity human-centric rendering research, with an
emphasis on image quality and data attributes. The at-
tached benchmarks provide baseline standards for three ma-
jor tasks, with rigorous evaluations and dissections on mul-
tiple state-of-the-art methods. We believe the dataset, the
attached benchmarks, and the tools will boost a wide range
of digital human applications and inspire future research.

2. Related Work
2.1. Human-centric Datasets

Perception Datasets. Perceiving human is a long-standing
problem. Over the decades, researchers have kept dedi-
cating their efforts to building relevant datasets. Earlier
efforts in the computer vision community present large-
scale datasets like COCO [31] for human segmentation
or keypoint detection from in-the-wild images. Later re-
search works follow the inspiration to establish open-world
datasets [8, 16], while with emphasis on parsing more pre-
cise human body parts. Some researchers focus on con-
structing datasets [7, 40, 50] that capture daily activities
and help the perception of human action recognition by
using RGB-D cameras. Despite the wild variety of data
samples, these datasets are not capable of human render-
ing tasks, due to a lack of multiview images as groundtruth
references for evaluating methods’ performance. In com-
puter graphics society, there is another parallel branch that
contributes datasets [27, 25] for avatar animation, with
recording human motion via maker-based motion capture
systems. AMASS [35] further integrates these motion cap-
ture databases with fully rigged surface mesh representa-
tion. In the last decade, computer vision and graphics so-
ciety fit in with each other in the field of perceiving 3D
humans. Datasets like Human3.6M [19] and MPI-INF-
3DHP [36] capture humans under in-door multi-view envi-
ronment with 3D marker label or multiview segmentation,
which further encourage the applications in recovering hu-
man in 3D. These databases facilitate the development of
numerous algorithms. However, due to the limits of the data
sample, camera views, and resolution, they cannot well re-
flect the pros and cons of rendering methods.

Rendering Datasets. Representing 3D/4D human appear-
ances and performances are important in both research com-
munities and commercial applications. THuman [71, 64,
54] and commercial scan datasets [15, 14] capture static
human scan reconstructed by either depth sensors or cam-
era array. [2, 3, 67, 51, 69] provide dynamic human
scans with minimal clothing and daily costumes. These
datasets are usually biased centering on standing poses due
to the sophisticated capture process. With the emergence
of neural rendering techniques, rendering realistic humans
directly from images has become a trend. CMU Panop-
tic [23] uses a 30-HD-camera system and annotates the hu-
mans with 3D keypoints. HUMBI [66] focuses on local
motions like gestures, facial expressions, and gaze move-
ments. ZJU-MoCap [44] is a widely used dataset for human
rendering algorithms but with limited motion and clothing
diversity, which might lead the evaluation to great bias.
AIST++ [56, 28] is a dance database with various dance
motions while sticking in the one-fold scenario and lacking
view density. Recently proposed HuMMan [5] and Gene-
Body [10] datasets, expand the motion and clothing diver-
sity, while the effective human resolution is still below 1K.
Concurrent works [72, 18] also contribute datasets for hu-
man avatar tasks, while centering on detailed human geom-
etry with long-lens cameras to film human body parts.

2.2. Implicit Neural Body Representation

Different from previous works that represent humans
with explicit representations, recent work models human
appearance as neural implicit function, e.g., neural radiance
fields [38] or neural signed distant functions. PIFu [47, 48]
presents the orthogonal camera space as an occupancy func-
tion conditioned by pixel-aligned features and depth. Neu-
ralBody [44] learns a neural radiance field of dynamic
humans conditioned by body structure and temporal la-
tent code from sparse multi-view videos. Recently, many
category-agnostic implicit representations, PixelNeRF [63],
IBRNet [59], VisionNeRF [29], etc., can generalize NeRF
to arbitrary unseen scenes given a set of reference views.
The intrinsic differences among these methods are the de-
sign of feature aggregation, which varies from average [63],
max pooling [45] to more adaptive weighted pooling [59]
and vision transformer [29]. Given human rendering is
more challenging due to the large variation in pose and
appearance, recent generalizable human rendering meth-
ods [68, 37, 10, 26] condition such image feature-aligned
NeRF with human priors. For example, NeuralHuman-
Performer [26] uses structured latent code and Keypoint-
NeRF [37] deploys human keypoints.

2.3. Animatable Digital Human

The challenge of creating realistic animatable human
avatars from images is two folds – (1) how to reconstruct
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the human body from motion sequences and (2) how to
disentangle non-rigid deformation. Early seminal work A-
NeRF [53] learns dynamic body from sequences, it con-
ditions the radiance field with relative pose coordinate of
the query point, which fails to model the non-rigidity of
clothed humans. To reconstruct the human body from se-
quences, AnimatableNeRF [43] learns a static canonical ra-
diance field together with a ray blending network from the
current frame to canonical space. To further better disentan-
gle motion deformation from pose recent works [49, 9] use
a complementary forward blending network or root-finding
algorithm to regularize the learned blending with cycle con-
sistency loss. Other works [61, 20, 65] learn animatable
models from more challenging monocular video, with a
tighter assumption of Gaussian distributed occupancy along
bone or fixed SMPL motion weights.

3. DNA-Rendering

3.1. Dataset Capture

System Setup. Our capture system contains a high-fidelity
camera array, with 60 high-resolution RGB cameras and 16
lighting boards uniformly distributed in a sphere with a ra-
dius of three meters. The cameras are adjusted to point at
the sphere’s center, where the participants perform. Con-
cretely, the array consists of 48 high-end 2448 × 2048 in-
dustrial cameras, and 12 ultra-high resolution cameras with
up to 4096 × 3000 resolution. We additionally place eight
Kinect cameras to capture additional depth streams as aux-
iliary geometric data. The high-fidelity video streams and
depth streams are synchronized at 15 frames per second.
The above designs ensure the system could record the sharp
texture edges, fine-grained color changes of clothing pat-
terns, and the reflection effects caused by different clothing
materials. Please refer to Sec. A.3 1for more details.
Data Collection Protocol. To enable subsequent research
probing into the factors that have influences on rendering,
we design a data collection protocol with both interlaced
and hierarchical data attributes. Specifically, we ask each
actor to wear three sets of outfits and perform at least three
actions in different hallucinated scenarios for each outfit,
which maximize the identity scale and diversity. Each mo-
tion sequence is recorded under specific action category in-
struction with a free-style performance lasting for 15 sec-
onds, which ensures the diversity of action performance.
As an auxiliary feature, we also capture a static frame of A-
pose for actors in each outfit for canonical pose recording,
and a frame with only empty background for image matting.
For accurate camera pose annotation, extrinsic calibration
data are collected at a daily frequency. The color data and

1If not specified, the indexes with the combination of a capital letter
and an Arabic numeral refer to the corresponding sections/figures/tables
listed in the supplementary material.
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Figure 2: Annotation pipeline. The illustration of annotation
pipeline for camera calibration, camera color calibration, masks,
keypoints, and parametric model.

intrinsic calibration data are collected whenever system ad-
justments are made. Please refer to Sec. A.4 for details.

3.2. Dataset Statistics

In order to cover diverse attributes that relate to ren-
dering quality, we have carried out a detailed design from
the selection of the actors’ gender, age, and skin color, to
their actions, clothing, and makeup. The key statistics of
our dataset are shown at the bottom of Fig. 1. Specifically,
to preserve authenticity in action behavior, we invite 153
professional actors to perform special scenes with corre-
sponding costumes/makeup, and 347 normal performers to
act under footage of daily-life scenes. The special scenes
constitute 153 sub-categories, including sports, dances, and
unique event performances such as typical costumes in an-
cient Chinese dynasties, traditional costumes around the
world, cosplay, etc. Common scenes can be divided into
269 sub-categories, covering scenes such as daily indoor ac-
tivities, communication, entertainment, and new trends. We
describe the comprehensive distribution of data in Sec. A.1
and the limitation of data in Sec. A.5.

3.3. Data Annotation

To enable applications in human rendering and anima-
tion, DNA-Rendering provides rich annotations attached
with the raw data, i.e., camera calibration, camera color cal-
ibration, image matting, and parametric model fitting. The
overall annotation pipeline is shown in Fig. 2.
Camera Calibration. First, we calibrate the intrinsic pa-
rameters of each camera individually. Specifically, we di-
vide the camera’s field of view into a 3×3 Sudoku, and cap-
ture images with ±30 degree rotation in pitch, row, and yaw
angle of checkerboard in all grids, referring to Fig. S4. Sec-
ond, for extrinsic calibration, we deploy multiple ChArUco
boards and spin the main board in the capture volume. We
use open toolboxes [12, 1] to optimize intrinsic parame-
ters, distortion coefficients, and extrinsic parameters with
the captured data. To eliminate the depth camera pose error
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caused by the large resolution gap between industrial cam-
eras and Kinect depth cameras, we further adopt a point
cloud registration stage to refine the depth camera extrinsic
parameters in the second stage. More concretely, for each
depth camera, we project the partial point cloud and esti-
mate a full point cloud from the MVS algorithm such as
[57] as a reference. We jointly optimize the pose graph of
the depth camera for neighboring pointclouds with overlaps
through a multi-way registration [11] with MVS pointcloud
as reference. For detailed camera calibration, please refer
to Sec. B.1 in the supplementary.
Color Calibration. The identical color response across dif-
ferent cameras could be vital for a multi-view, mixed-type
camera system to provide qualified data for rendering appli-
cations, as it is an essential data basis for algorithms to ren-
der realistic view-dependent effects. Different from other
multi-camera datasets, e.g., Multiface [62, 33] which uses a
network to optimize the color transformation during model
training, we pay attention to ensure the color consistency of
data collection across different cameras. First, we conduct
careful adjustments on hardware parameters such as expo-
sure and white balance to make the captured color of the
color checkerboard under the standard light as close as pos-
sible. Then, the 2-order polynomial correction coefficients
could be optimized by least square regression of transform-
ing the detected color to the true value on the color checker-
board. Please refer to Sec. B.1 and Fig. S5 for details.
We also analyze the impact of color consistency of multi-
camera datasets on generalizable rendering in Sec. D.4.
Matting. Considering the large quantities of the captured
images, we develop an automatic matting pipeline to extract
the foreground objects. We first adopt an off-the-shelf back-
ground matting model [30] to eliminate most background
pixels. However, due to the complicated nature of the cap-
ture settings, the learning-based model inevitably gener-
ates unsatisfying results in some challenging cases, leaving
some pieces of labeled data with artifacts such as broken
holes or noisy patches (Fig. 3). Thus, we further propose a
refinement strategy by applying HSV filtering and the Grab-
Cut [46] algorithm to improve the matting quality. We com-
pare matting with and without refinement, and visualize de-
tailed manual assessment in Fig. S8.
Keypoints and Parametric Model. Inspired by existing
works [5, 6], we develop an automatic pipeline to anno-
tate keypoints and parametric model parameters. 1) First,
2D keypoints in COCO-Wholebody [21] format (including
body, hand, and face keypoints) are detected for each cam-
era view, with pretrained model HRNet-w48 [55]. 2) Then,
we triangulate 3D keypoints with known camera intrinsic
and extrinsic parameters from the multi-view 2D keypoints
with optimization and post-processing strategies [13] in-
cluding keypoint selection, bone length constraint, as well
as outlier removal. 3) Finally, we register the SMPLX, a

(a) (b)
Figure 3: Annotation quality improvements. The zoom-in boxes
with red show the annotation quality before pipeline optimization.
The green ones show quality improvements over (a) mask annota-
tion and (b) SMPLX annotation with the optimized pipeline.

commonly used parametric model, via 3D keypoints. Body
shape β ∈ Rn×10 (or β ∈ Rn×11 for children [17, 41]),
pose parameters (body pose, hand pose, and global orien-
tation) θ ∈ Rn×156, and translation parameters t ∈ Rn×3

(n is the number of frames) are estimated via a modified
SMPLify-X [42] for dynamic poses.

Our annotation pipeline is proved effective and robust
in getting natural SMPLX model, as shown in Fig. 3. We
evaluate the fitting error between 3D keypoints and corre-
sponding regressed SMPLX joints. The mean and median
‘Mean Per Joint Position Error’ (MPJPE) of our system is
30.20 mm and 29.80 mm. The error is on par with the or-
acle fitting accuracy of 29.34 mm in Human3.6M [19, 34],
which includes data from an optical motion capture system.
Detailed analysis is conducted in Sec. B.3 and Sec. B.4. A
thorough comparison of our fitting pipeline with other fit-
ting methods [52, 70, 10] is described in Sec. B.5.

4. Benchmarking Human-centric Rendering
DNA-Rendering dataset could be used to boot the de-

velopments of research on high-fidelity human body render-
ing tasks, due to its large-scale volume, diverse scenarios,
multi-level challenges, and high-resolution properties. To
kick off an example of how to utilize this dataset, we set
up benchmarks with exclusive experiments centered around
three fundamental tasks of human body rendering.

4.1. Data Splits

To unfold each method in depth, and thoroughly evaluate
the effectiveness of our dataset, we construct multiple train-
ing and testing data splits to conduct level tests for each
method. We consider the four most influential factors of
rendering quality for the benchmark test, i.e., looseness of
clothes, texture complexity, pose difficulty, and interactivity
between the human body and manipulated object.
The Cloth Looseness. We define the cloth’s challenging
levels by the deformation distance between the minimal-
cloth human body and the clothing outline, and the soft-
ness of cloth materials. The Easy level covers cases wear-
ing tight-fitting clothes like yoga wear and sports t-shirts.
The Medium level includes the daily clothes such as coats,

19986



skirts, jeans, loose t-shirts, etc. The Hard level contains
ethical costumes, national clothing, and fancy decorations.
The Texture Complexity. The texture distribution also
plays an important role in the dynamic human body ren-
dering tasks. To examine the correlations between texture
complexity and rendering performance, we build three data
splits for texture evaluation. The Texture-Easy split is com-
posed of single-color clothes. The Texture-Medium split in-
cludes most daily clothes in a few colors and plain patterns.
The Texture-Hard split contains the most complicated tex-
ture clothes with intricate patterns like dots, stripes, etc.
The Pose Difficulty. In the novel pose animation task, it
is vital to probe if the trained models could handle differ-
ent levels of motion sequences in terms of difficulties and
degree of out-of-distribution. Therefore, we split three lev-
els to pose difficulties. The Easy data are simple motions
with limited body parts involved, like shaking and waving
hands. The Medium level refers to casual motions includ-
ing full-body actions such as walking, eating, sitting, kneel-
ing, stretching, etc. Moreover, the Hard split is designed to
cover the extremely challenging motion cases that are per-
formed by professional sports players or actors, e.g., instru-
ment playing, sports action, yoga, and dancing.
The Human-Object Interactivity. We propose to evalu-
ate the impact of human-object interactivity by object size
and non-rigidity. The Interaction-No split contains pure hu-
man motions with no interactive objects; the Interaction-
Easy split includes rigid small-size hand-held objects like
cellphones, pencils, cigarettes, and cups. The Interaction-
Medium split has middle-size hand-held objects, e.g.,
handbag, volleyball, newspaper, etc. This split includes
both rigid motions and non-rigid object motions; and the
Interaction-Hard split consists of large-size assets such as
yoga mats, desks, chairs, and sofas.

To sum up, we construct an overall train split consist-
ing of 400 sequences with even distribution on all human
factors and difficulties, and 13 test factor-difficulty splits in
total with three sequences in each test split.

4.2. Task Definition

Depending on the generalizability of the state-of-the-art
methods, we categorize the recently published works into
two classes: case-specific methods and generalizable ones.
We evaluate the methods under multiple problem settings
according to their categories. Concretely, we set up novel
view synthesis and novel pose animation tasks for the case-
specific methods, and the novel identity rendering task for
the generalization approaches. In this section, we present
the key observations of the benchmarks.
Novel View Synthesis. Recent dynamic human render-
ing works like NeuralBody [44], A-NeRF [53], Animat-
ableNeRF [43], and NeuralVolumes [32] obtained impres-
sive results by training on a single case with multi-view
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Figure 4: Quantitative results visualization of novel view syn-
thesis test across benchmarks splits and difficulties. The col-
ored circles denote different metrics, the smaller the circles indi-
cate the better the novel view quality the method achieved. The
numbers are reported in the appendix (Tab. S2).

video data. HumanNeRF [61] demonstrated the ability to
render realistic novel view images of humans from monoc-
ular video sequences. In this task, we adopt the offi-
cial implementation of the case-specific methods and train
each individual model for every single case in the DNA-
Rendering test set. For a fair comparison, we unify the train-
ing setting of NeuralVolumes [32], A-NeRF [53], Neural-
Body [44], AnimatableNeRF [43], and HumanNeRF [61]
with 42 dense training views. We evaluate the image ren-
dering quality of these methods on the other 18 unseen test-
ing camera poses. Meanwhile, we also train two general
scene static methods – Instant-NGP [39] and NeuS [58], in
each testing frame with the same training views. These two
methods’ performances could serve as the per-frame static
reconstruction baseline reference. The rendering results are
analyzed based on the difficulty level of data splits.
Novel Pose Animation. Similar to the novel view synthesis
task, we conduct novel pose animation benchmark on the
four dynamic methods [44, 43, 53, 61]. For each test case,
we split the sequence into two parts, where images from
the first 80% frames are used for training and the ones from
the last 20% are used for testing. Besides, for the SMPL-
guided pose animation methods [44, 43, 61], we provide
the SMPL parameters of test images for the models to infer
rendering. As for the SMPL-free method [53], the trained
models take the target pose images as the input (i.e., the
underlying skeletons), and render humans in novel poses.
Novel Identity Rendering. The other category of our
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Figure 5: Visualization of novel view synthesis result samples. We qualitatively compare the novel views of the test frames in our test
splits. More qualitative novel results in each split are shown in Fig. S9.

benchmark methods is the generalizable algorithms that
can be trained on multiple cases and infer across differ-
ent unseen identities. Specifically, we probe three general
scene methods – PixelNeRF [63], VisionNeRF [29], IBR-
Net [59], and two human-centric methods – NeuralHuman-
Performer [26], and KeypointNeRF [37]. To fairly compare
their performances on unseen identities, we use the same
training set (all training samples of the three splits, which
results in 400 sequences in total) to train the generalizable
models. In the inference stage, we evaluate the rendering
quality on novel cases from each test split respectively.

4.3. Benchmark Results

As introduced in Sec. 4.1, we construct a test set with 13
sub-splits according to the four most concerned attributes in

different difficulty levels, and an extra No level for Interac-
tion. This results in a data volume of 39 motion sequences
for testing. For all rendered images, three metrics are com-
puted – PSNR, SSIM [60], and LPIPS-Alex [22] (LPIPS*
denotes LPIPS×1000). We evaluate more than 10 state-
of-the-art methods on these splits and analyze their perfor-
mances under the same metrics. The experiment analysis is
given below. Noted that due to limited space in the main pa-
per, we provide the detailed setting, thorough discussions,
and additional results in Sec. C in the supplementary.

Novel View Synthesis. We visualize the bubble diagram
of quantitative results across all benchmark splits in Fig. 4.
The precise numbers of the quantitative results are reported
in Tab. S2 in the supplementary. We conclude three key
observations in the main paper: (1) Generally speaking,

Splits PSNR↑ SSIM↑ LPIPS*↓
NV AN NB AnN HN NV AN NB AnN HN NV AN NB AnN HN

Motion-Simple 22.05 26.65 25.84 22.78 24.65 0.947 0.965 0.974 0.958 0.953 78.30 58.04 58.33 74.33 62.76
Motion-Medium 19.30 21.73 21.84 21.41 21.14 0.941 0.951 0.969 0.957 0.952 92.80 71.81 65.46 80.97 54.46
Motion-Hard 19.17 21.49 20.43 19.64 22.48 0.938 0.952 0.965 0.949 0.964 105.46 83.58 82.85 97.98 51.18
Deformation Simple 20.42 25.44 24.57 23.62 26.15 0.939 0.957 0.968 0.958 0.967 84.65 53.30 59.04 61.12 30.18
Deformation-Medium 23.09 27.26 27.05 23.52 24.97 0.945 0.963 0.974 0.961 0.958 61.09 48.41 49.91 65.43 33.94
Deformation-Hard 20.11 20.88 20.27 19.41 19.70 0.925 0.926 0.956 0.943 0.924 117.31 108.89 102.84 103.22 102.67
Texture-Simple 20.99 26.21 25.54 23.12 25.65 0.954 0.974 0.982 0.970 0.974 77.68 49.88 50.48 67.40 28.81
Texture-Medium 25.44 27.94 25.77 23.15 27.19 0.959 0.966 0.977 0.962 0.969 56.68 43.94 48.44 67.00 24.04
Texture-Hard 20.95 23.22 22.05 18.45 23.78 0.916 0.927 0.951 0.943 0.945 117.93 98.43 96.01 101.09 41.84
Interaction-No 22.64 26.32 25.41 22.44 25.93 0.957 0.968 0.980 0.967 0.968 71.98 62.55 54.71 69.29 31.61
Interaction-Simple 24.28 27.57 26.42 23.18 27.18 0.965 0.976 0.983 0.968 0.975 55.54 48.35 45.86 65.36 23.31
Interaction-Medium 20.37 23.67 21.96 20.81 23.20 0.934 0.950 0.965 0.953 0.951 95.79 84.74 87.41 97.32 52.10
Interaction-Hard 21.14 25.00 22.10 21.29 22.29 0.931 0.949 0.961 0.953 0.940 94.04 79.40 89.63 91.82 70.54
Overall 21.53 24.88 23.79 21.76 24.18 0.942 0.956 0.970 0.957 0.957 85.33 68.56 68.54 80.18 46.73

Table 2: Benchmark results on novel pose task. We abbreviate NeuralVolumes [32] as ‘NV’, A-NeRF [53] as ‘AN’, NeuralBody [44] as
‘NB’, AnimatableNeRF [43] as ‘AnN’ and HumanNeRF [61] as ‘HN’. indicate best, second best, and third best performance in the
same split respectively. Although NV is not directly applicable to this task, we list its results as a dynamic method baseline for reference.

19988



GT

(a)

(b)

(c)

(d)

(e)

Figure 6: Visualization of novel pose animation result samples. From top to bottom, we illustrate the reposing results generated by (a-e):
NeuralVolumes [32], A-NeRF [53], NeuralBody [44] AnimatableNeRF [43], and HumanNeRF [61].

the rendering quality is inversely proportional to split dif-
ficulties, as reported in Fig. 4, where the circles get big-
ger when the difficulty grows. (2) Among case-specific
dynamic methods, A-NeRF [53] achieves the best PSNR,
and NeuralBody [44] and HumanNeRF [61] gets the best
SSIM and LPIPS respectively. Qualitative results are shown
in Fig. 5, NeuralBody [44] and A-NeRF [53] could ren-
der novel view image with fewer background artifacts than
other methods, while HumanNeRF [61] can better preserve
high fidelity textures, especially in high-frequency texture
regions. (3) When rendering novel views for trained hu-
man action frames, hard Texture cases have a large perfor-
mance gap among dynamic methods (refer to T-shirt case
with stripe pattern in Fig. 5). Meanwhile, dynamic meth-
ods’ performances on Texture degrade the most when diffi-
culty rises compared to the static baselines (refer to bubbles
in Fig. 4). More qualitative results in each benchmark split
are shown in Fig. S9, and we analyze the conceptual differ-
ence of these methods in Sec. C.2.1.

Novel Pose Animation. Similar to novel view synthe-
sis, when split difficulty increases the rendering quality de-
creases as shown in Tab. 2. Among all data factors, we
found that Deformation and Interaction are insurmount-

able factors for current methods to model in novel poses.
Qualitative results are displayed in Fig. 6, none of the
methods can generate reasonable deformation in the case
of the Peking opera costume. NeuralBody [44] and An-
imatableNeRF [43] can not model the interactive objects,
and the objects are stretched when given large poses in A-
NeRF [53]. Conclusively, current methods can learn rea-
sonable human avatars with even hard Motion and Textures,
while stuck in the imperfectness of modeling hard Defor-
mation and Interaction. These animation challenges should
stimulate the communities for further investigation. More
detailed analysis is provided in Sec. C.2.2 in the appendix.

Novel Identity Rendering. We report the quantitative met-
rics of all 39 novel identities in Tab. 3. Generally, gener-
alizable methods with human piror [37, 26] perform bet-
ter with higher robustness than category-agnostic meth-
ods [63, 59, 29]. Among category-agnostic methods, IBR-
Net [59] directly blends pixel color from source views,
and it outperforms PixelNeRF [63] and VisionNeRF [29]
that predict radiance color only from image features. We
draw the conclusion that, in generalizable human render-
ing, human prior and appearance references from observa-
tion could help boost the generalization ability on data with
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large variations of poses and appearances. We illustrate the
qualitative results in Fig. S11. We provide additional results
and analysis in Sec. C.2.3 in supplementary.

4.4. Cross-dataset Comparison

Apart from the benchmark experiments, we also eval-
uate the data generalizability provided by our dataset and
the other competitive ones, i.e., GeneBody [10], ZJU-
MoCap [44] and HuMMan [5].
Setting and Implementations. To eliminate the scale and
annotation differences across all datasets, we train three
general scene generalizable rendering methods [63, 59, 29]
on these datasets with the same pixel batch per-iteration
and stop training with the same 200K global iterations.
For each method, we train each individual model on each
dataset mentioned above, with a fixed image resolution
512× 512 and four balanced views. To thoroughly evaluate
the datasets’ generalizability, we cross-verify the rendering
images of novel identities on each dataset.
Results. The experimental results are presented in Fig. 7
in terms of the average PSNR of all three methods. From
this colored error map, we conclude that training on DNA-
Rendering dataset is beneficial for generalizing to the other
datasets. In general, due to the existence of domain gaps,
a model would perform better in the situation of an in-
domain setting, where the training set and test set follow the
same distribution, see diagonal elements in Fig. 7. The off-
diagonal numbers report the cross-domain performances of
models trained on one dataset and tested directly on other
datasets’ test sets. We observe an interesting phenomenon
that, compared to datasets with limited data diversity and
high data bias (like ZJU-MoCap [44] and HuMMan [5]), the
proposed dataset enables generalization methods to achieve
more plausible results even with large domain gaps. More-
over, opposite to DNA-Rendering, HuMMan [5] generalize
poorly on other datasets even on cases with simple motions
and appearances in ZJU-MoCap [44], despite the fact that
both HuMMan [5] and our DNA-Rendering have large data
volume. From a data engineering perspective, this demon-
strates the construction of the proposed dataset benefits the
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Figure 7: Results of cross-dataset experiments. We visualize the
‘affinity’ matrix of cross-dataset evaluation results.
community not merely with the amount of data, more im-
portantly, the significant improvement in data completeness
and richness. Due to space limit, we provide the detailed
setup and additional results in Sec. D of the supplementary.
It is worth motioning that, we also unfold the generalization
performance across testing cameras and reveal the impact of
color consistency for multi-camera datasets in Sec. D.4.

5. Conclusion
We have presented DNA-Rendering, a large-scale and

high-fidelity repository for human-centric rendering. It is
a multiview human body capture dataset that covers many
diverse factors like ethnicity, age, body shape, clothing, mo-
tion, and interactive objects with faithful annotations. We
have also presented benchmarks to evaluate state-of-the-art
approaches on the DNA-Rendering dataset with in-depth
discussions, and compared our dataset with the others via
cross-dataset experiments on generalization capability. We
hope our DNA-Rendering project could boost the develop-
ment of human-centric rendering and related domains with
new reflections, challenges, and opportunities.
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Splits PSNR↑ SSIM↑ LPIPS*↓
IBR PN VN NHP KN IBR PN VN NHP KN IBR PN VN NHP KN

Motion-Simple 26.13 26.04 25.90 25.61 24.67 0.964 0.957 0.959 0.961 0.964 65.48 72.68 72.29 65.53 44.77
Motion-Medium 25.56 25.84 25.22 24.63 24.34 0.966 0.960 0.961 0.963 0.971 59.71 63.80 64.83 61.08 38.22
Motion-Hard 23.78 24.49 23.72 23.43 24.36 0.959 0.950 0.949 0.956 0.973 79.18 89.93 93.04 80.20 43.79
Deformation Simple 26.72 26.85 26.31 26.41 26.01 0.965 0.960 0.960 0.963 0.965 53.73 61.92 63.48 48.45 34.68
Deformation-Medium 27.46 27.55 27.90 27.28 25.83 0.965 0.961 0.965 0.963 0.972 57.30 66.82 62.82 56.02 38.00
Deformation-Hard 23.98 20.77 20.05 22.64 23.00 0.942 0.841 0.838 0.936 0.943 87.04 282.36 264.57 92.22 67.76
Texture-Simple 25.70 26.27 25.62 25.43 22.72 0.973 0.967 0.968 0.973 0.971 63.66 69.16 70.93 58.70 50.07
Texture-Medium 26.15 26.76 26.40 26.25 25.14 0.965 0.960 0.963 0.963 0.968 54.45 56.66 56.58 53.95 35.10
Texture-Hard 23.34 24.08 23.61 23.45 22.91 0.932 0.921 0.922 0.933 0.935 98.77 106.05 104.58 90.84 72.87
Interaction-No 26.08 25.91 26.39 25.46 23.43 0.968 0.958 0.963 0.966 0.968 61.99 72.67 66.91 64.35 44.95
Interaction-Simple 27.60 25.76 27.54 26.67 26.12 0.976 0.944 0.973 0.974 0.977 50.50 82.30 53.38 50.77 28.60
Interaction-Medium 24.04 24.44 24.09 23.61 22.70 0.950 0.937 0.941 0.947 0.950 84.64 96.53 93.92 86.29 63.72
Interaction-Hard 24.78 25.76 24.93 24.02 24.12 0.951 0.944 0.942 0.946 0.953 79.06 82.30 82.54 78.82 58.43
Overall 25.49 25.42 25.21 24.99 24.26 0.960 0.943 0.946 0.957 0.962 68.89 92.55 88.45 68.25 47.77

Table 3: Benchmark results on novel identity task. We abbreviate IBRNet [59] as ‘IBR’, PixelNeRF [63] as ‘PN’, VisionNeRF [29] as
‘VN’, NeuralHumanPerformer [26] as ‘NHP’ and KeypointNeRF [61] as ‘KN’.
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