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Abstract

Scene flow estimation provides the fundamental motion
perception of a dynamic scene, which is of practical im-
portance in many computer vision applications. In this
paper, we propose a novel multi-scale bidirectional recur-
rent architecture that iteratively optimizes the coarse-to-
fine scene flow estimation. In each resolution scale of es-
timation, a novel bidirectional gated recurrent unit is pro-
posed to bidirectionally and iteratively augment point fea-
tures and produce progressively optimized scene flow. The
optimization of each iteration is integrated with the hy-
brid correlation that captures not only local correlation
but also semantic correlation for more accurate estima-
tion. Experimental results indicate that our proposed archi-
tecture significantly outperforms the existing state-of-the-
art approaches on both FlyingThings3D and KITTI bench-
marks while maintaining superior time efficiency. Codes
and pre-trained models are publicly available at https:
//github.com/cwc1260/MSBRN .

1. Introduction

Scene flow estimation is a fundamental task that esti-
mates the dense 3D motion field of points from two con-
secutive frames [32, 19]. As it provides the basic motion
understanding of a dynamic environment, it is meaningful
in a variety of high-level applications such as autonomous
driving, augmented reality, and robotics [15].

Early scene flow estimation approaches rely on 2D rep-
resentations such as RGB images [14, 11, 13, 28, 12]. They
basically estimate optical flow and disparity map separately
in the 2D space instead of directly estimating scene flow
vectors in the 3D space. Recently, with the advances in
LiDAR sensors and point cloud-based learning technolo-
gies, learning scene flow directly from point clouds has
been extensively studied. The pioneering work known as
FlowNet3D [19] is the first to introduce hierarchical Point-
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Figure 1. Illustration of the multi-scale bidirectional recurrent net-
work for scene flow estimation. The multi-scale features extracted
from each input frame are fed into novel bidirectional gated recur-
rent units (BGRUs) that respectively iterates K times for optimiz-
ing scene flows on each scale. Introducing hybrid correlation (HC)
further improves the performance by searching correspondence in
both the Euclidean and latent feature space. The estimated scene
flows are warped with the source frame for a clear comparison
with the target frame.

Net++ [26] to directly predict the 3D scene flow based on
the point cloud. Following this work, a diverse variety of
architectures [33, 36, 9, 32, 15] have been proposed and
significantly enhanced performance.

Recently, there is a rising trend of iteratively optimiz-
ing estimated scene flow by utilizing the recurrent scheme
[15, 9, 31] to progressively improve the estimation accu-
racy. However, they only focus on optimizing single resolu-
tion scale which causes large computation latency. On the
other hand, another series of works [28, 4] presented their
superior efficiency by estimating multi-scale scene flow in
a coarse-to-fine manner. However, their single-shot estima-
tion on each scale restricts their performance. To achieve
high estimation accuracy while holding high efficiency, we
propose an effective and efficient architecture, Multi-Scale
Bidirectional Recurrent Network (MSBRN), that iteratively
optimizes coarse-to-fine scene flow. Moreover, in our view,
the optimization phases of scene flow can be regarded as
temporal sequences, which can benefit from the bidirec-
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Figure 2. Examples of two variants of correlation extraction. The
bold red and green points are the grouped correlated points of the
bold blue source point through the feature-induced correlation and
Euclidean distance-based correlation, respectively.

tional recurrent architecture [27, 8, 5, 16]. In each spe-
cific resolution scale, thus, we apply a novel bidirectional
gated recurrent unit (BGRU) to bidirectionally and itera-
tively augment point features and produce progressively op-
timized scene flow.

Moreover, we also noticed a common limitation of cur-
rent point cloud-based flow estimation approaches. They
aggregate the grouped neighboring points in the Euclidean
space when generating the correspondence features be-
tween two point frames. The correspondence grouping
used in these methods generally exploits k-nearest-neighbor
(kNN) that only focuses on a specific local region. Thus,
these methods may be harmed by nearby non-correlated
points in Euclidean space, as shown in Figure 2. To resolve
these issues, we first proposed a feature-induced correla-
tion that collects the nearest neighbor points in the latent
feature space. Thus, the grouped points from the feature
space are semantically related regardless of their distances
in Euclidean space. Afterwards, we combined the proposed
correlation with the conventional Euclidean distance-based
correlation forming the hybrid correlation. Therefore, the
network is able to capture distance-insensitive correspon-
dences as well as local correlations.

We evaluated MSBRN on two challenging benchmarks,
the synthetic dataset FlyingThings3D [22] and the real-
world LiDAR scan dataset KITTI [23], under both occluded
and non-occluded settings. Following the evaluation set-
tings of previous studies, the proposed model is trained
only on the FlyingThings3D dataset and evaluated on both
datasets to confirm the accuracy and generalization per-
formance. The experimental results show that MSBRN
outperforms all other approaches on the FlyingThings3D
dataset with 46% and 27% lower errors under the occluded
and non-occluded conditions, respectively. Moreover, MS-
BRN achieves improved generality on the real-world KITTI
dataset with 66% and 32% lower errors under the occluded
and non-occluded conditions, respectively. Our MSBRN
also shows better time efficiency while maintaining higher
accuracy compared to other iterative state-of-the-arts.

The key contributions of this paper are summarized as
follows:

• We propose a novel multi-scale bidirectional recurrent
architecture used for a 3D scene flow estimation task
based on point cloud. The model can iteratively and
bidirectionally enhance features and scene flow esti-
mations in a coarse-to-fine manner in order to sig-
nificantly improve the performance while maintaining
high efficiency.

• We propose a hybrid correspondence grouping that
collects corresponding points from the other point
frame in both the latent feature space and Euclidean
space.

• The proposed model achieves state-of-the-art perfor-
mance and generality on the synthetic FlyingThings3D
and real-world KITTI benchmarks under both oc-
cluded and non-occluded conditions.

2. Related Work
2.1. Scene Flow Estimation on Point Clouds

The first study in solving flow estimation on raw point
clouds with learning-based methods was FlowNet3D [19].
FlowNet3D exploited hierarchical PointNet++ [26] and a
local correlation learning layer to estimate the scene flow
from two raw point cloud frames. Following this scheme,
FlowNet3D++ [33] and HCRF-Flow [18] were proposed
to further refine the final estimation by introducing aux-
iliary geometric constraints and high-order CRFs, respec-
tively. However, the performance of these FlowNet3D-
based models was restricted by the single-scale flow corre-
lation. To address this flaw, HPLFlownet [10] was proposed
in order to capture multi-scale correlations. PointPWC-
Net [36] further suggested a coarse-to-fine architecture to
regress multi-scale scene flow by applying local correlation
extraction hierarchically. Based on the coarse-to-fine de-
sign, OGSFNet [24] additionally estimated occlusion masks
with an occlusion-aware correlation layer. Furthermore, Bi-
PointFlowNet [4] introduced a bidirectional mechanism to
bidirectionally propagate point features for informative cor-
relation extraction.

Nevertheless, the above-mentioned approaches all rely
on the local correlation, which has a limit on estimation ac-
curacy when corresponding points are out of the local re-
gion. However, the hybrid correlation proposed in this work
can alleviate this limitation by considering both local corre-
lation and semantic correlation.

2.2. Recurrent Models for Flow Estimation

Many recent studies have demonstrated a reasonable per-
formance by employing a recurrent architecture to itera-
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Figure 3. Architecture of MSBRN for scene flow estimation. First, the two consecutive input point frames are fed into the shared hierarchi-
cal feature extraction module for multi-level features. At each level, a novel BGRU bidirectionally augments point features and iteratively
optimizes correlations and flow predictions. The upsampling layers are adopted between adjacent levels for propagating features and flows
from high levels to low levels. The figure is best viewed in color.

tively refine the estimations [13, 21, 30, 31, 34, 15]. In-
spired by the previous iterative refinement models [14, 28,
11, 9, 6], IRR [13] reused its whole architecture as a recur-
rent unit to iteratively optimize the optical flow. Lv et. al.
proposed a approach that iterates a learning-based Inverse
Compositional algorithm to optimize dense 3D rigid mo-
tion. To further improve the efficiency and convergence,
RAFT [30] developed a 4D all-to-all correlation volume
with the use of a gated recurrent unit (GRU). Based on
RAFT, RAFT-3D [31] promoted the recurrent scheme into
scene flow estimation by iteratively estimating a dense field
of per-pixel SE(3) motion. Afterward, PV-RAFT [34] was
proposed to iteratively capture the point-voxel correlation
for scene flow estimation from the point cloud inputs. Dif-
ferent from the RAFT-series methods, FlowStep3D [15] and
RCP [9] iteratively optimized the correlation that gradually
aligns point clouds based on the iterative closest point (ICP)
algorithm [3, 1]. FlowStep3D [15] deployed a gated recur-
rent unit and the source frame warping for iterative updates
correlation at a single dense resolution. Similarly, RCP
[9] performed iterative point-wise optimization and subse-
quently introduced the GRU for regularization. Dong et
al. [6] introduced direct multi-body rigidity constraints to
a GRU-based recurrent neural network for robust iterative
optimization of scene flow estimation. There are several
other approaches [25, 17] that treated scene flow estimation
as solving an optimal transport problem. They typically re-
quired point-wise features to iteratively optimize the all-to-
all correlation.

Nevertheless, the existing iterative methods proceed with
the optimization only at a single resolution. To achieve ac-
ceptable accuracy, they typically optimize dense resolution,
which severely restricts the estimation efficiency. There-
fore, we introduce a multi-scale iterative optimization to
achieve high accuracy while maintaining high efficiency.

3. MSBRN Architecture

The goal of the scene flow estimation task is to estimate
3D point-wise motion vectors representing the non-rigid
transformation from two consecutive point frames sampled
from a dynamic scene. To solve this task, we propose MS-
BRN, a coarse-to-fine bidirectional recurrent architecture
with the feature-induced correlation, as shown in Figure
3. MSBRN accepts as input the consecutive source and
target frames that are represented by only 3D coordinates,
S = {si ∈ R3}Ni=1 and T = {tj ∈ R3}Mj=1, where N
and M denote the number of points in the source and target
frame, respectively. Note that, N and M are not necessarily
to be equal because of the sparsity and occlusion in a point
cloud. The expected output of MSBRN are 3D scene flow
vectors V = {vi ∈ R3}Ni=1 that describe the 3D displace-
ment for every point in the source frame aligning with the
target frame.

Similar to the previous studies [36, 4], MSBRN is imple-
mented as a coarse-to-fine architecture (Sec. 3.3) with the
assistance of two existing modules: a multi-scale feature ex-
traction module that extracts multi-scale point features and
an upsampling layer that propagates features from higher
scales to lower scales. At each upsampled scale, we deploy
a novel BGRU (Sec. 3.1) to iteratively augment correlations
and optimize scene flows. BGRU also applies a novel hy-
brid correlation (Sec. 3.2) in order to enhance the quality of
the captured correlations.

3.1. Bidirectional Gated Recurrent Unit

We propose a novel BGRU that not only optimizes cor-
relations but also augments point features of both frames
bidirectionally and iteratively in various scales, as shown
in Figure 4. In contrast, the previous methods [15, 9] that
only apply conventional recurrent units to iteratively opti-
mize only correlations for flow estimation in only one single
scale. For each specific scale l, the BGRU accepts source
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Figure 4. Structure of the bidirectional gated recurrent unit (BGRU). The proposed BGRU accepts source/target point features, flow
estimations and correlations from the previous scale as input and hidden states. The source/target point features are first bidirectionally
updated and fed to the proposed hybrid correlation for the candidate correlation generation. Subsequent GRU utilizes the candidate
correlations for iteratively updating the correlation states.

point coordinates and features Sl,0 = {(sl, f (l,0))}, target
point coordinates and features T l,0 = {(tl, g(l,0))}, corre-
lations El,0 and flow V l,0 as input as well as hidden state
variables that will be iteratively updated. After K iterations,
updated P l,K , Ql,K , El,K and V l,K are sent to the subse-
quent scale. In this section, we focus on one specific scale
and omit the notation l for clarity.
Warping: Warping enables the source points to progres-
sively approach the target frame. The estimated scene flows
of upsampling layers (for the first iteration only) or previous
iterations are immediately accumulated to the source frame,
i.e. s = vk−1 + s. The warped source points are further fed
to the subsequent feature augmentation for more accurate
correlation extraction.
Iterative Bidirectional Feature Augmentation (IBFA):
IBFA accepts as input two frames of point coordinates and
corresponding features from the previous (k − 1)-th itera-
tion, Sk−1 = {(s, fk−1)} and T k−1 = {(t, gk−1)}. For
each point in both frames, the features are augmented bidi-
rectionally for the current k-th iteration by aggregating fea-
tures from the other frame as follows:

fk = SetConv
(ti,g

k−1
i )∈Nk−1

T {(s,fk−1)}
([ti − s, gk−1

i , fk−1]), (1)

gk = SetConv
(sj ,f

k−1
j )∈Nk−1

S {(t,gk−1)}
([sj − t, fk−1

j , gk−1]), (2)

where SetConv [19] is composed of a shared multi-layer
perceptron and a maxpooling layer, NT {(s, ·)} denotes the
nearest neighbor points of s in T , subscript i, j indicate the
indices of points in the neighbor group N , and ‘[·, ·]’ de-
notes the channel concatenation operator. Note that, the

SetConv in Equation (1) and (2) share the equivalent pa-
rameters. The output are buffered as hidden states for the
subsequent iteration or scale.
Iterative Correlation Update: The bidirectionally-
augmented features are fed to the hybrid correlation extrac-
tion module (Sec. 3.2) to generate candidate correlation
features. The candidate correlations serve as the input to
a GRU in order to update the state correlation features from
the previous iteration. Formally, the correlation features up-
dated by the current iteration is denoted as:

z = σ( SetConvz
(si,ẽki )∈Nk−1

S̃
{(s,ek−1)}

([si − s, ek−1, ẽki ])), (3)

ri = σ(MLPr([si − s, ek−1, ẽki ])), (4)

êk = tanh( SetConvh
(si,ẽki )∈Nk−1

S̃
{(s,ek−1)}

([si − s, ek−1 ⊙ ri, ẽ
k
i )),

(5)

ek = (1− z)⊙ ek−1 + z ⊙ êk, (6)

where ⊙ denotes the Hadamard product.
Scene Flow Estimation: Given the updated correlation fea-
ture of each point, an MLP is followed to transform the
correlation into a flow vector. Additionally, we introduce
a residual mechanism by estimating the flow vector refine-
ment ∆Vk. The final flow estimation is then accumulated
as V k = V k−1 +∆V k.

3.2. Hybrid Correlation

Feature-induced Correlation: Instead of capturing neigh-
bor points in the conventional Euclidean space, we fetch
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neighbor points from the latent feature space in order to
acquire semantically correlative points. For instance, Fig-
ure 2 shows that the proposed correlation can capture se-
mantically similar points (front windscreen) even if they
are far away. Thus, the proposed correlation is different
from the Euclidean-based correlation that may capture se-
mantically unrelated points (bumper). Formally, given two
point sets consisted of 3-dimensional coordinates and C-
dimensional features S = {(s, f)|s ∈ R3, f ∈ RC} and
T = {(t, g)|t ∈ R3, g ∈ RC}, for each point (s, f) ∈ S,
its collected neighbor points NT {(s, f)} from T satisfy
δ(f, gi) < δ(f, gj), when ∀(ti, gi) ⊂ NT {(s, f)} and
(tj , gj) ⊂ Q\NT {(p, f)}. Note that, |NT {(s, f)}| = K
is the hyperparameter that defines the amount of the top-K
neighbor points, and δ(·, ·) is the cosine similarity measure.

After the corresponding points are collected, the features
of the collected points are further aggregated by a learnable
symmetric function. Hence, the correlation feature for each
point (p, f) ∈ P is formally denoted as:

ẽ = SetConv
(ti,gi)∈NT {(s,f)}

([ti − s, gi, f ]). (7)

Hybrid Correlation: Considering that the conventional
grouping can capture fine-grained local motion and the
proposed feature-induced grouping can capture correspon-
dence regardless of distances, we integrate the two tech-
niques to take advantage of both correlation extraction
strategies. Thus, we fuse the collected points with the
feature-induced grouping and conventional grouping as a
hybrid neighbor set NT {(s, f)} in Equation (7) for the sub-
sequent correlation aggregation.

3.3. Coarse-to-Fine Architecture

In this section, we thus introduce two existing layers [36]
to construct a coarse-to-fine network for multi-scale feature
generation and propagation.
Multi-scale Feature Extraction: The multi-scale feature
extraction follows the design that is commonly used in point
cloud processing [26, 35]. The feature extraction generates
L-level pyramid of point features, where the top level is the
input point clouds. At each level l, dense input points and
their corresponding features are first subsampled through
the furthest point sampling, which forms a sparse point
set. Then, for each subsampled sparse point, the k-nearest
neighbor groups dense points locally forming a local re-
gion for the feature extraction. Afterwards, a Pointconv [35]
layer is applied to aggregate the features from the grouped
local points through dynamic weights learned on their local
coordinates, and produced the local feature for each sparse
point.
Upsampling Layer: Since each level produces scene flows
and iteratively augmented bidirectional features and corre-
lations, we introduced the upsampling layer to propagate

these features to the following level for a denser optimiza-
tion. Following the previous works [36, 4], the upsampling
layer adopts the 3D interpolation that aggregates k nearest
neighbors with their inverse distances as weights. Specif-
ically, in the case of upsampling correlations from the l-th
level to the (l−1)-th level, the input to the upsampling layer
are l-th level’s sparse coordinates {xl

j}N
l

j=1, l-th level’s cor-

relations {elj}N
l

j=1 and (l − 1)-th level’s dense coordinates

{xl−1
i }N l−1

i=1 , where N l−1 and N l are the number of points
and N l−1 > N l. The interpolated feature for each point xl

i

in the dense (l − 1)-th level is defined as:

el−1
i =

∑k
j=1 w(x

l
j , x

l−1
i )elj∑k

j=1 w(x
l
j , x

l−1
i )

, (8)

where w(xl
j , x

l−1
i ) = 1/||xl

j − xl−1
i ||2, and k = 3 as sug-

gested by the previous studies [4, 36].

3.4. Loss Function

Following the previous studies for optical flow estima-
tion [7, 29] and scene flow estimation [32, 36, 4], we train
the proposed model in the multi-scale supervision manner.
Furthermore, we also supervise the estimations of all inter-
mediate iterations at each scale. All the estimated flows are
supervised by the ground truth with the L2 measure. Let
{vl,ki }N l

i=1 denote the scene flow vectors estimated from the
k-th iteration at the l-th level and {v̂li}N

l

i=1 denote the ground
truth scene flow vectors of the l-th scale. The training loss
is defined as:

L =

L−1∑
l=0

αl
K∑

k=1

N l∑
i=1

∥v̂li − vl,ki ∥2, (9)

where αl is the weight for scale l. The weights are α0 =
0.16, α1 = 0.08, α2 = 0.04, α3 = 0.02 by default.

4. Experiments
4.1. Experimental Settings

As shown in Fig. 3, we implemented a hierarchical
model with L = 4 scales. We used N = M = 8, 192
points as inputs. The point numbers of each scale are de-
fined as N1 = 2, 048, N2 = 512, N3 = 256, and N4 = 64.
We adopted the synthetic FlyingThings3D [22] dataset and
the real-world KITTI Scene Flow 2015 [23] dataset to eval-
uate our model. As in the previous methods, we trained
networks only on the synthetic FlyingThings3D dataset and
validated the performance on the FlyingThings3D dataset
(Sec. 4.3). Finally, we directly evaluated the model trained
on FlyingThings3D without any fine-tuning to validate the
generalization ability on the real-world KITTI dataset (Sec.
4.4). The experiments are conducted on an NVIDIA TITAN
RTX GPU with PyTorch.
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Dataset Method EPE3D (m) ↓ ACC3DS ↑ ACC3DR ↑ Outliers3D ↓ EPE2D (px) ↓ ACC2D ↑

FT3Ds

FlowNet3D [19] 0.113 0.412 0.771 0.602 5.974 0.569
HPLFlowNet [10] 0.080 0.614 0.855 0.429 4.672 0.676

PointPWC [36] 0.059 0.738 0.928 0.342 3.239 0.799
FLOT [25] 0.052 0.732 0.927 0.357 - -

HCRF-Flow [18] 0.048 0.835 0.950 0.261 2.565 0.870
PV-RAFT [34] 0.046 0.816 0.957 0.292 - -

FlowStep3D [15] 0.045 0.816 0.961 0.216 - -
RCP [9] 0.040 0.856 0.963 0.197 - -

Bi-PointFlowNet [4] 0.028 0.918 0.978 0.143 1.582 0.929
Ours 0.015 0.973 0.992 0.056 0.833 0.970

KITTIs

FlowNet3D [19] 0.177 0.374 0.668 0.527 7.214 0.509
HPLFlowNet [10] 0.117 0.478 0.778 0.410 4.805 0.593

PointPWC [36] 0.069 0.728 0.888 0.265 1.902 0.866
FLOT [25] 0.056 0.755 0.908 0.242 - -

HCRF-Flow [18] 0.053 0.863 0.944 0.179 2.070 0.865
PV-RAFT [34] 0.056 0.822 0.937 0.216 - -

FlowStep3D [15] 0.054 0.805 0.925 0.149 - -
RCP [9] 0.048 0.849 0.944 0.122 - -

Bi-PointFlowNet [4] 0.030 0.920 0.960 0.141 1.056 0.949
Ours 0.011 0.971 0.989 0.085 0.443 0.985

Table 1. Comparison of the proposed method with previous state-of-the-art methods on the non-occluded FT3Ds and KITTIs datasets. All
methods are trained only on the FT3Ds dataset.

4.2. Evaluation Measures

For a fair comparison, we adopted the same evaluation
measures that are used in the related works [10, 36, 25, 15,
18, 4].
EPE3D, EPE3Dfull (m): the main evaluation measure
measuring 3D end-point-error ∥v̂li−vli∥2 averaged over non-
occluded points and all points, respectively.
ACC3DS: the percentage of points that satisfy EPE3D <
0.05m or relative error < 5%.
ACC3DR: the percentage of points that satisfy EPE3D <
0.1m or relative error < 10%.
Outliers3D: the percentage of points that satisfy EPE3D >
0.3m or relative error > 10%.
EPE2D (px): 2D end-point-error measured by projecting
points back to the 2D image plane, which is a common mea-
sure for optical flow evaluation.
ACC2D: the percentage of points that satisfy EPE2D < 3px
or relative error < 5%.

4.3. Training and Evaluation on FlyingThings3D

Due to the challenge with labeling for dense point cloud
scenes, recent models [10, 36, 25, 15, 18, 4] only utilized
the synthetic FlyingThing3D dataset for training. The Fly-
ingThing3D [22] dataset provides 19,640 pairs of frames for
training and 3,824 pairs of frames for testing. Each frame
contains synthetic stereo and RGB-D images rendered from
virtual scenes with multiple moving objects sampled from
the ShapeNet [2] dataset. We follow the same preprocessing

that generates two subsets: FT3Do that includes occluded
points and FT3Ds that excludes the occluded points, as sug-
gested in [10, 36, 25, 4]. The consecutive input frames are
formed by randomly sampling N = 8, 192 of points from
the dataset with non-correspondence.

For training, we used the AdamW optimizer [20] with
beta1 = 0.9, beta2 = 0.999. The learning rate is initially set
as α = 0.0001 and reduced by half every 80 epochs. We
trained the model for a total of 560 epochs. The numbers of
iterations for all BGRUs are set to Ktr = 4 during training
and Kin = 4 during testing.
Results. We compared the performance of the proposed
model with other state-of-the-art approaches based on point
cloud [19, 10, 36, 25, 15, 24, 9, 4]. As presented in Table
1, the proposed method significantly outperforms all recent
state-of-the-art methods with more than 46% reduction of
estimation error under the non-occluded condition. When
compared to the related iterative methods FlowStep3D [15]
and RCP [9], our model achieves an error reduction of 62%.

4.4. Generalization on KITTI

Following the same evaluation strategy as in the recent
studies [19, 10, 36, 25, 15, 24, 4], we evaluated the gener-
alization ability of MSBRN on the real-world KITTI [23]
dataset with the model that was only trained on the syn-
thetic dataset. The KITTI dataset provides 200 scenes for
training and 200 scenes for testing. However, the dispari-
ties were missing in the testing scene and parts of the train-
ing scenes. Thus, 142 non-occluded scenes (KITTIs, re-
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Dataset Method EPE3Dfull (m) ↓ EPE3D (m) ↓ ACC3DS ↑ ACC3DR ↑ Outliers3D ↓

FT3Do

FlowNet3D [19] 0.211 0.157 0.228 0.582 0.804
HPLFlowNet [10] 0.201 0.168 0.262 0.574 0.812

FLOT [25] 0.250 0.153 0.396 0.660 0.662
PointPWC [36] 0.195 0.155 0.416 0.699 0.638
OGSFNet [24] 0.163 0.121 0.551 0.776 0.518

Bi-PointFlowNet [4] 0.102 0.073 0.791 0.896 0.274
Ours 0.080 0.053 0.836 0.926 0.231

KITTIo

FlowNet3D [19] 0.183 - 0.098 0.394 0.799
HPLFlowNet [10] 0.343 - 0.103 0.386 0.814

FLOT [25] 0.130 - 0.278 0.667 0.529
PointPWC [36] 0.118 - 0.403 0.757 0.496
OGSFNet [24] 0.075 - 0.706 0.869 0.327

Bi-PointFlowNet [4] 0.065 - 0.769 0.906 0.264
Ours 0.044 - 0.873 0.950 0.208

Table 2. Comparison of the proposed method with previous state-of-the-art methods on the occluded FT3Do and KITTIo datasets. All
methods are trained only on the FT3Do dataset.

Figure 5. Qualitative results of MSBRN on the non-occluded KITTI dataset. Points are colored to indicate points as from source frame,
target frame or as MSBRN estimated points (source frame + scene flow).

moving occluded points) and 150 occluded scenes (KITTIo,
remaining occluded points) were available for evaluation
with raw point clouds. We removed ground points by
height < 0.3 m as suggested by the previous approaches
[19, 10, 36, 25, 15, 24] for a fair comparison.
Results. We compared the generalization ability of MS-
BRN with the existing state-of-the-art methods based on
point cloud [19, 10, 36, 25, 15, 24, 9, 4]. As shown in Table
1 and 2, our proposed method represented the state-of-the-
art generality when the model is trained on the synthetic
datasets and tested on and real-world KITTI dataset. Our
method significantly outperforms other methods by a large
margin. Focusing on the main EPE3D measure, our method
outperforms the recent state-of-the-art with 63% of error re-
duction on the non-occluded scenes. Compared to the sim-
ilar iterative methods FlowStep3D [15] and RCP [9], our
method shows over 77% of error reduction. Moreover, our

model shows the superior generality on the occluded scenes,
as shown in Table 2. Our model shows an over 32% reduc-
tion of EPE3Dfull.

4.5. Ablation Study

Number of Iterations. The iteration number of the BGRU
is a significant factor that affects the estimation accuracy.
It is worth noting that the iteration configuration can be
different between the training stage (Ktr) and the evalua-
tion stage (Kin). Therefore, we trained and evaluated our
method with the different iteration numbers. Note that, all
levels proceed with the same iteration number as config-
ured. Table 3 reports the performance comparison between
models with the different numbers of BGRU iterations. The
result shows that iteratively adopting the proposed BGRU
effectively reduces the estimation error on both the syn-
thetic dataset and the real-world dataset. The model delivers
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Ktr
EPE3D (m) @ Kin

1 2 3 4 5 6

FT
3D

s

1 0.026 0.071 0.101 0.149 0.204 0.281
2 0.033 0.021 0.030 0.037 0.046 0.049
3 0.038 0.020 0.016 0.016 0.016 0.018
4 0.040 0.024 0.017 0.015 0.015 0.015
5 0.049 0.027 0.019 0.015 0.014 0.014

K
IT

T
I s

1 0.038 0.129 0.112 0.146 0.172 0.230
2 0.039 0.022 0.040 0.069 0.057 0.076
3 0.039 0.021 0.015 0.014 0.013 0.013
4 0.040 0.022 0.015 0.011 0.010 0.009
5 0.057 0.031 0.021 0.017 0.013 0.012

Table 3. Comparison on the EPE2D metric between different train-
ing/inference iteration configurations. The model is first trained
under a specific Ktr on the FT3Ds dataset and then evaluated with
various Kins on both FT3Ds and KITTIs dataset.

Correlation type Euclidean Hybrid Feature
# neighbor (dist : feat) (32 : 0) (16 : 16) (0 : 32)

EPE3D (m)
FT3Ds 0.019 0.016 0.022
KITTIs 0.018 0.015 0.036

Table 4. Comparison between different numbers of the neighbor
points for the correlation extraction. ’Dist’ and ’feat’ indicate the
Euclidean distance-based neighbor points and the feature-induced
neighbor points, respectively.

IBFA HC GRU
FT3Ds KITTIs

EPE3D (m) EPE3D (m)
× × × 0.029 0.030√

× × 0.025 0.025
×

√
× 0.029 0.038√

×
√

0.019 0.018√ √
× 0.021 0.018

×
√ √

0.027 0.033√ √ √
0.016 0.015

Table 5. Ablations of different components. IBFA, HC and GRU
represent whether the iterative bidirectional feature augmenta-
tion, hybrid correlation and GRU are deployed in the model, re-
spectively. The iterative models are trained and evaluated with
Ktr=Kin=3.

the optimal estimation performance when Ktr=4. More-
over, the model also demonstrated that the performance is
saturated at Ktr=5. On the other hand, we observe that
the model keeps improving for a few more iterations even
though the inference Kin is larger than the training when
the training Ktr ≥3. However, the improvement is negligi-
ble thus we stop evaluating at Kin=Ktr.
Hybrid Correlation. As mentioned in Section 3.2, the hy-
brid correlation consists of the Euclidean distance-based
correlation and the proposed feature-induced correlation,
thus can benefit from both of their advantages. To val-

Method Runtime Method Runtime
PV-RAFT [34] 781.1ms Ours (Kin=2) 209.6ms

FlowStep3D [15] 972.7ms Ours (Kin=3) 287.6ms
RCP [9] 2854.6ms Ours (Kin=4) 365.8ms

Table 6. Runtime comparison of iterative methods. The results are
evaluated on a single TITAN RTX GPU. PV-RAFT, FlowStep3D
and RCP are evaluated with their optimal iteration configurations
which are 32, 4 and 14, respectively.

idate the effectiveness of the hybrid correlation (16:16),
we implemented two ablation experiments: a model with
only the Euclidean distance-based correlation (32:0) and a
model with only the proposed feature-induced correlation
(0:32). Note that, the numbers in brackets indicate the num-
ber of Euclidean neighbor points and the number of feature-
induced neighbor points, respectively. The total number of
neighbor points is fixed at 32 for all experiments for a fair
comparison. As demonstrated in Table 4, introducing our
feature-induced correlation in the conventional Euclidean
distance-based approaches can boost performance. How-
ever, the proposed feature-induced correlation must work
with the Euclidean distance-based correlation. It is be-
cause the feature-induced correlation can capture semanti-
cally similar points from other instances located far away.
Additionally applying the Euclidean distance-based corre-
lation can introduce a proper constraint on the range.
Analysis of different BGRU configurations. To verify the
contributions of the proposed components in the BGRU,
we incrementally adopted the IBFA, hybrid correlation, and
GRU based on a baseline model. Note that, the baseline
model replaces IBFA and the hybrid correlation with BFP
[4] and the distance-based correlation, respectively, and re-
moves GRU. As shown in Table 5, IBFA, hybrid correlation
and GRU all contribute considerably to the effective esti-
mation. In particular, IBFA improves the accuracy by 0.5
mm on KITTI. Furthermore, using the hybrid correlation
and GRU mechanism further reduces the estimation error
by 0.7 mm and 0.3 mm on KITTI, respectively. However,
Table 5 also reveals that the hybrid correlation and GRU
must cooperate with IBFA to get convincing improvement.

4.6. Runtime

We compare the running time of our proposed methods
to other state-of-the-art iterative approaches [34, 15, 9] in
Table 6. All methods are measured on a single NVIDIA
TITAN RTX GPU. Table 6 and 1 show that our proposed
method outperforms by a large margin in terms of run-
ning time while achieving superior accuracy and generality.
Even under Kin=2, our method also presents outperformed
accuracy with faster speed compared to the existing iterative
approaches.
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5. Conclusion
This paper presented MSBRN, a novel recurrent bidirec-

tional architecture that is capable of iteratively estimating
progressively accurate multi-scale 3D scene flows from two
consecutive point cloud frames. Our proposed network also
utilized the hybrid correlation for improved flow estimation
performance. Experimental results showed that our network
significantly outperforms previous state-of-the-art methods
on two challenging benchmarks. The proposed method also
showed superior efficiency compared to existing iterative
state-of-the-art. Extensive experiments also demonstrated
the excellent effectiveness of the novel components pro-
posed in this work.
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