DNA-Rendering: A Diverse Neural Actor Repository for High-Fidelity Human-centric Rendering

Wei Cheng1 Ruixiang Chen2* Siming Fan1,2* Wanqi Yin2* Keyu Chen1*
Zhongang Cai3 Jingbo Wang4 Yang Gao2 Zhengming Yu1 Zhengyu Lin2 Daxuan Ren3
Lei Yang1,2 Ziwei Liu3 Chen Change Loy3 Chen Qian1
Wayne Wu1 Dahua Lin1,4 Bo Dai1† Kwan-Yee Lin1,4†
1 Shanghai AI Laboratory 2 SenseTime Research 3 S-Lab, NTU 4 CUHK

Abstract

Realistic human-centric rendering plays a key role in both computer vision and computer graphics. Rapid progress has been made in the algorithm aspect over the years, yet existing human-centric rendering datasets and benchmarks are rather impoverished in terms of diversity (e.g., outfit’s fabric/material, body’s interaction with objects, and motion sequences), which are crucial for rendering effect. Researchers are usually constrained to explore and evaluate a small set of rendering problems on current datasets, while real-world applications require methods to be robust across different scenarios. In this work, we present DNA-Rendering, a large-scale, high-fidelity repository of human performance data for neural actor rendering. DNA-Rendering presents several appealing attributes. First, our dataset contains over 1500 human subjects, 5000 motion sequences, and 67.5M frames’ data volume. Upon the massive collections, we provide human subjects with grand categories of motion, cloth, accessory, body shape, and human-object interaction. We hope it could boost the development of human-centric rendering and related tasks.
Table 1: Dataset comparison on attributes and scales. We compare the proposed dataset with previous human-centric multiview datasets in terms of attribute coverage, scale, and realism. ‘Ethnicity’ denotes whether the dataset contains actors from multiple ethnic groups. ‘Age’ means if there is a wide age range containing elders or infants. ‘Cloth’ separates datasets with only daily costumes or with extra diverse clothing. ‘Attribute-Motion’ denotes whether it has human motion in different scenarios. ‘Interactivity’ tells whether there contains human-object interaction. We mark these attributes with ✓ and ✗. In scale, we list the number of key factors with compared dataset. Note that ‘Scale-#Motions’ means the number of motion categories, and superscript * means low-resolution VGA cameras, we exclude them during ‘#View’ ranking and ‘#Frames’ calculation. We abbreviate resolution at height as ‘HRes’.

Along with the dataset, we provide a large-scale and quantitative benchmark in full-scale, with multiple tasks to evaluate the existing progress of novel view synthesis, novel pose animation synthesis, and novel identity rendering methods. In this manuscript, we describe our DNA-Rendering effort as a revealing of new observations, challenges, and future directions to human-centric rendering. The dataset, code, and benchmarks will be publicly available at https://dna-rendering.github.io/.

1. Introduction

Understanding humans is an everlasting problem in our research community, and extensive literature on perceiving and synthesizing humans shows great efforts toward this goal. Over the decades, many pioneers have constructed large-scale and diverse datasets, such as COCO [31] for human pose estimation, and ActivityNet [4] for analyzing human action. These datasets have been pivotal in advancing the development of human-centric perception algorithms.

Yet, when it comes to human-centric rendering, there is still a noticeable gap in comprehensive datasets. Capturing high-quality and massive 3D/4D human avatars is difficult due to the requirements of high-end equipment as well as an efficient data processing pipeline. Existing datasets [19, 23, 44, 51, 18] partially narrow the gaps but have significant limitations on sample diversity (e.g., clothing, motion, body shape, and human-object interaction), or have insufficient realism (e.g., camera resolution, and capture speed). These factors are crucial to rendering effects.

To drive advance in human-centric rendering, we contribute a large-scale multi-view human performance capture dataset, named DNA-Rendering, which includes the factors that are important to rendering in great diversity and granularity. On the hardware side, we build a 360-degree indoor system equipped with 60 calibrated RGB cameras and 8 synchronized depth sensors. The captured videos are under the fidelity of up to 12MP (4096 × 3000) resolution and recorded at 15 fps. From the dataset’s footage design aspect, we intend to cover most attributes that could reflect the rendering differences with respect to texture, materials, primary/secondary motion deformation, and category priors. In particular, we design over 1500 outfits and 1187 motion types to ensure the comprehensive coverage of real-world scenarios. We invite 500 actors to participate in the data capture process. We record each person with three different outfits and at least nine unique motions.

The full dataset contains 5000 video sequences with over 67.5M frames. Compared with the existing human-centric dataset like CMU Panoptic [24], ZJU-MoCap [44], THuman [51], and Human3.6M [19], DNA-Rendering comprises the most multi-view body performance samples and reaches the highest image quality. The unfold comparisons between DNA-Rendering and the others are given in Tab. 1.

Meanwhile, we provide essential annotations attached to each frame to facilitate the application of downstream tasks. We develop an automatic annotation pipeline encompassing camera calibration, color correction, image matting, 2D/3D landmark estimation, and SMPLX model fitting. To ensure the labeling quality, we developed a series of technical refinements to the annotation toolchain. With these efforts, the automatic pipeline can generate faithful data annotations both effectively and efficiently.

The unprecedented richness of DNA-Rendering dataset provides fertile data soil for researchers to develop, and dissect their rendering methods in depth. To set up a kickoff example, we further construct benchmarks upon the dataset with extensive experiments. We evaluate the performances of several state-of-the-art full-body rendering and animation approaches under three major tasks, i.e., novel view synthesis, novel pose animation, and novel identity rendering. To better analyze current methods in terms of the model capacity, module necessity, and methodology generality, we set up multiple test set splits under different levels.
of challenging aspects. For instance, we divide the easy, medium, and hard subsets w.r.t. the cloth looseness, the texture complexity, the motion difficulty, and the human-object interactivity, respectively. We conclude a series of key observations based on the benchmarks, such as how human prior influences the robustness of rendering, how sensitive the multi-view/frame relationship module design is to data volume/distribution, and how loss design affects the performance in terms of different rendering metrics.

In summary, the DNA-Rendering project fulfills the requirement of a high-fidelity human performance capture dataset for the research community. We establish by far the largest multi-view human body performance dataset for high-fidelity human-centric rendering research, with an emphasis on image quality and data attributes. The attached benchmarks provide baseline standards for three major tasks, with rigorous evaluations and dissections on multiple state-of-the-art methods. We believe the dataset, the attached benchmarks, and the tools will boost a wide range of digital human applications and inspire future research.

2. Related Work

2.1. Human-centric Datasets

Perception Datasets. Perceiving human is a long-standing problem. Over the decades, researchers have kept dedicating their efforts to building relevant datasets. Earlier efforts in the computer vision community present large-scale datasets like COCO [31] for human segmentation or keypoint detection from in-the-wild images. Later research works follow the inspiration to establish open-world datasets [8, 16], while with emphasis on parsing more precise human body parts. Some researchers focus on constructing datasets [7, 40, 50] that capture daily activities and help the perception of human action recognition by using RGB-D cameras. Despite the wild variety of data samples, these datasets are not capable of human rendering tasks, due to a lack of multi-view images as groundtruth references for evaluating methods’ performance. In computer graphics society, there is another parallel branch that contributes datasets [27, 25] for avatar animation, with recording human motion via maker-based motion capture systems. AMASS [35] further integrates these motion capture databases with fully rigged surface mesh representation. In the last decade, computer vision and graphics society fit in with each other in the field of perceiving 3D humans. Datasets like Human3.6M [19] and MPI-INF-3DHP [36] capture humans under in-door multi-view environment with 3D marker label or multiview segmentation, which further encourage the applications in recovering human in 3D. These databases facilitate the development of numerous algorithms. However, due to the limits of the data sample, camera views, and resolution, they cannot well reflect the pros and cons of rendering methods.

Rendering Datasets. Representing 3D/4D human appearances and performances are important in both research communities and commercial applications. THuman [71, 64, 54] and commercial scan datasets [15, 14] capture static human scan reconstructed by either depth sensors or camera array. [2, 3, 67, 51, 69] provide dynamic human scans with minimal clothing and daily costumes. These datasets are usually biased centering on standing poses due to the sophisticated capture process. With the emergence of neural rendering techniques, rendering realistic humans directly from images has become a trend. CMU Panoptic [23] uses a 30-HD-camera system and annotates the humans with 3D keypoints. HUMBI [66] focuses on local motions like gestures, facial expressions, and gaze movements. ZJU-MoCap [44] is a widely used dataset for human rendering algorithms but with limited motion and clothing diversity, which might lead the evaluation to great bias. AIST++ [56, 28] is a dance database with various dance motions while sticking in the one-fold scenario and lacking view density. Recently proposed HuMMan [5] and GeneBody [10] datasets, expand the motion and clothing diversity, while the effective human resolution is still below 1K. Concurrent works [72, 18] also contribute datasets for human avatar tasks, while centering on detailed human geometry with long-lens cameras to film human body parts.

2.2. Implicit Neural Body Representation

Different from previous works that represent humans with explicit representations, recent work models human appearance as neural implicit function, e.g., neural radiance fields [38] or neural signed distant functions. PIFu [47, 48] presents the orthogonal camera space as an occupancy function conditioned by pixel-aligned features and depth. NeuralBody [44] learns a neural radiance field of dynamic humans conditioned by body structure and temporal latent code from sparse multi-view videos. Recently, many category-agnostic implicit representations, PixelNeRF [63], IBRNet [59], VisionNeRF [29], etc., can generalize NeRF to arbitrary unseen scenes given a set of reference views. The intrinsic differences among these methods are the design of feature aggregation, which varies from average [63], max pooling [45] to more adaptive weighted pooling [59] and vision transformer [29]. Given human rendering is more challenging due to the large variation in pose and appearance, recent generalizable human rendering methods [68, 37, 10, 26] condition such image feature-aligned NeRF with human priors. For example, NeuralHumanPerformer [26] uses structured latent code and KeypointNeRF [37] deploys human keypoints.

2.3. Animatable Digital Human

The challenge of creating realistic animatable human avatars from images is two folds – (1) how to reconstruct
the human body from motion sequences and (2) how to disentangle non-rigid deformation. Early seminal work A-NeRF [53] learns dynamic body from sequences, it conditions the radiance field with relative pose coordinate of the query point, which fails to model the non-rigidity of clothed humans. To reconstruct the human body from sequences, AnimatableNeRF [43] learns a static canonical radiance field together with a ray blending network from the current frame to canonical space. To further better disentangle motion deformation from pose recent works [49, 9] use a complementary forward blending network or root-finding algorithm to regularize the learned blending with cycle consistency loss. Other works [61, 20, 65] learn animatable models from more challenging monocular video, with a tighter assumption of Gaussian distributed occupancy along bone or fixed SMPL motion weights.

3. DNA-Rendering

3.1. Dataset Capture

System Setup. Our capture system contains a high-fidelity camera array, with 60 high-resolution RGB cameras and 16 lighting boards uniformly distributed in a sphere with a radius of three meters. The cameras are adjusted to point at the sphere’s center, where the participants perform. Concretely, the array consists of 48 high-end 2448 × 2048 industrial cameras, and 12 ultra-high resolution cameras with up to 4096 × 3000 resolution. We additionally place eight Kinect cameras to capture additional depth streams as auxiliary geometric data. The high-fidelity video streams and depth streams are synchronized at 15 frames per second. The above designs ensure the system could record the sharp texture edges, fine-grained color changes of clothing patterns, and the reflection effects caused by different clothing materials. Please refer to Sec. A.3 for more details.

Data Collection Protocol. To enable subsequent research probing into the factors that have influences on rendering, we design a data collection protocol with both interlaced and hierarchical data attributes. Specifically, we ask each actor to wear three sets of outfits and perform at least three actions in different hallucinated scenarios for each outfit, which maximize the identity scale and diversity. Each motion sequence is recorded under specific action category instruction with a free-style performance lasting for 15 seconds, which ensures the diversity of action performance. As an auxiliary feature, we also capture a static frame of A-pose for actors in each outfit for canonical pose recording, and a frame with only empty background for image matting. For accurate camera pose annotation, extrinsic calibration data are collected at a daily frequency. The color data and intrinsic calibration data are collected whenever system adjustments are made. Please refer to Sec. A.4 for details.

3.2. Dataset Statistics

In order to cover diverse attributes that relate to rendering quality, we have carried out a detailed design from the selection of the actors’ gender, age, and skin color, to their actions, clothing, and makeup. The key statistics of our dataset are shown at the bottom of Fig. 1. Specifically, to preserve authenticity in action behavior, we invite 153 professional actors to perform special scenes with corresponding costumes/makeup, and 347 normal performers to act under footage of daily-life scenes. The special scenes constitute 153 sub-categories, including sports, dances, and unique event performances such as typical costumes in ancient Chinese dynasties, traditional costumes around the world, cosplay, etc. Common scenes can be divided into 269 sub-categories, covering scenes such as daily indoor activities, communication, entertainment, and new trends. We describe the comprehensive distribution of data in Sec. A.1 and the limitation of data in Sec. A.5.

3.3. Data Annotation

To enable applications in human rendering and animation, DNA-Rendering provides rich annotations attached with the raw data, i.e., camera calibration, camera color calibration, image matting, and parametric model fitting. The overall annotation pipeline is shown in Fig. 2. Camera Calibration. First, we calibrate the intrinsic parameters of each camera individually. Specifically, we divide the camera’s field of view into a 3 × 3 Sudoku, and capture images with ±30 degree rotation in pitch, row, and yaw angle of checkerboard in all grids, referring to Fig. S4. Second, for extrinsic calibration, we deploy multiple ChArUco boards and spin the main board in the capture volume. We use open toolboxes [12, 1] to optimize intrinsic parameters, distortion coefficients, and extrinsic parameters with the captured data. To eliminate the depth camera pose error

Figure 2: Annotation pipeline. The illustration of annotation pipeline for camera calibration, camera color calibration, masks, keypoints, and parametric model.
caused by the large resolution gap between industrial cameras and Kinect depth cameras, we further adopt a point cloud registration stage to refine the depth camera extrinsic parameters in the second stage. More concretely, for each depth camera, we project the partial point cloud and estimate a full point cloud from the MVS algorithm such as [57] as a reference. We jointly optimize the pose graph of the depth camera for neighboring pointclouds with overlaps through a multi-way registration [11] with MVS pointcloud as reference. For detailed camera calibration, please refer to Sec. B.1 in the supplementary.

Color Calibration. The identical color response across different cameras could be vital for a multi-view, mixed-type camera system to provide qualified data for rendering applications, as it is an essential data basis for algorithms to render realistic view-dependent effects. Different from other multi-camera datasets, e.g., Multiface [62, 33] which uses a network to optimize the color transformation during model training, we pay attention to ensure the color consistency of data collection across different cameras. First, we conduct careful adjustments on hardware parameters such as exposure and white balance to make the captured color of the color checkerboard under the standard light as close as possible. Then, the 2-order polynomial correction coefficients could be optimized by least square regression of transforming the detected color to the true value on the color checkerboard. Please refer to Sec. B.1 and Fig. S5 for details. We also analyze the impact of color consistency of multi-camera datasets on generalizable rendering in Sec. D.4.

Matting. Considering the large quantities of the captured images, we develop an automatic matting pipeline to extract the foreground objects. We first adopt an off-the-shelf background matting model [30] to eliminate most background pixels. However, due to the complicated nature of the capture settings, the learning-based model inevitably generates unsatisfying results in some challenging cases, leaving some pieces of labeled data with artifacts such as broken holes or noisy patches (Fig. 3). Thus, we further propose a refinement strategy by applying HSV filtering and the GrabCut [46] algorithm to improve the matting quality. We compare matting with and without refinement, and visualize detailed manual assessment in Fig. S8.

Keypoints and Parametric Model. Inspired by existing works [5, 6], we develop an automatic pipeline to annotate keypoints and parametric model parameters. 1) First, 2D keypoints in COCO-Wholebody [21] format (including body, hand, and face keypoints) are detected for each camera view, with pretrained model HRNet-w48 [55]. 2) Then, we triangulate 3D keypoints with known camera intrinsic and extrinsic parameters from the multi-view 2D keypoints with optimization and post-processing strategies [13] including keypoint selection, bone length constraint, as well as outlier removal. 3) Finally, we register the SMPLX, a commonly used parametric model, via 3D keypoints. Body shape \(\beta \in \mathbb{R}^{n \times 10} \) (or \(\beta \in \mathbb{R}^{n \times 11} \) for children [17, 41]), pose parameters (body pose, hand pose, and global orientation) \(\theta \in \mathbb{R}^{n \times 156} \), and translation parameters \(t \in \mathbb{R}^{n \times 3} \) (\(n \) is the number of frames) are estimated via a modified SMPLify-X [42] for dynamic poses.

Our annotation pipeline is proved effective and robust in getting natural SMPLX model, as shown in Fig. 3. We evaluate the fitting error between 3D keypoints and corresponding regressed SMPLX joints. The mean and median ‘Mean Per Joint Position Error’ (MPJPE) of our system is 30.20 mm and 29.80 mm. The error is on par with the oracle fitting accuracy of 29.34 mm in Human3.6M [19, 34], which includes data from an optical motion capture system. Detailed analysis is conducted in Sec. B.3 and Sec. B.4. A thorough comparison of our fitting pipeline with other fitting methods [52, 70, 10] is described in Sec. B.5.

4. Benchmarking Human-centric Rendering

DNA-Rendering dataset could be used to boot the developments of research on high-fidelity human body rendering tasks, due to its large-scale volume, diverse scenarios, multi-level challenges, and high-resolution properties. To kick off an example of how to utilize this dataset, we set up benchmarks with exclusive experiments centered around three fundamental tasks of human body rendering.

4.1. Data Splits

To unfold each method in depth, and thoroughly evaluate the effectiveness of our dataset, we construct multiple training and testing data splits to conduct level tests for each method. We consider the four most influential factors of rendering quality for the benchmark test, i.e., looseness of clothes, texture complexity, pose difficulty, and interactivity between the human body and manipulated object.

The Cloth Looseness. We define the cloth’s challenging levels by the deformation distance between the minimal-cloth human body and the clothing outline, and the softness of cloth materials. The Easy level covers cases wearing tight-fitting clothes like yoga wear and sports t-shirts. The Medium level includes the daily clothes such as coats,
skirts, jeans, loose t-shirts, etc. The Hard level contains ethical costumes, national clothing, and fancy decorations.

The Texture Complexity. The texture distribution also plays an important role in the dynamic human body rendering tasks. To examine the correlations between texture complexity and rendering performance, we build three data splits for texture evaluation. The Texture-Easy split is composed of single-color clothes. The Texture-Medium split includes mostly daily clothes in a few colors and plain patterns. The Texture-Hard split contains the most complicated texture clothes with intricate patterns like dots, stripes, etc.

The Pose Difficulty. In the novel pose animation task, it is vital to probe if the trained models could handle different levels of motion sequences in terms of difficulties and degree of out-of-distribution. Therefore, we split three levels to pose difficulties. The Easy data are simple motions with limited body parts involved, like shaking and waving hands. The Medium level refers to casual motions including full-body actions such as walking, eating, sitting, kneeling, stretching, etc. Moreover, the Hard split is designed to cover the extremely challenging motion cases that are performed by professional sports players or actors, e.g., instrument playing, sports action, yoga, and dancing.

The Human-Object Interactivity. We propose to evaluate the impact of human-object interactivity by object size and non-rigidity. The Interaction-No split contains pure human motions with no interactive objects; the Interaction-Easy split includes rigid small-size hand-held objects like cellphones, pencils, cigarettes, and cups. The Interaction-Medium split has middle-size hand-held objects, e.g., handbag, volleyball, newspaper, etc. This split includes both rigid motions and non-rigid object motions; and the Interaction-Hard split consists of large-size assets such as yoga mats, desks, chairs, and sofas.

To sum up, we construct an overall train split consisting of 400 sequences with even distribution on all human factors and difficulties, and 13 test factor-difficulty splits in total with three sequences in each test split.

4.2. Task Definition

Depending on the generalizability of the state-of-the-art methods, we categorize the recently published works into two classes: case-specific methods and generalizable ones. We evaluate the methods under multiple problem settings according to their categories. Concretely, we set up novel view synthesis and novel pose animation tasks for the case-specific methods, and the novel identity rendering task for the generalization approaches. In this section, we present the key observations of the benchmarks.

Novel View Synthesis. Recent dynamic human rendering works like NeuralBody [44], A-NeRF [53], AnimatableNeRF [43], and NeuralVolumes [32] obtained impressive results by training on a single case with multi-view video data. HumanNeRF [61] demonstrated the ability to render realistic novel view images of humans from monocular video sequences. In this task, we adopt the official implementation of the case-specific methods and train each individual model for every single case in the DNA-Rendering test set. For a fair comparison, we unify the training setting of NeuralVolumes [32], A-NeRF [53], NeuralBody [44], AnimatableNeRF [43], and HumanNeRF [61] with 42 dense training views. We evaluate the image rendering quality of these methods on the other 18 unseen testing camera poses. Meanwhile, we also train two general scene static methods – Instant-NGP [39] and NeuS [58], in each testing frame with the same training views. These two methods’ performances could serve as the per-frame static reconstruction baseline reference. The rendering results are analyzed based on the difficulty level of data splits.

Novel Pose Animation. Similar to the novel view synthesis task, we conduct novel pose animation benchmark on the four dynamic methods [44, 43, 53, 61]. For each test case, we split the sequence into two parts, where images from the first 80% frames are used for training and the ones from the last 20% are used for testing. Besides, for the SMPL-guided pose animation methods [44, 43, 61], we provide the SMPL parameters of test images for the models to infer rendering. As for the SMPL-free method [53], the trained models take the target pose images as the input (i.e., the underlying skeletons), and render humans in novel poses.

Novel Identity Rendering. The other category of our
benchmark methods is the generalizable algorithms that can be trained on multiple cases and infer across different unseen identities. Specifically, we probe three general scene methods – PixelNeRF [63], VisionNeRF [29], IBRNet [59], and two human-centric methods – NeuralHumanPerformer [26], and KeypointNeRF [37]. To fairly compare their performances on unseen identities, we use the same training set (all training samples of the three splits, which results in 400 sequences in total) to train the generalizable models. In the inference stage, we evaluate the rendering quality on novel cases from each test split respectively.

4.3. Benchmark Results

As introduced in Sec. 4.1, we construct a test set with 13 sub-splits according to the four most concerned attributes in different difficulty levels, and an extra No level for Interaction. This results in a data volume of 39 motion sequences for testing. For all rendered images, three metrics are computed – PSNR, SSIM [60], and LPIPS-Alex [22] (LPIPS* denotes LPIPS×1000). We evaluate more than 10 state-of-the-art methods on these splits and analyze their performances under the same metrics. The experiment analysis is given below. Noted that due to limited space in the main paper, we provide the detailed setting, thorough discussions, and additional results in Sec. C in the supplementary.

Novel View Synthesis. We visualize the bubble diagram of quantitative results across all benchmark splits in Fig. 4. The precise numbers of the quantitative results are reported in Tab. S2 in the supplementary. We conclude three key observations in the main paper:

1. Generally speaking, Splits PSNR↑ SSIM↑ LPIPS*↓ Motion-Simple 22.05 26.65 25.84 22.78 24.65 0.947 0.965 0.974 0.958 0.953 Motion-Medium 19.30 21.73 21.84 21.41 22.14 0.941 0.951 0.969 0.957 0.952 Motion-Hard 19.17 21.40 20.43 19.64 22.48 0.938 0.952 0.965 0.949 0.964 Deformation-Simple 20.42 25.44 24.57 23.52 24.97 0.939 0.957 0.968 0.958 0.967 Deformation-Medium 23.09 27.26 27.05 23.52 24.97 0.945 0.963 0.974 0.961 0.958 Deformation-Hard 20.11 20.88 20.27 19.41 19.70 0.925 0.926 0.956 0.943 0.924 Texture-Simple 20.99 25.21 25.54 23.12 25.65 0.954 0.974 0.982 0.970 0.974 Texture-Medium 25.44 27.94 25.77 23.15 27.19 0.959 0.966 0.977 0.962 0.968 Texture-Hard 20.95 22.22 22.05 18.45 23.78 0.916 0.927 0.951 0.943 0.945 Interaction-No 22.64 26.32 25.41 24.44 25.93 0.957 0.968 0.980 0.967 0.968 Interaction-Simple 24.28 27.57 26.42 23.18 27.18 0.965 0.976 0.983 0.968 0.975 Interaction-Medium 20.37 23.67 21.96 20.81 23.20 0.934 0.950 0.965 0.953 0.951 Interaction-Hard 21.14 25.00 22.10 21.29 22.29 0.931 0.949 0.961 0.953 0.940 Overall 21.53 24.88 23.79 21.76 24.18 0.942 0.956 0.970 0.957 0.937

Table 2: Benchmark results on novel pose task. We abbreviate NeuralVolumes [32] as ‘NV’, A-NeRF [53] as ‘AN’, NeuralBody [44] as ‘NB’, AnimatableNeRF [43] as ‘AnN’ and HumanNeRF [61] as ‘HN’. ⬆️ ➤️ ➤️ indicate best, second best, and third best performance in the same split respectively. Although NV is not directly applicable to this task, we list its results as a dynamic method baseline for reference.
the rendering quality is inversely proportional to split difficulties, as reported in Fig. 4, where the circles get bigger when the difficulty grows. (2) Among case-specific dynamic methods, A-NeRF [53] achieves the best PSNR, and NeuralBody [44] and HumanNeRF [61] gets the best SSIM and LPIPS respectively. Qualitative results are shown in Fig. 5. NeuralBody [44] and A-NeRF [53] could render novel view image with fewer background artifacts than other methods, while HumanNeRF [61] can better preserve high fidelity textures, especially in high-frequency texture regions. (3) When rendering novel views for trained human action frames, hard Texture cases have a large performance gap among dynamic methods (refer to T-shirt case with stripe pattern in Fig. 5). Meanwhile, dynamic methods’ performances on Texture degrade the most when difficulty rises compared to the static baselines (refer to bubbles in Fig. 4). More qualitative results in each benchmark split are shown in Fig. S9, and we analyze the conceptual difference of these methods in Sec. C.2.1.

Novel Pose Animation. Similar to novel view synthesis, when split difficulty increases the rendering quality decreases as shown in Tab. 2. Among all data factors, we found that Deformation and Interaction are insurmountable factors for current methods to model in novel poses. Qualitative results are displayed in Fig. 6, none of the methods can generate reasonable deformation in the case of the Peking opera costume. NeuralBody [44] and AnimatableNeRF [43] can not model the interactive objects, and the objects are stretched when given large poses in A-NeRF [53]. Conclusively, current methods can learn reasonable human avatars with even hard Motion and Textures, while stuck in the imperfectness of modeling hard Deformation and Interaction. These animation challenges should stimulate the communities for further investigation. More detailed analysis is provided in Sec. C.2.2 in the appendix.

Novel Identity Rendering. We report the quantitative metrics of all 39 novel identities in Tab. 3. Generally, generalizable methods with human prior [37, 26] perform better with higher robustness than category-agnostic methods [63, 59, 29]. Among category-agnostic methods, IBRNet [59] directly blends pixel color from source views, and it outperforms PixelNeRF [63] and VisionNeRF [29] that predict radiance color only from image features. We draw the conclusion that, in generalizable human rendering, human prior and appearance references from observation could help boost the generalization ability on data with
large variations of poses and appearances. We illustrate the qualitative results in Fig. S11. We provide additional results and analysis in Sec. C.2.3 in supplementary.

4.4. Cross-dataset Comparison

Apart from the benchmark experiments, we also evaluate the data generalizability provided by our dataset and the other competitive ones, i.e., GeneBody [10], ZJU-MoCap [44] and HuMMan [5].

Setting and Implementations. To eliminate the scale and annotation differences across all datasets, we train three general scene generalizable rendering methods [63, 59, 29] on these datasets with the same pixel batch per-iteration and stop training with the same 200K global iterations. For each method, we train each individual model on each dataset mentioned above, with a fixed image resolution 512 × 512 and four balanced views. To thoroughly evaluate the datasets’ generalizability, we cross-verify the rendering images of novel identities on each dataset.

Results. The experimental results are presented in Fig. 7 in terms of the average PSNR of all three methods. From this colored error map, we conclude that training on DNA-Rendering dataset is beneficial for generalizing to the other datasets. In general, due to the existence of domain gaps, a model would perform better in the situation of an in-domain setting, where the training set and test set follow the same distribution, see diagonal elements in Fig. 7. The off-diagonal numbers report the cross-domain performances of models trained on one dataset and tested directly on other datasets’ test sets. We observe an interesting phenomenon that, compared to datasets with limited data diversity and high data bias (like ZJU-MoCap [44] and HuMMan [5]), the proposed dataset enables generalization methods to achieve more plausible results even with large domain gaps. Moreover, opposite to DNA-Rendering, HuMMan [5] generalize poorly on other datasets even on cases with simple motions and appearances in ZJU-MoCap [44], despite the fact that both HuMMan [5] and our DNA-Rendering have large data volume. From a data engineering perspective, this demonstrates the construction of the proposed dataset benefits the community not merely with the amount of data, more importantly, the significant improvement in data completeness and richness. Due to space limit, we provide the detailed setup and additional results in Sec. D of the supplementary. It is worth mentioning that, we also unfold the generalization performance across testing cameras and reveal the impact of color consistency for multi-camera datasets in Sec. D.4.

5. Conclusion

We have presented DNA-Rendering, a large-scale and high-fidelity repository for human-centric rendering. It is a multiview human body capture dataset that covers many diverse factors like ethnicity, age, body shape, clothing, motion, and interactive objects with faithful annotations. We have also presented benchmarks to evaluate state-of-the-art approaches on the DNA-Rendering dataset with in-depth discussions, and compared our dataset with the others via cross-dataset experiments on generalization capability. We hope our DNA-Rendering project could boost the development of human-centric rendering and related domains with new reflections, challenges, and opportunities.

Acknowledgements. This study is supported under the RIE2020 Industry Alignment Fund Industry Collaboration Projects (IAF-ICP) Funding Initiative, as well as cash and in-kind contribution from the industry partner(s). It is also partially supported by Singapore MOE AcRF Tier 2 (MOE-T2EP20221-0011, MOE-T2EP20221-0012), NTU NAP.

Figure 7: Results of cross-dataset experiments. We visualize the ‘affinity’ matrix of cross-dataset evaluation results.

<table>
<thead>
<tr>
<th>Splits</th>
<th>PSNR</th>
<th>SSIM</th>
<th>LPIPS*</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>IBR</td>
<td>PN</td>
<td>NHP</td>
</tr>
<tr>
<td>Motion-Simple</td>
<td>26.13</td>
<td>26.04</td>
<td>25.90</td>
</tr>
<tr>
<td>Motion-Medium</td>
<td>25.56</td>
<td>25.84</td>
<td>25.22</td>
</tr>
<tr>
<td>Motion-Hard</td>
<td>23.78</td>
<td>24.49</td>
<td>23.72</td>
</tr>
<tr>
<td>Deformation-Simple</td>
<td>26.72</td>
<td>26.85</td>
<td>26.37</td>
</tr>
<tr>
<td>Deformation-Medium</td>
<td>27.46</td>
<td>27.55</td>
<td>27.90</td>
</tr>
<tr>
<td>Deformation-Hard</td>
<td>23.98</td>
<td>20.77</td>
<td>20.05</td>
</tr>
<tr>
<td>Texture-Simple</td>
<td>25.70</td>
<td>26.27</td>
<td>25.62</td>
</tr>
<tr>
<td>Texture-Medium</td>
<td>26.15</td>
<td>26.76</td>
<td>26.40</td>
</tr>
<tr>
<td>Texture-Hard</td>
<td>23.34</td>
<td>24.08</td>
<td>23.61</td>
</tr>
<tr>
<td>Interaction-No</td>
<td>26.08</td>
<td>25.91</td>
<td>26.39</td>
</tr>
<tr>
<td>Interaction-Simple</td>
<td>27.60</td>
<td>27.56</td>
<td>27.54</td>
</tr>
<tr>
<td>Interaction-Medium</td>
<td>24.04</td>
<td>24.44</td>
<td>24.09</td>
</tr>
<tr>
<td>Interaction-Hard</td>
<td>24.78</td>
<td>25.76</td>
<td>24.93</td>
</tr>
<tr>
<td>Overall</td>
<td>25.49</td>
<td>25.42</td>
<td>25.21</td>
</tr>
</tbody>
</table>
References

