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Abstract

Gaze estimation methods estimate gaze from facial ap-
pearance with a single camera. However, due to the limited
view of a single camera, the captured facial appearance can-
not provide complete facial information and thus complicate
the gaze estimation problem. Recently, camera devices are
rapidly updated. Dual cameras are affordable for users and
have been integrated in many devices. This development
suggests that we can further improve gaze estimation per-
formance with dual-view gaze estimation. In this paper, we
propose a dual-view gaze estimation network (DV-Gaze).
DV-Gaze estimates dual-view gaze directions from a pair of
images. We first propose a dual-view interactive convolution
(DIC) block in DV-Gaze. DIC blocks exchange dual-view
information during convolution in multiple feature scales.
It fuses dual-view features along epipolar lines and com-
pensates for the original feature with the fused feature. We
further propose a dual-view transformer to estimate gaze
from dual-view features. Camera poses are encoded to in-
dicate the position information in the transformer. We also
consider the geometric relation between dual-view gaze di-
rections and propose a dual-view gaze consistency loss for
DV-Gaze. DV-Gaze achieves state-of-the-art performance on
ETH-XGaze and EVE datasets. Our experiments also prove
the potential of dual-view gaze estimation. We release codes
in https://github.com/yihuacheng/DVGaze.

1. Introduction
Human gaze provides important cues for understanding

human cognition [25] and behavior [9]. It has applications in
various fields such as salience detection [32, 8, 31], virtual
reality [23, 20, 18] and human-computer interaction [11, 7].

Gaze estimation methods estimate human gaze from fa-
cial appearance. Conventional gaze estimation methods usu-
ally learn person-specific eye models and fit the eye model
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Figure 1. We explore dual-view gaze estimation in this work. We
propose DV-Gaze to estimate gaze directions from a pair of images.
DV-Gaze contains dual-view interactive convolution blocks which
exchange the information of a pair of images during convolution
in multiple feature scales, and a transformer to estimate gaze from
dual-view feature.

to estimate human gaze. These model-based methods need
to build specific camera system which contains multiple IR
cameras and light sources [13]. Although model-based meth-
ods have good accuracy, the complex camera system brings
high costs and harms flexibility. Appearance-based gaze
estimation methods have low requirements in devices. It
only requires a single webcam to capture facial appearance
and directly learns a mapping function from the appearance
to gaze. The low requirement means appearance-based gaze
estimation methods have larger potential than model-based
methods. They attract much attention and become a hotspot.
However, the low requirement also brings limitations. In
particular, one single webcam has a limited field of view
and therefore captures incomplete facial appearance due to
facial self-occlusion. The problem complicates gaze estima-
tion and brings performance drop. To handle the problem,
recent methods usually design efficient feature extraction
networks[6, 29] or synthesize more images to cover data
space[24, 30].

In this paper, we explore a new direction for gaze es-
timation. Recently, camera devices are rapidly developed
and the cost of camera is also decreased. Dual cameras are
affordable for users [12] and have been applied in many
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devices [26]. The developing dual-camera devices make it
possible and meaningful to estimate the human gaze with
dual cameras. Compared with a single camera, dual cameras
provide a larger field of view. Dual-view images can also
provide more cues for gaze estimation. These advantages
indicate dual-view gaze estimation can further improve gaze
estimation accuracy than conventional single-view methods.

We propose a dual-view gaze estimation network (DV-
Gaze) in this work. Common solutions usually extracts dual-
view features from dual-view images and concatenate the
two features for gaze estimation. They only fuse dual-view
information in a high level. Our idea is to exchange dual-
view information anywhere. We first propose a dual-view
interactive convolution (DIC) block. DIC blocks exchange
dual-view information during convolution. The block first
fuses dual-view features along epipolar lines and add the
fused features back to original features for compensation. It
then performs feature extraction separately on the two com-
pensated feature maps with convolution layers. We stack
multiple DIC blocks to exchange dual-view information in
multiple feature scales during convolution. We further pro-
pose a dual-view transformer. The transformer estimates
dual-view gaze directions from dual-view features. We use
camera pose to indicate the position information in the trans-
former. We also consider the geometric relation between
dual-view gaze directions and propose a dual-view gaze
consistency loss function.

Overall, we summarize our contributions as following.
1. We explore dual-view gaze estimation in this work.

To the best of our knowledge, our work is the first to
explore dual-view gaze direction estimation.

2. We propose DIC blocks for dual-view feature extraction.
The block fuses dual-view features along epipolar lines
and use fused features to compensate original features.
Our method exchanges dual-view feature in multiple
feature scales during convolution with DIC blocks.

3. We propose a dual-view transformer to estimate gaze
from dual-view feature. We use camera pose to indi-
cate the position information in the transformer. We
also propose a dual-view gaze consistency loss which
improves performance in a self-supervised manner.

2. Related work
2.1. Appearance-based Gaze Estimation

Appearance-based gaze estimation methods aim to esti-
mate human gaze from facial appearance [5]. These methods
usually learn a mapping function f from face or eye images
I to human gaze g, i.e., g = f(I). Recently, deep learning
shows good performance in many computer vision tasks.
Gaze estimation with deep learning also attract much atten-
tion. Cheng et al. propose an asymmetric regression for gaze
estimation from two eye images [4]. They build an asym-

metric network which adaptively assigns different weights
for two-eye images. They also further fuse facial feature to
improve performance [6]. Park et al. propose a pictorial rep-
resentation for eye images [22]. They eliminate the identity
difference between subjects by generating the pictorial repre-
sentation and estimate gaze from the representation. Chen et
al. use dilated convolutional network to capture the subtle
changes in eye images [1]. Cheng et al. propose a coarse-
to-fine network to integrate face and eye images [2]. They
estimate basic gaze directions from face images and refine
basic gaze directions with eye images. These methods all
achieve great performance in many benchmarks. However,
the performance of these methods still cannot meet some
high accuracy requirements. An accurate gaze estimation
model is always crucial and demanded.

2.2. Gaze Estimation with Multiple Cameras

Gaze estimation with multiple cameras is always a hot
topic in conventional gaze estimation methods. These meth-
ods usually build multi-camera systems and estimate human
gaze with geometric eye models [13]. Tonsen et al. em-
bed multiple millimeter-sized RGB cameras into a normal
glasses frame. They use multi-layer perceptrons to process
the eye images captured by different cameras and concate-
nate the extracted feature to estimate gaze[27]. Common
multi-camera gaze estimation systems are usually set in XR
devices, such as Meta Quest Pro.

Deep learning based gaze estimation methods attract
much attention in the last decade. However, most of meth-
ods are proposed for single-view gaze estimation. There are
merely a few methods for multi-view gaze estimation. Lian
et al. estimate points of gaze with three cameras [17] . They
extract feature maps of three views and use a max-pooling
layer between multi-views to extract feature. Kim et al. es-
timate gaze zones with three cameras [15]. They simply
concatenate extracted feature of three views for prediction.

3. Preliminaries
3.1. Dual-View Gaze Estimation

We explore dual-view gaze estimation in this paper. We
first define some notations and describe the task of dual-view
gaze estimation.

We assume there are two cameras A and B. In the rest of
this section, we use superscripts A and B to identify different
cameras. The two cameras capture face images IA and IB.
Dual-view gaze estimation aims to learn a mapping function
f from IA and IB to gaze directions gA and gB, i.e.,

(gA,gB) = f(IA, IB). (1)

The two gaze directions are separately defined in the camera
coordinate systems (CCS) of dual cameras. It is obvious gA

and gB can be converted to each other with camera rotation.
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Figure 2. The pipeline of our dual-view gaze estimation. Two cameras capture dual-view images of human facial images. We first perform
image rectification method on both images. We save the rectification matrix and origin camera pose for the rest steps. We input two rectified
images into DV-Gaze. DV-Gaze first performs a primary convolution to extract dual-view features. We then send dual-view features into DIC
blocks. The DIC block fuses dual-view feature along epipolar lines and add fused feature back to original features to mix information. We
further perform feature extraction on the feature with convolution layers. We stack multiple DIC blocks to exchange dual-view information in
different feature scales. We propose a dual-view transformer to estimate gaze from dual-view feature. We encode camera pose as the position
feature in transformer. The loss function of DV-Gaze consists of common gaze loss and a self-supervised dual-view gaze consistency loss.

We also make following assumptions. 1) The 6D pose of
two cameras are fixed and known. The pose can be obtained
by camera calibration. We use Rc ∈ R3×3 to represent an
rotation matrix and tc ∈ R3×1 to represent a translation
vector, i.e., given a point p in the world coordinate system,
we can convert it into CCS of camera A as RA

c p + tAc . 2)
We have head pose Rh ∈ R3×3 and th ∈ R3×1 in each view.
The head pose can be obtained by existing head trackers [16].

3.2. Dual-View Images Rectification

A key information in dual-view system is the correspon-
dence between two cameras. Epipolar lines indicate the
correspondence that two correctly matched points should
lie on their corresponding epipolar lines. In this work, we
utilize the correspondence to fuse dual-view feature. To
simplify the process of finding epipolar lines, we use image
rectification methods [34] to make epipolar lines horizontal.

We briefly introduce the image rectification method in
this section. We set a reference point in face images, e.g.,
face centers. The image rectification method computes a
transformation matrix M = SRrec, where S is a scale ma-
trix and Rrec is an rotation matrix. The scale matrix scales
face images so that the distance between the reference point
and virtual cameras is constant. The rotation matrix trans-
forms face images via perspective transformation. It ensures
virtual cameras point at the reference point, i.e., face centers
are located in image centers, and cancel the row axis of head
pose. Please refer [5] for more technical details.

After the image rectification, epipolar lines are horizontal

and lie on corresponding rows. Meanwhile, the methods
perform perspective transformation for the rectification. This
operation changes virtual camera pose of images. The new
camera pose can be computed by RrecRc.

4. Dual-View Gaze Estimation

4.1. Overview

In this section, we propose a dual-view gaze estimation
network (DV-Gaze). We show the pipeline of DV-Gaze
in Fig. 2. We first use a convolution layer to extract dual-
view features from dual-view images. We then propose DIC
blocks. The block fuses dual-view feature maps along epipo-
lar lines and uses fused feature to compensate origin feature.
It performs feature extraction on the compensated feature
with convolution layers. We stack multiple DIC blocks to
exchange dual-view information in multiple feature scales.
We also propose a dual-view transformer to estimate gaze
from dual-view feature. We use camera pose to indicate the
position information in the transformer. DV-Gaze predicts
dual-view gaze directions from dual-view images. We use
common gaze loss, i.e. L1 loss, as loss function. We also
propose a self-supervised dual-view gaze consistency loss
based on the geometric relation of dual-view gaze.

In the rest of this section, we first introduce the DIC block
and the dual-view transformer. We then describe DV-Gaze
in detail. We finally show all loss functions of DV-Gaze.
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Figure 3. The pipeline of epipolar fusion. We first perform a feature transform on origin feature. To reduce computational resource, we
use the bottleneck architecture of residual block for the feature transform. We then aggregate feature maps and find epipolar feature in
channels. Due to the image rectification in data pre-processing, the epipolar feature is the corresponding rows in two feature maps. We use a
self-attention mechanism to fuse epipolar feature and assemble feature vectors into feature maps. We also apply a channel attention in the
feature maps. The output contains two feature maps which have the same size as input feature.

4.2. Dual-View Interactive Convolution Block

The two cameras in the dual-view system have different
camera positions. This means the image of each view would
miss some information about human gaze. It is intuitive that
the performance would be improved if we exchange dual-
view information to compensate the missing information.

We propose DIC blocks to exchange dual-view informa-
tion during convolution. It fuses dual-view feature and adds
the fused features back to the original feature to mix informa-
tion. Simply speaking, common convolution blocks extracts
feature as

ziout = Conv(ziin), i ∈ {A,B} (2)

where ziin ∈ RN×H×W is the origin feature of each view
and ziout is the extracted feature.

DIC blocks aim to fuse dual-view features
{
ziin

}
to learn

dual-view fused features
{
zifused ∈ RN×H×W

}
to compen-

sate ziin. The formulation of DIC block is

ziout = Conv
(
ziin + zifused

)
, (3)

DIC blocks contain three steps to learn fused features.
We show the pipeline in Fig. 3.

1) Feature transform. We first use two convolution
blocks to respectively transform dual-view features. We
send {ziin} into residual blocks [14] and get feature maps{
zitrans

}
, where zitrans has the same dimension as ziin. To

reduce computational resource, we add a bottleneck in the
residual block. Overall, the residual block contains three
convolution layers, where the kernel size is set as 3× 3 for
the second layer and 1× 1 for the first and third layers. The
number of kernel is respectively set as

(
N
4 ,

N
4 , N

)
.

2) Find epipolar feature. Epipolar lines indicate the
correspondence between dual cameras. DIC blocks aim to

fuse dual-view features along epipolar lines. We define a
pair of features along epipolar lines as epipolar features. In
this step, our aim is to find epipolar feature from

{
zitrans

}
.

We aggregate feature maps zAtrans and zBtrans in channels.
As a result, we have N pairs of feature maps. We denote
a pair of feature maps as znpair ∈ R2×H×W , where n ∈
{1...N}. The next goal is to find epipolar feature from znpair.

As described in Sec. 3.2, we rectify images in data pre-
processing. It means epipolar lines are horizontal and lie on
corresponding rows. Therefore, we sample epipolar features
from the corresponding rows of znpair, i.e. znpair contains H
epipolar features and the shape of each epipolar feature is 2×
W . We sample a total ofNH epipolar features from {znpair}.
We define all epipolar features as zepipolar ∈ RNH×2×W .

3) Dual attention fusion. Our goal is to learn a mapping
function ψ : R2×W → RW . The mapping function learns
fused features from epipolar features.

We use a self-attention module [28] to fuse epipolar fea-
tures. We use two MLP layers to learn the query and the key
from epipolar features and directly set the value as epipolar
features. The self-attention module adaptively learns weights
from the query and the key. The fused feature is the weighted-
sum of the value. We reassemble all fused feature vectors
and get fused feature maps zfused ∈ RN×H×W . Note that,
the self-attention module outputs two fused feature, i.e., the
self-attention is a mapping function, R2×W → R2×W . We
respectively reassemble them and get zAfused and zBfused.

We also add a channel attention module after the self-
attention module. We input zAfused and zBfused into an average
pooling layer and use the output feature to learn weights
for each channel. We multiply the weights with the two
fused features and get final fused features. We slightly abuse
the notation here and also define the final fused feature as
zAfused and zBfused. We use the two feature to respectively
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compensate original dual-view feature as Eq. (3).

4.3. Dual-View Transformer

We use a transformer encoder to estimate gaze from dual-
view feature. We assume the dual-view features as

{
zivec

}
.

We can formulate this module as

(ĝA, ĝB) = Transformer(zAvec, z
B
vec), (4)

where we use ĝi to represent the predicted value. Besides,
The camera pose is an important information in the dual-view
camera system. It indicates the relations between dual-view
images. We also input camera pose into the transformer for
gaze estimation. We consider transformers usually utilize
position information to identify input features, e.g., position
embedding in ViT[10]. We use the camera pose to indicate
the position information in our work.

More concretely, we use camera orientation and transla-
tion vectors to represent position feature. As described in the
preliminaries section, we have camera positions

{
Ri

c, t
i
c

}
via calibration and the rotation matrix

{
Ri

rec

}
in image rec-

tification. Note that
{
Ri

rec

}
is different for each image. We

multiply Ri
rec and Ri

c to get the rotation matrix of virtual
cameras and use the third column in the rotation matrix to
represent camera orientation.

zirot = Ri
recR

i
c [:, 2] (5)

Let zpos for the position feature, we have

zipos = [zirot; t
i
c], (6)

where [ ] is a concatenation operation and zipos ∈ R6.
Besides, the position features in transformers usually are

discrete values. Transformers use position embedding to ex-
pand the position feature to a large dimension [10]. However,
zipos is a continuous vector and it is not applicable to use
the position embedding. In our work, we follow NeRF [19]
and use multi-MLP layers to expand zipos. We first expand
the dimension with positional encoding which enables the
position feature to contain more high frequency information.
The positional encoding is

γ(p) =
{
sin(2kπp), cos(2kπp), p

}L

k=0
, (7)

where L is length of the encoding.
We respectively apply the function into each dimension

of zipos. The positional encoding can also be represented as
a function Φ : R6 → R6∗(3L). We then use a multi-MLP
layers Π : R6∗(3L) → Rd to learn the final position feature,
where d is the length of zivec. The whole process can be
formulated as

zipos exp = Π(Φ(zipos)) (8)

We input dual-view feature vectors
{
zivec

}
with corre-

sponding position feature
{
zipos exp

}
into transformers and

use a MLP head to predict gaze.

38 1216

Figure 4. We show the camera position in ETH-XGaze (left)[33]
and EVE (right) [21] dataset. We use the No.3 and No.8 cameras
in ETH-XGaze and the two cameras on the edge of screen in EVE.

4.4. Dual-View Gaze Estimation Network

We propose dual-view gaze estimation network in this
section. The architecture of DV-Gaze is shown in Fig. 2.
Two cameras capture human facial appearance and provide
two facial images. We first perform image rectification in
the two images and input rectified dual-view images into
DV-Gaze. Although we propose DIC block to fuse dual-
view feature during convolution, it is unreasonable that we
directly fuse raw dual-view images. Therefore, we first use a
convolution layer to respectively extract primary dual-view
feature maps from images. We then send the dual-view
feature maps into DIC blocks for feature extraction. We
stack multiple DIC blocks and obtain the output of the final
DIC block. The outputs are dual-view feature maps. We
use an average pooling layer and a MLP layer to map the
two feature maps into the dual-view feature vectors zAvec and
zBvec. We finally feed the dual-view feature vectors into the
dual-view transformer to estimate dual-view gaze directions.

The DV-Gaze estimates gaze ĝA and ĝB from dual-view
images, where ĝi ∈ R2 and contains pitch and yaw. We use
L1 loss to measure the loss of gaze estimation

Lgaze =
∑

i∈{A,B},j∈{1...K}

∣∣∣gi
j − ĝi

j

∣∣∣ , (9)

where K denotes the number of all data.
Dual-view gaze consistency loss. In dual-view gaze esti-

mation, the gaze directions of dual views can be converted
into each other if camera positions are known. Therefore,
we design a self-supervised dual-view gaze consistency loss.
The loss requires dual-view gaze directions are the same
when we convert them into the same coordinate system. In
detail, we convert {ĝi} into the world coordinate system and
use MSE loss to measure the error. The gaze consistency
loss is computed as

Lgc =

∣∣∣∣(RA
recR

A
c

)−1

ĝA
3d −

(
RB

recR
B
c

)−1

ĝB
3d

∣∣∣∣
2

, (10)

where ĝi
3d denotes gaze directions in euclidean coordinates.

ĝi
3d = (x, y, z) and ĝi = (ϕ, θ) can be converted as
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Table 1. We compare our method with single-view gaze estima-
tion methods. We evaluate compared methods in each view and
show results in the first row. We also expand training set where it
contains dual-view images. We train models in the expand set and
show results in the second row. We mark the highest result among
compared methods for convenience.

Methods
ETH-XGaze EVE
Left Right Left Right

Fu
ll

se
t Full Face [35] 5.11 4.77 4.23 5.06

GazeTR [3] 3.46 3.48 3.18 3.72
CA-Net [2] - - 3.03 3.81
Dilated-Net [1] - - 3.10 3.46

E
xp

an
d

se
t Full Face [35] 4.98 4.89 4.59 4.60

GazeTR [3] 3.11 3.49 2.92 3.81
CA-Net [2] - - 3.31 3.87
Dilated-Net [1] - - 3.31 3.39

DV-Gaze 2.27 2.87 2.57 2.68


x = − cos(ϕ) ∗ sin(θ)
y = − sin(ϕ)

z = − cos(ϕ) ∗ sin(θ)
(11)

The final loss function is the weighted-sum of gaze loss
and gaze consistency loss.

L = αLgaze + βLgc (12)

5. Experiment
5.1. Datasets

We conduct experiments on ETH-XGaze [33] and EVE
datasets [21]. The two datasets both provide large-scale
multi-view images. We show the camera layout of the two
datasets in Fig. 4. Our method estimates human gaze from
dual-view cameras. Therefore, we use the No.3 and No.8
cameras in ETH-XGaze dataset and the two cameras on the
edge of screen in EVE dataset. We also denote them as left
and right views in the rest experiment.

Data pre-processing. The two datasets both split origin
data into training, test and validation sets. They align face
images with the rectification methods[34] and provide the
rectified data. Therefore, we directly use the provided im-
ages in ETH-XGaze dataset for experiments. EVE dataset
provides rectified video clips. We sample one image per
fifteen frames from video clips to construct evaluation set.

On the other hand, gaze directions are usually calculated
by g = ot − os in data collection, where os represents the
3D position of gaze origin and ot represents the 3D position
of gaze targets. In the two datasets, they define face centers
as the origin of gaze. To calculate the 3D position of face

Table 2. We compare our method with multi-view gaze estimation
methods. The column of Avg. means we average dual-view gaze
directions in the world coordinate system and report the angular
error between averaged gaze and ground truth. We mark the highest
performance among compared methods.

Methods
ETH-XGaze EVE

Left Right Avg. Left Right Avg.

MMGE [15] 6.44 7.47 6.88 5.71 8.19 6.19
MGT [17] 2.86 3.33 2.97 3.37 3.76 3.02

Res18 2.61 3.04 2.70 3.39 3.58 2.97
Trans 3.41 3.15 2.74 3.76 3.50 2.98

DV-Gaze 2.27 2.87 2.46 2.57 2.68 2.49

centers, they fit a 3D morphable face model and estimate
3D landmarks with the EPnP method [16]. This pipeline
is reasonable for single-view gaze estimation while causes
inconsistent gaze between different views. Therefore, we
re-calculate gaze directions in the two datasets. More con-
cretely, given a pair of images, we get the corresponding 2D
facial landmarks from datasets and estimate 3D landmarks
using triangulation. We select nose as gaze origin since
nose is usually visible in all views. We compute new gaze
directions with the new gaze origin.

Besides, the two datasets do not provide gaze targets
annotation of test test. Therefore, we also re-define the
dataset splits. We split the origin training set into two subsets
and define the two subsets as training and validation sets. We
use the original validation set as test set in our experiments.

Evaluation metric: We use angular error as the evalua-
tion metric, where a smaller error represents a better model.

5.2. Comparison with Single-View Methods

Single-view gaze estimation is the main track in gaze
estimation field. Recently, many advanced methods are pro-
posed for single-view gaze estimation. We first conduct
comparison with them to show the advantage of dual-view
gaze estimation. We select FullFace [35], GazeTR [3], CA-
Net [2] and Dilated-Net [1] for comparison. We evaluate
these methods on ETH-XGaze and EVE datasets. Note that,
CA-Net and Dilated-Net require eye images for evaluation
while ETH-XGaze cannot always provides reliable eye im-
ages due to large head pose. We do not evaluate the two
methods in ETH-XGaze dataset.

We first evaluate these methods in each view and show
the performance in the first row of Tab. 1. The result shows
most of methods have ∼ 3◦ accuracy in two datasets. DV-
Gaze brings large performance improvement compared with
these methods. Compared with the highest performance
among compared methods, our method brings 10% ∼ 30%
improvement in the two datasets. This shows the advantage
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Table 3. We conduct ablation study about the dual-view transformer
and the DIC block. Note that, the ablation of DIC blocks means we
do not use Eq. (3) but Eq. (2) in DV-Gaze.

Dual-view
Trans.

DIC
Block

ETH-XGaze EVE
Left Right Avg. Left Right Avg.

× × 2.61 3.04 2.70 3.39 3.58 2.97
✓ × 2.40 2.99 2.51 2.97 3.11 2.83
✓ ✓ 2.27 2.87 2.46 2.57 2.68 2.49

of dual-view gaze estimation.
We also expand the training set of compared methods.

DV-Gaze uses dual-view images for training while com-
pared methods only use single-view images for training. The
difference maybe bring unfair comparison. Therefore, we
expand the training set of compared method where it con-
tains dual-view images. We train compared methods in the
expanded set and report the performance of each view in the
second row of Tab. 1. Most of methods has performance
improvement with the expanded set. This is because the
expanded set contains more images. However, we notice
that these improvements are all small. The reason is they do
not utilize dual-view relations. Our method also has the best
performance in all datasets.

5.3. Comparison with Multi-View Methods

We conduct comparison with multi-view methods in this
section. MGT [17] estimates points of gaze from multi-view
images. The method uses eye images as input. We change
the input to face images for fair comparison. MMGE [15]
estimates gaze zone from multi-view images. The model
is simple and only contains three convolution blocks. We
modify the last MLP layer to estimate gaze directions. We
show their performance in Tab. 2. Besides, dual-view gaze
directions can be converted to each other via camera rotation.
We rotate dual-view gaze directions into the world coordinate
system and average them to get one unique gaze direction.
We count the performance of the gaze direction and show
results in the column of Avg. The result shows DV-Gaze has
better performance than both MGT and MMGE.

We also build dual-view gaze estimation networks with
strong performing architecture for extensive comparison. We
use ResNet-18 [14] to extract feature from dual-view images
and concatenate dual-view features to estimate dual-view
gaze. We denote the method as Res18. We also use ResNet-
18 to extract feature and use a 6-layer transformer to fuse
dual-view features[3] We estimate dual-view gaze from the
output of transformer. The method is denoted as Trans. We
show the performance of the two methods in Tab. 2. The two
methods both have good performance since they uses strong
performing architecture. However, our method also has the
best performance compared with them. The result proves

Table 4. We perform ablation study to show the effectiveness of
each module. w/o zpos exp means we do not add camera positions
into dual-view transformers. w/o zin means we do not use fused
feature to compensate origin dual-view feature in Eq. (3). w/o Lgc

means we remove the dual-view gaze consistency loss.

ETH-XGaze EVE
Left Right Avg. Left Right Avg.

w/o zpos exp 2.49 3.54 2.70 3.00 3.21 2.71
w/o zin 2.62 2.84 2.69 2.67 2.93 2.71
w/o Lgc 2.58 3.08 2.56 2.78 2.78 2.55
DV-Gaze 2.27 2.87 2.46 2.57 2.68 2.49

our method is effective in dual-view gaze estimation.

5.4. Ablation Study

We propose DIC blocks and dual-view transformer for
dual-view gaze estimation. We conduct ablation study to
demonstrate the advantage of them. We first evaluate the
basic model of DV-Gaze. The basic model uses convolution
layers of ResNet18 to extract feature from dual-view images.
It concatenates dual-view features and estimates gaze with
a MLP layer. We then add the dual-view transformer into
the basic model. The model uses dual-view transformer
to estimate gaze from dual-view feature. We also further
add DIC blocks into the model, i.e., DV-Gaze. The model
uses DIC blocks to exchange dual-view information during
convolution. The performance is shown in Tab. 3. The result
shows both the DIC block and the dual-view transformer
bring sufficient performance improvement.

Besides, DV-Gaze also contains some special mecha-
nisms. We further evaluate these mechanisms in detail.
1) DV-Gaze adds camera position into the dual-view trans-
former. We ablate the camera position and denote the experi-
ment as w/o zpos exp. 2) In DIC blocks, we do not use fused
feature as output but use the fused feature to compensate
origin feature, i.e., Eq. (3). We also ablate zin from Eq. (3).
3) We ablate the dual-view gaze consistency loss from loss
function. We show results of the three experiments on Tab. 4.
The result proves the advantage of the three mechanisms.

5.5. Different Camera Pairs

In the previous experiment, we evaluate camera pairs
in ETH-XGaze and EVE dataset, where two cameras are
respectively placed on the one side of a screen. We also
evaluate more camera pairs in ETH-XGaze for deep insights.
We conduct two experiments, Small Distance and Long Dis-
tance. In the Small Distance, we select No.1 camera and
No.2 camera as the camera pairs. In the Long Distance, we
select No.12 camera and No.16 camera as the camera pairs.
We also define the original camera pairs in ETH-XGaze as
Medium Distance. We evaluate the performance of GazeTR
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Figure 5. We select different camera pairs in ETH-XGaze and
conduct more evaluations for DV-Gaze. We also evaluate GazeTR
and show the performance for comparison. It is obvious that larger
camera distance brings more pixel difference between a pair of
images. One eye region is not visible in the Long Distance and
DV-Gaze has the highest performance improvement in such case.
On the other hand, it is interesting that camera pairs in Small
distance capture similar facial images while DV-Gaze can also
bring performance improvement to some extent.

for reference and show all results in Fig. 5. We also paste
captured images of the corresponding view below the figure.

It is obvious that larger camera distance brings more vi-
sion differences in dual-view images. Meanwhile, DV-Gaze
can also bring more performance improvement. In the Small
Distance, the captured images have no significant difference
due to the small distance between camera pairs. It means
the dual-camera system cannot provide extra vision informa-
tion such as occlusion region than single-camera systems.
However, the result shows DV-Gaze also has performance
improvement in the such case despite the improvement is
relatively small. In the Medium Distance, the eye region
has a small occlusion in each images. DV-Gaze can bring
∼ 1◦ performance improvement than GazeTR. In the Long
Distance, it is obvious that one eye region is not visible in
images. DV-Gaze brings large improvement in the such case.

5.6. Select from Image Pairs

We propose dual-view gaze estimation in this work. Dif-
ferent from conventional single-view methods, DV-Gaze
fuses dual-view feature to estimate human gaze. In this ex-
periment, we define an oracle baseline where we select the
best view from a pair of images and count the average result.

We first preform the selection on GazeTR. As shown in
Tab. 5, we have 2.38◦ in ETH-XGaze and 2.50◦ in EVE. In
fact, this result shows the upper bound of GazeTR which
means we need to develop a very strong selection algorithm.
Compared with GazeTR, DV-Gaze can easily reach the upper
bound with dual-view fusion feature. DV-Gaze has 2.27◦

in the right view of ETH-XGaze and 2.57◦ in the left view
of EVE. This result shows the advantage of dual-view gaze

Table 5. We obtain the results of GazeTR which is trained on each
camera. We manually select the best view from each dual-view
image pairs and count the average result. The result can be thought
as the upper bound of the single-view method. DV-Gaze not only
achieves better result than the upper bound in ETH-XGaze but also
improves the upper bound in both two datasets.

ETH-XGaze EVE
Left Right Select Left Right Select

GazeTR 3.49 3.11 2.38 2.92 3.81 2.50
DV-Gaze 2.87 2.27 2.00 2.57 2.68 2.21

estimation. Besides, we also perform the selection based on
the result of DV-Gaze. It demonstrates DV-Gaze can also
improve the upper bound with dual-view feature fusion.

6. Discussion
In this work, we have investigated the potential of dual-

view gaze estimation. We conduct experiments and prove 1)
Dual-view feature fusion is necessary and useful. 2) Dual-
view gaze estimation methods could achieve better perfor-
mance than single-view gaze estimation methods. These
conclusions demonstrate the advantage of dual-view gaze
estimation, and prove it has more potential compared with
single-view gaze estimation. We also show the performance
of DV-Gaze in different camera pairs. DV-Gaze brings per-
formance improvement in all camera pairs. It indicates dual-
view gaze estimation can be useful in many scenarios, such
as laptop, desktop computer, smart screen, intelligent vehi-
cles and etc. On the other hand, dual-view gaze estimation
also brings new challenges, e.g., How to select the best view?
Tab. 5 shows we can get a better performance if we can cor-
rectly select the best view from a pair of images. Dual-view
images also provide extra stereo information. Can we utilize
the information for further performance improvement?

7. Conclusion
We consider the limitation of single-view gaze estimation

and explore dual-view gaze estimation in this work. We
propose a dual-view gaze estimation network, DV-Gaze. DV-
Gaze consists of convolutional layers, DIC blocks and a
dual-view transformer. DIC blocks fuse dual-view features
along epipolar lines and compensate for original features.
We stack DIC blocks to fuse dual-view feature in multiple
levels during convolution. We feed the output of the final
DIC block into the dual-view transformer. The transformer
encodes dual-view features and camera positions to estimate
dual-view gaze directions. We conduct experiments on ETH-
XGaze and EVE dataset. The experiment shows DV-Gaze
has the best performance among compared methods. Our
method reveals a potential direction in gaze estimation.
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