
HandR2N2: Iterative 3D Hand Pose Estimation Using a Residual Recurrent
Neural Network

Wencan Cheng
Department of Artificial Intelligence

Sungkyunkwan University
cwc1260@skku.edu

Jong Hwan Ko
College of Information and Communication Engineering

Sungkyunkwan University
jhko@skku.edu

Abstract

3D hand pose estimation is a critical task in various
human-computer interaction applications. Numerous deep
learning based estimation models in this domain have been
actively explored. However, the existing models follow a
non-recurrent scheme and thus require complex architec-
tures or redundant parameters in order to achieve accept-
able model capacity. To tackle this limitation, this paper
proposes HandR2N2, a compact neural network that itera-
tively regresses the hand pose using a novel residual recur-
rent unit. The recurrent design allows recursive exploita-
tion of partial layers to gradually optimize previously esti-
mated joint locations. In addition, we exploit graph rea-
soning to capture kinematic dependencies between joints
for better performance. Experimental results show that the
proposed model significantly outperforms the existing meth-
ods on three hand pose benchmark datasets in terms of
both accuracy and efficiency. Codes and pre-trained mod-
els are publicly available at https://github.com/
cwc1260/HandR2N2.

1. Introduction

3D hand pose estimation, which estimates the 3D po-
sitions of hand keypoints, provides a fundamental under-
standing of human hand activity. Thus, it is a critical task
for many human-computer interaction applications such as
robotics and augmented/virtual reality. With the assis-
tance of deep learning techniques and low-cost depth cam-
eras, numerous studies have contributed to the substantial
progress in the field of hand pose estimation. However, ac-
curate and efficient hand pose estimation is still challenging
because of the various probability of hand orientations, se-
vere self-occlusion, and noisy depth images [12, 9, 18, 6].

Most of the recent state-of-the-art approaches are based
on deep learning, especially deep convolutional neural net-
works (CNNs). Such CNN-based approaches [31, 10, 13,

iter 1
iter 2

Target
𝐣𝟎
𝐣𝟏

Input points
Figure 1. Illustration of the recurrent concept. For each iteration,
our proposed recurrent architecture samples local points around
joints from previous iteration to generate displacements to refine
the joint locations.

25, 1, 8, 23, 6, 23] generally accept 2D depth images as
an input, which can be directly processed by the 2D con-
volutional layers. However, it is difficult for a 2D CNN
to capture the highly non-linear mapping from a 2D depth
image to the 3D hand pose, significantly restricting its ef-
ficiency and accuracy. Therefore, a line of works [11, 18]
discretized 2D input images into 3D volumetric representa-
tions and subsequently applied a 3D CNN for direct 3D-
to-3D inference. However, a critical drawback of a 3D
CNN is its computational overhead that increases cubically
with an increase of the input resolution [4]. In contrast, an-
other series of hand pose estimation models [9, 12, 2, 15, 4]
have presented remarkable performances by using PointNet
[20, 21], which allows the models to accept a set of contin-
uous 3D coordinates converted from an input hand image
without discretization.

Despite the accuracy improvement achieved by the
aforementioned approaches, they still suffer from large and
complex model architectures that require substantial com-
putational overheads. Thus, these methods are not suitable
for resource-limited devices such as wearable or hand-held
devices. Furthermore, all the existing approaches follow a
non-recurrent architecture. As a result, they are not flex-
ible for varying resource constraints and accuracy targets.

1

This ICCV paper is the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it is identical to the accepted version;

the final published version of the proceedings is available on IEEE Xplore.

20904

In this work, we tackle these limitations using a recurrent
architecture whose capacity can be dynamically adjusted to
achieve either higher accuracy or higher efficiency by itera-
tively using a part of model parameters.

The recurrent structure can achieve the high capacity
of deeper networks by the recursive use of fewer shared
parameters [34]. Various image processing models that
used a recurrent neural network (RNN) as an explicit it-
erative approach have already yielded encouraging results
[30, 5, 35, 26]. To fully take advantage of the RNN in a hand
pose estimation task, we propose a novel residual recurrent
neural network, HandR2N2, that iteratively regresses accu-
rate 3D hand pose from an input hand point cloud. Intu-
itively, HandR2N2 can be served as a general optimizer that
recursively searches the optimal joint locations using the
observation captured by the previous estimation, as shown
in Figure 1.

To implement HandR2N2, we introduce two novel com-
ponents: 1) a residual recurrent unit (RRU) and 2) an ini-
tialization module. The RRU is a key component that it-
eratively proceeds for updating its joint-wise hidden states
and coordinate estimations. The initial joint-wise states and
coordinates of the RRU are globally estimated by the ini-
tialization module.

The RRU specifically integrates with an attentive gate
that can explore optimal points from a group of candidate
points for the improved accuracy. Since the proposed RRU
only computes the features contributed to the specific joints,
it is more efficient than the similar prior model in [5], which
re-computes the entire point features. Moreover, RRU ex-
ploits graph reasoning, which is based on a novel channel-
wise graph convolutional network (GCN). GCN is capable
to model the graph-structured data, making it particularly
suitable for the kinematically structured hand data [8]. The
use of the proposed channel-wise GCN enables the RRU
to recursively enhance the hidden states by capturing the
strong kinematic dependencies between joints. More im-
portantly, the number of RRU iterations during inference
can be dynamically scaled to be different from the train-
ing iteration. Specifically, the RRU inference iterations can
be configured large to enhance the model capacity and ac-
curacy, or small to reduce the computation requirement.
Therefore, HandR2N2 is capable of adapting varying com-
plexity and accuracy requirements as shown in Figure 2.

We evaluate HandR2N2 on three challenging bench-
marks, ICVL [28], MSRA [27], and NYU [31] datasets.
The results show that our network achieves a new state-
of-the-art record. The proposed network reports the min-
imum mean distance errors of 5.70 mm, 6.42 mm and 7.27
mm on the ICVL, MSRA and NYU datasets, respectively.
Meanwhile, it requires only 1.3 M parameters and runs with
adjustable complexity 0.72+0.34×I GFLOPs, where I in-
dicates the number of iterations. Thus, our model requires

I=1I=2I=3I=4
I=5 SSRN-SD

SSRN

PHG

HandPointNet
Point-to-Point

HandFolding
JGR-P2O

V2V-PoseNet
(✕10)

0

2.5

5

7.5

25

27.5

7 7.5 8 8.5 9 9.5 10 10.5 11

G
FL
O
P
s

Mean joint error (mm)
Figure 2. Comparison between operation count and estimation
error. I is the iteration number of HandR2N2 during inference.

less computation for the highest accuracy compared with
other state-of-the-art methods, as shown in Figure 2.

The key contributions of this paper are summarised as
follows:

• We propose a novel iterative neural network architec-
ture that takes the hand point cloud as input and pro-
gressively estimates the accurate 3D hand joint coordi-
nates.

• We propose a novel residual recurrent unit that cap-
tures new local observations around previously gener-
ated coordinates to refine joint-wise hidden states and
coordinate estimation. It also leverages a graph neural
network to model dependency between the joints for
performance improvement.

• We conduct extensive experiments to analyze the effi-
ciency and effectiveness of our proposed network.

2. Related Work
2.1. Depth-based 3D Hand Pose Estimation

3D hand pose estimation approaches using depth images
can be classified into three categories according to the in-
put types: conventional 2DCNN-based methods that take
raw 2D depth images as input [31, 10, 13, 25, 1, 8, 23, 6],
3DCNN-based methods that use 3D voxelized representa-
tions of depth images [11, 18], and PointNet-based methods
that process the point cloud transformed from depth images
[9, 12, 2, 15, 4]. In this section, we focus on PointNet-based
methods, since the point cloud is an accurate and concise
representation for efficient inference.

The point cloud can be easily acquired from depth im-
ages by multiplying the camera intrinsic matrix. However,
due to its irregularity and disorder, processing point clouds
has always been a challenging task until the emergence of
PointNet [20, 21]. HandPointNet [9] was the first work
that utilized PointNet as a backbone to directly regress the
hand pose from the point cloud. Subsequently, the Point-
to-Point model [12] used the hierarchical PointNet in order
to generate the point-wise probability distribution for im-
proved estimation. Based on these prior studies, SHPR-Net

20905

RRURRU

Lo
ca

l E
nc

.

Initial
States
Gen.

Residual
Graph
GRU

Regressor

Resampler Resampler Resampler

Regressor Regressor Regressor

Residual
Graph
GRU

Residual
Graph
GRU

𝑺𝟎 𝑺𝟏 𝑺𝟐

𝑱𝟎 𝑱𝟏 𝑱𝟐 𝑱𝑰

𝑺𝑰%𝟏

𝑱𝑰%𝟏

𝑱𝑰%𝟏
𝑵×3 𝑱×3

Input points Estimated
joints∆𝑺𝟏 ∆𝑺𝟐 ∆𝑺𝑰𝑺𝟎

RRU
iter Iiter 2iter 1

Figure 3. The HandR2N2 pipeline. HandR2N2 takes the normalized point cloud transformed from a 2D depth image as the input. The
PointNet-based local encoder extracts local features from input points. The local features are fed into an initial states generator to initialize
hidden states of the residual recurrent unit (RRU). The high-dimensional initialized hidden states are also transformed into 3-dimensional
space to generate initial joint estimation. At last, the RRU iteratively resamples points around previously estimation joints to update hidden
states and joint locations.

[2] combined HandPointNet with an auxiliary semantic seg-
mentation sub-network to augment the performance. Point-
to-Pose [15] further exploited residual permutation equiv-
ariant layers [22] to alleviate information loss caused by the
max-pooling bottleneck. Recently, HandFoldingNet [4] in-
troduced multiscale-feature-guided folding to reshape a pre-
defined 2D hand skeleton into hand poses.

However, the existing methods mentioned above fol-
lowed the single feed-forward design. In such feed-forward
architecture, the model capacity can be increased by having
a complex architecture or additional parameters. However,
such solutions may result in overfitting and higher compu-
tational requirement. Unlike these methods, our model ex-
ploits the recurrent mechanism to iteratively refine accurate
hand pose by reusing a part of parameters.

2.2. Recurrent Models for Hand Pose Estimation

Recently, recurrent models [7, 35, 33, 34, 36] have been
successfully applied in 2D image based hand pose estima-
tion. ACE-Net [7] and SeqHand-Net [35] exploited long
short term memory (LSTM) to extract the temporal con-
text information for more smooth and accurate estimations
from color images. CADSTN [33] also applied LSTM to
jointly model the spatiotemporal context from depth image
sequences. However, as the input to these methods is a tem-
poral image sequence, they cannot be used for hand pose
estimation from a single image. In contrast, DIR-Net [34]
iteratively reuses a part of its structure to refine a downsam-
pled feature map of a single color image. Nonetheless, up-
dating the whole feature map is computationally redundant,
since the features without contribution, such as background,
are also repeatedly computed. Thus, HCRNN [36] applies
RNN on each individual joints for high inference efficiency.

Although the recurrent models have made significant
progress in 2D image based hand pose estimation, they have

not been actively studied in the point cloud based hand
pose estimation. Taylor et. al. [29] proposed an online
optimization method that iteratively optimizes a predefined
hand template to fit hand points. A related research [5] it-
eratively repeated the entire alignment architecture to align
hand pose from coarse global stages to fine local stages. It
also employed LSTM among multiple global stages to re-
fine global alignment. However, it is significantly computa-
tional heavy because it reuses the entire structure for multi-
stage feature generation. Conversely, our network only cap-
tures a small part of local information around each joint for
each iteration with partial parameters, making it more ef-
fective than re-computing global information. Furthermore,
we integrate a graph reasoning module in the recurrent unit
to enhance estimation by capturing kinematic dependencies
between joints, which has not been adopted in [5].

3. Iterative 3D Hand Pose Estimation
HandR2N2 aims to perform iterative hand pose estima-

tion based on a recurrent architecture, as shown in Fig-
ure 3. Intuitively, HandR2N2 refines the joint locations by
iteratively searching the optimal position from the region
around each joints, as illustrated in Figure 1. The input to
HandR2N2 is a set of preprocessed 3D point coordinates
P ∈ RN×3 that represents the hand shape, which is trans-
formed from a 2D depth image though the camera intrinsic
matrix. The outputs are a sequence of the estimated 3D
joints coordinates {Ji ∈ RJ×3|i = 0, 1, ..., I}, where JI

is our final estimation. The N points are firstly input to a
local encoder that extracts local geometric features. Since
the input point set is irregular and orderless, we exploit fur-
thest point sampling method and a one-layer set conv layer
[16] proposed by PointNet++ [21] to construct the local en-
coder (RN×3 → R(N/2)×(3+dlocal)). Then, the local fea-
tures are fed into the initial state generator to initialize the

20906

𝜎(𝑀𝐿𝑃(&)) 𝑡𝑎𝑛ℎ	(𝑠𝑒𝑡_𝑐𝑜𝑛𝑣(&))

𝜎	(𝑠𝑒𝑡_𝑐𝑜𝑛𝑣(&))

GCN

𝑺𝒊"𝟏 𝑺𝒊
𝒔𝒊"𝟏

𝑺𝒊"𝟏$

𝒔𝒊"𝟏$

replicate

[𝐽, 𝑑!"#]

[𝐾, 𝑑!"#]

[1, 𝑑!"#]

[1, 𝑑!"#]
𝒔𝒊

𝚫𝒔𝒊

[1, 𝑑!"#]
[1, 𝑑!"#]

[𝐾, 𝑑!"#]

Update gate

Reset gate
[𝐾, 𝑑!"# + 𝑑$%&'$ + 3]

1-

Sampled local features

Residual states

Updates states[𝐽, 𝑑!"#]

C
C

C

Concatenation

Hadamard
product

Figure 4. The architecture of the residual graph GRU. It first exploits a graph reasoning module to evolve hidden states. The evolved
hidden states are subsequently updated by a GRU cell which takes resampled points as input. After updating, the residual between updated
hidden states and previous states are output for joint refinement.

hidden states S0 ∈ RJ×dhid , which are further processed
by an initial joint regressor to obtain the initial estimation
of joints J0. Afterward, a novel residual recurrent unit is
unrolled I times to iteratively update the hidden states and
joint estimations by resampling the useful local features
around previously estimated joints. The number of itera-
tions I is a hyper-parameter of the proposed network, and
is quite flexible. Specifically, the number of training iter-
ations (Itr) can be different from the number of inference
iterations (Iin), as discussed in Section 4.4.

3.1. Residual Recurrent Unit

HandR2N2 requires a recurrent unit capable of abstract-
ing a set of input point features and capturing kinematic de-
pendencies between joints, in order to perform iterative re-
finements that optimizes previous estimations. Obviously,
the conventional recurrent units such as LSTM or GRU can-
not satisfy these requirements, since their input and hidden
state should be one single vector, which cannot accommo-
date the input point set. Therefore, we propose a novel com-
ponent, a residual recurrent unit (RRU). The RRU consists
of the following items: 1) a resampler, 2) a residual graph
GRU cell, and 3) a residual regressor. The resampler sam-
ples local features around previously generated coordinates
Ji−1 forming the input point sets for the current i-th itera-
tion. To update the hidden states with the input of point sets,
we propose a novel residual graph GRU that implements its
gates based on PointNet. In addition, the proposed GRU
also cooperates with graph reasoning to augment the hid-
den states by capturing kinematic dependencies. At last, the
residuals between the current and previous states are sent to
the residual regressor to refine the previously generated co-
ordinates.

Resampler. The resampler collects K-nearest-neighbor
local points and their corresponding local features around

each of previously estimated joint ji−1 ∈ Ji−1, as visual-
ized in Figure 1. The neighbor points are then translated to
a relative coordinate system with ji−1 as the origin.

Residual graph GRU. The architecture of the proposed
residual graph GRU is visualized in Figure 4. Since many
recent approaches [8, 23] suggested that a graph convolu-
tional network (GCN) can model the beneficial dependen-
cies among joints, the hidden states from the previous itera-
tion are first augmented through a novel GCN, forming the
evolved hidden states:

S′
i−1 = ReLU(ASi−1W), (1)

where W ∈ Rdhid×dhid is the trainable weights. Notably,
A ∈ RJ×J×dhid is a novel channel-wise independent ad-
jacent matrix, which means for each channel of S, sc ∈
R∈J×1, there is an individual adjacency matrix ac ∈ RJ×J

for the multiplication AS = [a1s1, a2s2, ..., adhid
sdhid

],
where ‘[·, ·]’ is concatenation. Afterwards, the GCN-
evolved hidden states are passed through a GRU cell to
aggregate new information from the sampled local features
and to update the hidden states for the current i-th iteration.
Here, the conventional GRU cell is not suitable because the
input features have one additional dimension than the hid-
den states. Therefore, we exploit set conv layer [16], which
is composed of a shared multi-layer perceptron and a max-
pooling layer, for gate computation to implement the GRU.
First, the hidden states are replicated K times to be con-
catenated with input features. The concatenated output are
then fed into each gate for computation. For those gates
that directly modify values of the hidden states, we im-
plement them with set conv layer to squeeze one dimen-
sion. Moreover, we implemented a novel attentive reset
gate with a point-wise multi-layer perceptron (MLP) that
enables the GRU to select good points for the hidden state
update, which is beneficial for exploring the optimal joint

20907

- 0.25

- 0.20

- 0.15
- 0.10

- 0.05

𝒋𝒊"𝟏

𝒋𝒊

l Estimation from
the previous iter

l Estimation from
the current iter

l Ground truth

Neighboring
region

Figure 5. Visualization of the output from the reset gate in the pro-
posed GRU. The small colored points in the circle are the grouped
neighbors of the red input joint ji−1, and their colors indicate the
attentive intensity computed by Eq. 3. It shows that the points
closer to the ground truth obtain relatively higher intensity. By
leveraging clues to focus on highly-related points near the ground
truth, the attentive GRU can output the accurate orange joint ji.

locations, as shown in Figure 5. Thus, given the evolved
hidden state s′i−1 ∈ S′

i−1 of a specific joint, and with the
sampled local features {fk ∈ R3+dlocal |1 ≤ k ≤ K}, the
GRU generates the updated hidden state si:

zi = σ(set convz
1≤k≤K

([s′i−1, fk])), (2)

ri,k = σ(MLPr([s
′
i−1, fk])), (3)

s̃i = tanh(set convh
1≤k≤K

([ri,k ⊙ s′i−1, fk])), (4)

si = (1− zi)⊙ s′i−1 + zi ⊙ s̃i, (5)

where σ is the sigmoid activation function, ‘[·, ·]’ is the con-
catenation operation, and ⊙ is the Hadamard product. Note
that, the updated hidden states encode the absolute joint
locations in the latent space. However, we require rela-
tive representations to refine the previously generated joints.
Therefore, we introduce a residual mechanism that outputs
the relative representations of the updated information:

∆Si = Si − Si−1. (6)

Residual regressor. The regressor accepts residual
states of the current i-th iteration as input to refine the previ-
ous joints generated by the (i− 1)-th iteration. The regres-
sor is a linear transformation with a residual connection.
Therefore, the joint regression of the current i-th iteration is
represented as:

Ji = ∆SiW + Ji−1, (7)

where W ∈ Rdhid×3 is the trainable transformation matrix.

3.2. Initialization of the Hidden States and Joint
Coordinates

The hidden states S of the RRU essentially are the em-
beddings that represent joints in the dhid-dimensional la-
tent space and can be further re-projected into the three-
dimensional coordinates by the subsequent transformation.

Thus, we inherit the idea of generating joint-wise embed-
dings to obtain the initialized hidden states S0, as pro-
posed by HandFoldingNet [4]. The generation of the initial
hidden states (joint-wise embeddings) are sequentially pro-
ceeded by two cascaded set conv layers and a three-layer
bias-induced layer (BIL) [3]. Equivalent with HandFold-
ingNet [4], the cascaded set conv layers first down-sample
and extract N/8 of local features and subsequently aggre-
gate them as a global feature. The global feature is then
replicated J times and fed into the BILs for the generation
of hidden states for J joints. Finally, the J hidden states are
injected into the regressor, which performs a linear trans-
formation (Rdhid → R3) for the initialization of the initial
joint J0.

3.3. Training Loss Function

Following the previous works [25, 4], we adopt smooth
L1 loss to supervise training because of its less sensitivity
to the outliers. The smooth L1 loss is defined as:

L1smooth(x) =

{
50x2, |x| < 0.01

|x| − 0.005, otherwise
. (8)

Since the proposed network outputs an initial estimation
and I iterative estimations, we supervise all of the outputs
by the following joint loss function:

L =

I∑
i=0

J∑
j=0

λI−iL1smooth(Jij − J∗j), (9)

where J∗ indicates the ground-truth coordinates and λ is the
hyperparameter that weights each distinct iteration. In our
experiments, we set λ = 0.8 by default.

4. Experiments
4.1. Experiment Settings

We conducted experiments on an NVIDIA A100 GPU
with PyTorch. For training, we used the AdamW optimizer
[17] with beta1 = 0.5, beta2 = 0.999, and learning rate α
= 0.001. The number of input points to the network was
sampled to 1,024 and the batch size was set to 32. Batch
normalization [14] was applied only in the local encoder
and initializer. Meanwhile, to avoid overfitting, we adopted
online data augmentation with random rotation ([-120.0,
120.0] degrees around z-axis, [-30.0, 30.0] degrees around
x- and y-axis), 3D scaling ([0.8, 1.2]), and 3D translation
([-20, 20] mm). We trained the model for 160 epochs with
a learning rate decay of 0.1 after 120 epochs.

4.2. Datasets and Evaluation Metrics

MSRA Dataset. The MSRA dataset [27] provides more
than 76K frames captured by the Intel’s Creative Interactive

20908

Methods Mean joint error (mm) Input # Params # FLOPs Time (ms)ICVL MSRA NYU
Ren-4x6x6 [13] 7.63 - 13.39 2D image - - -
Ren-9x6x6 [13] 7.31 9.7 12.69 2D image - - -

Pose-Ren [1] 6.79 8.65 11.81 2D image - - -
DenseReg [32] 7.3 7.2 10.2 2D image 5.8M - -

CrossInfoNet [6] 6.73 7.86 10.08 2D image 23.8M - -
JGR-P2O [8] 6.02 7.55 8.29 2D image 1.4M - 2.0 + 7.0

SSRN-SD [24] 6.04 7.16 7.47 2D image 16.2M 1.52G 0.4 + 3.0
SSRN [24] 6.01 7.05 7.37 2D image 22.5M 1.96G 0.4 + 3.4
PHG [23] 5.97 6.94 7.39 2D image 35.7M 27.02G 0.4 + 15.8

3DCNN [11] - 9.6 14.1 3D voxels 104.9M - 2.9 + 1.68
SHPR-Net [2] 7.22 7.76 10.78 3D points - - -

HandPointNet [9] 6.94 8.5 10.54 3D points 2.5M 1.72G 8.2 + 11.3
Point-to-Point [12] 6.3 7.7 9.10 3D points 4.3M 2.98G 8.2 + 15.7

V2V [18] 6.28 7.59 8.42 3D voxels 34.1M 6.23G 23 + 5.5
HandFolding [4] 5.95 7.34 8.58 3D points 1.3M 1.31G 8.2 + 3.7
Deng et al. [5] 6.05 7.00 6.84 3D points - - 0.9 + 47.6

Ours

Iin =1 6.51 6.93 8.00 3D points 1.3M 0.72G 0.9 + 4.2
Iin =2 6.12 6.49 7.50 3D points 1.3M 1.06G 0.9 + 6.0
Iin =3 5.86 6.42 7.36 3D points 1.3M 1.40G 0.9 + 7.9
Iin =4 5.70 6.48 7.29 3D points 1.3M 1.74G 0.9 + 9.7
Iin =5 5.71 6.54 7.27 3D points 1.3M 2.08G 0.9 + 11.5

Table 1. Comparison of the proposed method with previous state-of-the-art methods on the ICVL, MSRA and NYU datasets. Input
indicates the input type of 2D depth image, 3D voxels or 3D point cloud. # Params indicates the number of model parameters. Time stands
for the total computation time including preprocessing time and model inference time.

Gesture Camera. Each frame is annotated with J = 21
joints, including one joint for the wrist and four joints for
each finger. We followed the leave-one-subject-out cross-
validation strategy as used in the previous works [4, 27] to
evaluate this dataset.
ICVL Dataset. The ICVL dataset [28] provides 22K train-
ing and 1.6K testing depth frames captured by the Intel’s
Creative Interactive Gesture Camera. Each frame is anno-
tated with J = 16 joints, including one joint for the palm
and three joints for each finger. We cropped the hand area
from a depth image using the method given in [19] because
the human body area is present in the frames.
NYU Dataset. The NYU dataset is captured from three dif-
ferent views. Each view contains 72K training 8K testing
depth images captured with the PrimeSense 3D sensor. Fol-
lowing recent works [4, 12, 9], we selected one view and
14 joints out of total of 36 annotated joints for training and
testing [31]. We also followed the same hand area cropping
process [19] as in the ICVL dataset.
Evaluation metrics. We employed two commonly used
metrics, the mean joint error and the success rate, to eval-
uate the performance of hand pose estimation. The mean
joint error quantifies the average Euclidean distance be-
tween the estimated joint locations and ground-truth ones
for all the joints over the entire testing set. The success rate

indicates the percentage of the good frames with a mean
joint error of less than a given distance.

4.3. Comparison with State-of-the-Art Methods

We compared HandR2N2 with other state-of-the-art
methods, including methods with 2D depth images as in-
put: region ensemble network (Ren-4x6x6 [13], Ren-9x6x6
[32]), Pose-Ren [1], dense regression network (DenseReg)
[32], CrossInfoNet [6], JGR-P2O [8], spatial-aware stacked
regression network (SSRN [24], SSRN-SD [24]) and pose-
guided hierarchical graph network (PHG) [23], and meth-
ods with 3D point cloud or voxels as input: 3DCNN [11],
SHPR-Net [2], HandPointNet [9], Point-to-Point [12], V2V
[18], HandFoldingNet [4] and Deng et al. [5].

Table 1 summarizes the performance in terms of the
mean joint error. Note that, the evaluations of our model
were trained with Itr = 3 and tested with Iin = 4,
Iin = 3, Iin = 5 on ICVL, MSRA, and NYU, respectively.
The results show that HandR2N2 achieves the new state-of-
the-art performance with mean distance errors of 5.70mm,
6.42mm and 7.27mm on two challenging datasets, ICVL
and MSRA, respectively. It also achieves the second-lowest
error on the NYU dataset. In particular, HandR2N2 signif-
icantly outperforms 3D input based previous state-of-the-
arts with large margins. Meanwhile, HandR2N2 requires

20909

Figure 6. Comparison with the state-of-the-art methods using the ICVL (left), MSRA (middle) and NYU (right) dataset. The success rate
is shown in this figure.

Figure 7. Qualitative results of HandR2N2 on the ICVL (left), MSRA (middle) and NYU (right) dataset. Hand depth images are trans-
formed into 3D points as shown in the figure. Ground truth is shown in black, and the estimated joint coordinates are shown in red.

25.76 9.10 7.32 7.36 7.44 7.40
25.18 8.94 7.30 7.34 7.44 7.40
25.12 8.74 7.28 7.33 7.44 7.39
24.12 8.55 7.27 7.32 7.46 7.40
23.61 8.36 7.29 7.33 7.49 7.42
21.05 7.97 7.36 7.36 7.56 7.50
17.90 7.69 7.50 7.50 7.71 7.73
7.96 8.17 8.00 7.99 8.35 8.50
10.60 10.81 10.74 10.75 11.45 11.65

1 -
2 -
3 -
4 -
5 -
6 -
7 -
8 -

0 - - - - - - -

1 2 3 4 5 6

Mean joint error (mm)

In
fe

re
nc

e
I !"

Training I#$
Figure 8. Training Itr vs. inference Iin. For each column, the
model are trained based on a fixed iteration number and evaluated
at different inference Iin.

only 1.3M parameters, which is generally less compared to
other recent state-of-the-art methods. Figure 6 represents
that our method significantly outperforms other methods in
terms of success rate when the error threshold is lower than
20mm, 15mm and 52mm on the ICVL, MSRA and NYU
datasets, respectively. Figure 2 also illustrates the superior
efficiency of HandR2N2 with dynamically adjustable com-
putation of 0.72+0.34×I GFLOPs. The results show that
our model achieves the lowest estimation error with a sim-
ilar operation count at Iin = 3 compared to other state-of-
the-art methods. Furthermore, the model can dynamically

run more iterations with modestly increased computation
for lower estimation error.

4.4. Ablation Study

We conducted ablation experiments to analyze the con-
tribution of each component in our model. The following
experiments are evaluated based on the NYU dataset, since
it is challenging and far from saturation.
Number of iterations. Although the number of iterations
I is a specific number during training, it can be quite flexi-
ble and even larger for inference. We first trained the model
using different number of training Itr to find the optimal
setting of iterations for the training phase. Then we test
the trained models with a various inference Iin. The re-
sults are plotted on Figure 8. Interestingly, when the train-
ing Itr ≥ 3, our model keeps improving for a few more
iterations even though the inference Iin is larger than the
training. In particular, when setting Itr = 3 during train-
ing, the model achieves the minimal estimation error of 7.27
mm after 5 inference iterations. Please note that, in small
number of training iterations (Itr < 3), the model is opti-
mized solely for the same inference iterations (Iin = Itr).
On the other hand, larger Itr allows the model to general-
ize the regularity of changes between all iteration, which
benefits not only trained iterations (Iin = Itr) but also un-
trained larger iterations (Iin > Itr). Nonetheless, Figure 8
further demonstrates the reduced performance of our model
when Itr ≥ 5 during training. It is because the lengthy path
of back-propagation restricts the model from obtaining ap-
propriate estimations. The longer the iteration path is, the

20910

Inference
𝑰𝒊𝒏 = 0

Inference
𝑰𝒊𝒏 = 1

Inference
𝑰𝒊𝒏 = 2

Inference
𝑰𝒊𝒏 = 3

Inference
𝑰𝒊𝒏 = 4

Inference
𝑰𝒊𝒏 = 5

Inference
𝑰𝒊𝒏 = 6

Mean error:
8.141mm

Mean error:
3.738mm

Mean error:
3.660mm

Mean error:
3.696mm

Mean error:
3.456mm

Mean error:
3.313mm

Mean error:
3.295mm

Mean error:
9.212mm

Mean error:
5.277mm

Mean error:
4.880mm

Mean error:
4.427mm

Mean error:
4.142mm

Mean error:
4.3465mm

Mean error:
4.167mm

Figure 9. Qualitative visualization of the models with training Itr = 3 evaluated at different inference Iin based on the NYU dataset.
Mean error indicates the mean joint error. Ground truth is shown in black, and the estimated joint coordinates are shown in red.

more different the estimations of the 0-th iteration and the
I-th iteration are. Thus, we assume that the accumulated
gradients of all iterations to the shared parameters would
smooth the right descent gradients for each individual iter-
ation, and thus degrade the final accuracy. However, these
smooth accumulated gradients within a specific range of it-
eration count (3 < Itr < 5 according to Figure 8) allow the
model to learn the general optimization direction of joints
between iterations. Based on the results, we can empirically
find the optimal Itr as 3 for high inference performance and
training efficiency.

7

7.25

7.5

7.75

8

8.25

8.5

8.75

9

16 32 48 64

M
ea
n
jo
in
te
rro
r(
m
m
)

Sampling K

Inference Iᵢₙ=1
Inference Iᵢₙ=2
Inference Iᵢₙ=3
Inference Iᵢₙ=4
Inference Iᵢₙ=5
Inference Iᵢₙ=6

Figure 10. Affect of sampling K. For each line, the inference
Iins are same, but with increased K of resampled points for each
iteration. All models are trained based on training Itr = 3.

In addition, as Table 1 reports, the estimation accuracy is
improved with a small number of additional computations
(0.34GFLOPs per iteration) and time consumption (1.8 ms
per iteration).
Number of resampled points. The resampled points pro-

GRU GCN Res. Mean error
× × × 8.68 mm√

× × 8.06 mm
×

√ √
7.76 mm√ √

× 7.62 mm√
×

√
7.99 mm√ √ √
7.36 mm

Table 2. Ablations of different GRU configurations. GCN and Res.
indicate whether the GCN and residual mechanism are activated
in the RRU, respectively. All the ablation models are trained and
tested with both Itr = Iin = 3.

Configurations Mean error
Conventional GCN + Res. 8.14 mm
Channel-wise GCN + Res. 7.76 mm
Conventional GRU + Res. 8.59 mm

Attentive GRU + Res. 7.99 mm
Conventional GRU + GCN + Res. 8.07 mm

Attentive GRU + Channel-wise GCN + Res. 7.36 mm

Table 3. Comparison with conventional components. All models
are trained and tested with both Itr = Iin = 3.

vide K new candidates for location refinement around each
joint. Thus, the number K is a significant hyperparameter
that affects the performance. Figure 10 presents the per-
formance under different K values and inference iterations.
The result shows that larger K reduces the estimation error
since it provides a wider range of observation. However, the
performance is saturated at K = 48, because additionally
sampled points beyond the effective region of a particular
joint (i.e., points that are distant to the joint and closer to
other joints) do not contribute to the estimation.
Analysis of different GRU configurations. To augment

20911

the final estimation, we combine the novel GRU with the
GCN that evolves the hidden states and residual mechanism
for relative representation, as described in Sec. 3. To ver-
ify their contributions, we incrementally adopted the GRU
cell, the GCN and residual mechanism. Thus, we conducted
five ablations as follows: 1) no GRU, 2) GRU; 3) GCN with
residual; 4) GRU with GCN; 5) GRU with residual; 6) GRU
with both residual and GRU, which is our full configuration.
Note that, the ablations without residual, 2) and 4), directly
transform the hidden states into absolute joint coordinates.
As shown in Table 2, the GRU cell, the GCN and residual
mechanism all contribute considerably to the effective esti-
mation. In particular, the novel GRU improves the accuracy
by more than 0.4 mm. Furthermore, using the novel GCN
and the residual mechanism further reduces the estimation
error by more than 0.4mm and 0.2 mm, respectively.

Comparison with the conventional components. To val-
idate the effectiveness of our proposed components, we re-
place the proposed channel-wise GCN and attentive GRU
with the conventional ones, respectively. The implemen-
tation details are provided in the supplementary material.
Table 3 indicates our proposed GCN and GRU both signifi-
cantly outperforms the conventional implementations.

5. Conclusion

This paper presented HandR2N2, a novel recurrent archi-
tecture that is capable of iteratively regressing progressively
accurate 3D hand pose from a single point cloud. Experi-
mental results showed that our network significantly outper-
forms previous state-of-the-art methods on three challeng-
ing datasets. Extensive experiments also demonstrated the
excellent flexibility and efficiency of our network. As lim-
itations, the performance of HandR2N2 may degrade when
hand parts are severely occluded, because the RRU can not
sample efficient points. Extending this work to temporal-
sequential learning may help to alleviate these limitations,
which we leave for future studies.

Acknowledgement.

This work was supported by the Ministry of Science and
ICT (MSIT) of Korea under the National Research Foun-
dation (NRF) grant (2022R1A4A3032913) and the Institute
of Information and Communication Technology Planning
Evaluation (IITP) grants (IITP-2019-0-00421, IITP-2023-
2020-0-01821, IITP-2021-0-02052, IITP-2021-0-02068),
and by the Technology Innovation Program (RS-2023-
00235718) funded by the Ministry of Trade, Industry & En-
ergy (1415187474). Wencan Cheng was partly supported
by the China Scholarship Council (CSC).

References
[1] Xinghao Chen, Guijin Wang, Hengkai Guo, and Cairong

Zhang. Pose guided structured region ensemble network for
cascaded hand pose estimation. Neurocomputing, 395:138–
149, 2020. 1, 2, 6

[2] Xinghao Chen, Guijin Wang, Cairong Zhang, Tae-Kyun
Kim, and Xiangyang Ji. Shpr-net: Deep semantic hand pose
regression from point clouds. IEEE Access, 6:43425–43439,
2018. 1, 2, 3, 6

[3] Wencan Cheng and Sukhan Lee. Point auto-encoder and its
application to 2d-3d transformation. In International Sym-
posium on Visual Computing, pages 66–78. Springer, 2019.
5

[4] Wencan Cheng, Jae Hyun Park, and Jong Hwan Ko. Hand-
foldingnet: A 3d hand pose estimation network using
multiscale-feature guided folding of a 2d hand skeleton. In
Proceedings of the IEEE/CVF International Conference on
Computer Vision, pages 11260–11269, 2021. 1, 2, 3, 5, 6

[5] Xiaoming Deng, Dexin Zuo, Yinda Zhang, Zhaopeng Cui,
Jian Cheng, Ping Tan, Liang Chang, Marc Pollefeys, Sean
Fanello, and Hongan Wang. Recurrent 3d hand pose estima-
tion using cascaded pose-guided 3d alignments. IEEE Trans-
actions on Pattern Analysis and Machine Intelligence, 2022.
2, 3, 6

[6] Kuo Du, Xiangbo Lin, Yi Sun, and Xiaohong Ma. Cross-
infonet: Multi-task information sharing based hand pose
estimation. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pages 9896–
9905, 2019. 1, 2, 6

[7] Zhipeng Fan, Jun Liu, and Yao Wang. Adaptive computa-
tionally efficient network for monocular 3d hand pose esti-
mation. In European Conference on Computer Vision, pages
127–144. Springer, 2020. 3

[8] Linpu Fang, Xingyan Liu, Li Liu, Hang Xu, and Wenxiong
Kang. Jgr-p2o: Joint graph reasoning based pixel-to-offset
prediction network for 3d hand pose estimation from a single
depth image. In European Conference on Computer Vision,
pages 120–137. Springer, 2020. 1, 2, 4, 6

[9] Liuhao Ge, Yujun Cai, Junwu Weng, and Junsong Yuan.
Hand pointnet: 3d hand pose estimation using point sets.
In Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, pages 8417–8426, 2018. 1, 2, 6

[10] Liuhao Ge, Hui Liang, Junsong Yuan, and Daniel Thalmann.
Robust 3d hand pose estimation in single depth images: from
single-view cnn to multi-view cnns. In Proceedings of the
IEEE conference on computer vision and pattern recogni-
tion, pages 3593–3601, 2016. 1, 2

[11] Liuhao Ge, Hui Liang, Junsong Yuan, and Daniel Thalmann.
3d convolutional neural networks for efficient and robust
hand pose estimation from single depth images. In Proceed-
ings of the IEEE Conference on Computer Vision and Pattern
Recognition, pages 1991–2000, 2017. 1, 2, 6

[12] Liuhao Ge, Zhou Ren, and Junsong Yuan. Point-to-point
regression pointnet for 3d hand pose estimation. In Proceed-
ings of the European conference on computer vision (ECCV),
pages 475–491, 2018. 1, 2, 6

20912

[13] Hengkai Guo, Guijin Wang, Xinghao Chen, Cairong Zhang,
Fei Qiao, and Huazhong Yang. Region ensemble network:
Improving convolutional network for hand pose estimation.
In 2017 IEEE International Conference on Image Processing
(ICIP), pages 4512–4516. IEEE, 2017. 1, 2, 6

[14] Sergey Ioffe and Christian Szegedy. Batch normalization:
Accelerating deep network training by reducing internal co-
variate shift. In International conference on machine learn-
ing, pages 448–456. PMLR, 2015. 5

[15] Shile Li and Dongheui Lee. Point-to-pose voting based hand
pose estimation using residual permutation equivariant layer.
In Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, pages 11927–11936, 2019. 1, 2, 3

[16] Xingyu Liu, Charles R Qi, and Leonidas J Guibas.
Flownet3d: Learning scene flow in 3d point clouds. In Pro-
ceedings of the IEEE/CVF conference on computer vision
and pattern recognition, pages 529–537, 2019. 3, 4

[17] Ilya Loshchilov and Frank Hutter. Decoupled weight decay
regularization. arXiv preprint arXiv:1711.05101, 2017. 5

[18] Gyeongsik Moon, Ju Yong Chang, and Kyoung Mu Lee.
V2v-posenet: Voxel-to-voxel prediction network for accu-
rate 3d hand and human pose estimation from a single depth
map. In Proceedings of the IEEE conference on computer
vision and pattern Recognition, pages 5079–5088, 2018. 1,
2, 6

[19] Markus Oberweger and Vincent Lepetit. Deepprior++: Im-
proving fast and accurate 3d hand pose estimation. In Pro-
ceedings of the IEEE international conference on computer
vision Workshops, pages 585–594, 2017. 6

[20] Charles R Qi, Hao Su, Kaichun Mo, and Leonidas J Guibas.
Pointnet: Deep learning on point sets for 3d classification
and segmentation. In Proceedings of the IEEE conference
on computer vision and pattern recognition, pages 652–660,
2017. 1, 2

[21] Charles Ruizhongtai Qi, Li Yi, Hao Su, and Leonidas J
Guibas. Pointnet++: Deep hierarchical feature learning on
point sets in a metric space. In Advances in neural informa-
tion processing systems, pages 5099–5108, 2017. 1, 2, 3

[22] Siamak Ravanbakhsh, Jeff Schneider, and Barnabas Poczos.
Deep learning with sets and point clouds. arXiv preprint
arXiv:1611.04500, 2016. 3

[23] Pengfei Ren, Haifeng Sun, Jiachang Hao, Qi Qi, Jingyu
Wang, and Jianxin Liao. Pose-guided hierarchical graph rea-
soning for 3-d hand pose estimation from a single depth im-
age. IEEE Transactions on Cybernetics, 2021. 1, 2, 4, 6

[24] Pengfei Ren, Haifeng Sun, Weiting Huang, Jiachang Hao,
Daixuan Cheng, Qi Qi, Jingyu Wang, and Jianxin Liao.
Spatial-aware stacked regression network for real-time 3d
hand pose estimation. Neurocomputing, 437:42–57, 2021.
6

[25] Pengfei Ren, Haifeng Sun, Qi Qi, Jingyu Wang, and Weiting
Huang. Srn: Stacked regression network for real-time 3d
hand pose estimation. In BMVC, page 112, 2019. 1, 2, 5

[26] Oindrila Saha, Aditya Kusupati, Harsha Vardhan Simhadri,
Manik Varma, and Prateek Jain. Rnnpool: efficient non-
linear pooling for ram constrained inference. Advances in
Neural Information Processing Systems, 33:20473–20484,
2020. 2

[27] Xiao Sun, Yichen Wei, Shuang Liang, Xiaoou Tang, and Jian
Sun. Cascaded hand pose regression. In Proceedings of the
IEEE conference on computer vision and pattern recogni-
tion, pages 824–832, 2015. 2, 5, 6

[28] Danhang Tang, Hyung Jin Chang, Alykhan Tejani, and Tae-
Kyun Kim. Latent regression forest: Structured estimation of
3d articulated hand posture. In Proceedings of the IEEE con-
ference on computer vision and pattern recognition, pages
3786–3793, 2014. 2, 6

[29] Jonathan Taylor, Lucas Bordeaux, Thomas Cashman, Bob
Corish, Cem Keskin, Toby Sharp, Eduardo Soto, David
Sweeney, Julien Valentin, Benjamin Luff, et al. Efficient and
precise interactive hand tracking through joint, continuous
optimization of pose and correspondences. ACM Transac-
tions on Graphics (TOG), 35(4):1–12, 2016. 3

[30] Zachary Teed and Jia Deng. Raft: Recurrent all-pairs field
transforms for optical flow. In European conference on com-
puter vision, pages 402–419. Springer, 2020. 2

[31] Jonathan Tompson, Murphy Stein, Yann Lecun, and Ken
Perlin. Real-time continuous pose recovery of human hands
using convolutional networks. ACM Transactions on Graph-
ics (ToG), 33(5):1–10, 2014. 1, 2, 6

[32] Chengde Wan, Thomas Probst, Luc Van Gool, and Angela
Yao. Dense 3d regression for hand pose estimation. In Pro-
ceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, pages 5147–5156, 2018. 6

[33] Yiming Wu, Wei Ji, Xi Li, Gang Wang, Jianwei Yin, and Fei
Wu. Context-aware deep spatiotemporal network for hand
pose estimation from depth images. IEEE transactions on
cybernetics, 50(2):787–797, 2018. 3

[34] John Yang, Yash Bhalgat, Simyung Chang, Fatih Porikli, and
Nojun Kwak. Dynamic iterative refinement for efficient 3d
hand pose estimation. In Proceedings of the IEEE/CVF Win-
ter Conference on Applications of Computer Vision, pages
1869–1879, 2022. 2, 3

[35] John Yang, Hyung Jin Chang, Seungeui Lee, and Nojun
Kwak. Seqhand: Rgb-sequence-based 3d hand pose and
shape estimation. In European Conference on Computer Vi-
sion, pages 122–139. Springer, 2020. 2, 3

[36] Cheol-Hwan Yoo, Seowon Ji, Yong-Goo Shin, Seung-Wook
Kim, and Sung-Jea Ko. Fast and accurate 3d hand pose es-
timation via recurrent neural network for capturing hand ar-
ticulations. IEEE Access, 8:114010–114019, 2020. 3

20913

