DALL-EVAL: Probing the Reasoning Skills and Social Biases of Text-to-Image Generation Models

Jaemin Cho Abhay Zala Mohit Bansal
UNC Chapel Hill
{jmcho, azala, mbansal}@cs.unc.edu

Abstract

Recently, DALL-E [45], a multimodal transformer language model, and its variants including diffusion models have shown high-quality text-to-image generation capabilities. However, despite the realistic image generation results, there has not been a detailed analysis of how to evaluate such models. In this work, we investigate the visual reasoning capabilities and social biases of different text-to-image models, covering both multimodal transformer language models and diffusion models. First, we measure three visual reasoning skills: object recognition, object counting, and spatial relation understanding. For this, we propose PAINTSKILLS, a compositional diagnostic evaluation dataset that measures these skills. Despite the high-fidelity image generation capability, a large gap exists between the performance of recent models and the upper bound accuracy in object counting and spatial relation understanding skills. Second, we assess the gender and skin tone biases by measuring the gender/skin tone distribution of generated images across various professions and attributes. We demonstrate that recent text-to-image generation models learn specific biases about gender and skin tone from web image-text pairs. We hope our work will help guide future progress in improving text-to-image generation models on visual reasoning skills and learning socially unbiased representations.¹

1. Introduction

Generating images from textual descriptions based on machine learning is an active research area [21]. Recently, DALL-E [45], a 12B parameter transformer [60] trained to generate images from text, has shown a diverse set of generation capabilities, including creating anthropomorphic objects, editing images, and rendering text, which previous models have never shown. Even though DALL-E and its variants have gained much attention, there has not been a concrete quantitative analysis of what they can do.

Most works have only evaluated their text-to-image generation models with two types of automated metrics [21]: 1) image-text alignment [69, 30, 26] - whether the generated images align with the semantics of the text descriptions; 2) image quality [52, 25] - whether the generated images look similar to images from training data. Hence, to provide novel insights into the abilities and limitations of text-to-image generation models, we propose to evaluate their visual reasoning skills and social biases, in addition to the previously proposed image-text alignment and image quality metrics. Since the original DALL-E checkpoint is not available, in our experiments, we choose four popular text-to-image generation models that publicly release their code and checkpoints: DALL-Esmall [64], minDALL-E [33], Stable Diffusion [49], and Karlo [35].

First, we introduce PAINTSKILLS, a compositional di-
agnostic evaluation dataset that measures three fundamental visual reasoning capabilities: object recognition, object counting, and spatial relation understanding. To avoid statistical bias that hinders models from learning compositional reasoning [23, 1, 15, 17], for PAINTSKILLS, we create images based on a 3D simulator and control our images to have a uniform distribution over objects and relations. To calculate the score for each skill, we employ a widely-used DETR object detector [11] on the PAINTSKILLS dataset that can detect objects on the test split images with very high oracle accuracy. We also show that our object detection-based evaluation is highly correlated with human judgment. Then we measure whether the objects in the images satisfy the skill-specific semantics of the input text (see Fig. 2 for examples). Our experiments show that recent text-to-image generation models perform well at object recognition by generating high-fidelity objects but struggle at object counting and spatial relation understanding, with a large gap between the model performances and upper bound accuracy.

Second, we introduce social bias evaluation for text-to-image generation models. Recent work has reported social biases in vision-and-language datasets and models learned from them [50, 6]. We evaluate whether models trained on such datasets show bias when generating images from text. For this, we generate images of people with different professions that should not be related to a specific gender or skin tone (e.g., nurse, doctor, teacher). Then, we detect gender, skin tone, and attributes from the generated images. We quantify biases by analyzing the distribution of the detected gender/skin tones and their relation to various professions/attributes. Our quantitative study shows that recent text-to-image models learned certain biases when generating images from some text prompts (e.g., receptionist \rightarrow female / plumber \rightarrow male / female \rightarrow wearing skirts / male \rightarrow wearing suits). For automated gender and attribute detection, we use BLIP-2 [36] by asking visual questions (e.g., “the person looks like a male or a female?”). For automated skin tone detection, we detect faces from images with FAN [8] and estimate illumination and facial albedo with TRUST [20]. Then we calculate Individual Typology Angle (ITA) [13] and find the closest skin tone in the MST scale [40]. Our final automated detection methods are highly correlated with human evaluation.

Our contributions can be summarized as follows: (1) We introduce PAINTSKILLS, a diagnostic evaluation dataset for text-to-image generation models, which allows carefully controlled measurement of the three fundamental visual reasoning skills. We show that recent models are relatively good at object recognition (generating a single object) skill, but a large gap exists between the performance of recent models and the upper bound accuracy in object counting and spatial relation understanding skills. (2) We introduce a gender and skin tone bias assessment based on automated and human evaluation. We show that recent models learn specific gender/skin tone biases from web image-text pairs.

Overall, our observations suggest that current text-to-image generation models are good initial contributions, but have several avenues for future improvements in learning challenging visual reasoning skills and understanding social biases. We hope that our evaluation work will allow the community to systemically measure such progress.

2. Related Works

Text-to-Image Generation Models. [38, 48] pioneered deep learning-based text-to-image generation. [48] introduced the GAN [22] framework to improve the visual reality of images. [71, 69] proposed to generate images in multiple stages by gradually increasing image resolution. Recently, the multimodal language model and diffusion model have been widely used for this task. X-LXMERT [14] and DALL-E [45] introduce multimodal transformer language models that learn the distribution of the sequence of discrete image codes given text input. Denoising diffusion models [54, 29, 49, 41] is another widely used model type in which a text-conditional denoising autoencoder iteratively updates noisy images into clean images. Recent multimodal language models (e.g., Parti [70] and MUSE [12]) and diffusion models (e.g., Stable Diffusion [49], DALL-E 2 [44], and Imagen [51]) deliver a high level of photorealism in a wide range of domains.

Metrics for Text-to-Image Generation. The text-to-image community has commonly used two types of automated evaluation metrics: image quality and image-text alignment. For image quality, Inception Score (IS) [52] and Fréchet Inception Distance (FID) [25] are the metrics most commonly used. They use the features of a pretrained image classifier such as Inception v3 [57] to measure the diversity and visual reality of the generated images. These metrics use a classifier pretrained on ImageNet [18] that mostly contains single-object images. Therefore, they are not suitable for more complex datasets [21]. To measure image-text alignment, metrics based on retrieval, captioning, and object detection models have been proposed. R-precision [69] evaluates the multimodal semantic relevance by the retrieval score of the original text given generated images with a pretrained image-to-text alignment model. [30, 26] employ an image caption generator to obtain captions for generated images and report language evaluation metrics such as BLEU [42] and CIDEr [61]. Semantic Object Accuracy (SOA) [26] measures whether an object detector can detect an object described in the text from a generated image. Evaluation based on R-precision and captioning can fail when different captions correctly describe the same image [26, 21]. In addition, unlike object detec-

\[2\) An image including 2 apples can be described as, “there are 2 apples”
Figure 2. Illustration of the visual reasoning evaluation process with PAINTSKILLS (Sec. 3). We generate images from text prompts that require three different visual reasoning skills. Based on object detection results, we evaluate the visual reasoning capabilities of models by checking whether the generated images align with input text prompts. The example images are generated with Stable Diffusion.

3. PAINTSKILLS: A Diagnostic Evaluation Dataset for Compositional Visual Reasoning Skills

We introduce PAINTSKILLS, a diagnostic evaluation dataset for compositional visual reasoning skills of text-to-image generation models. Inspired by the recent vision-language skill-concept analysis of Whitehead et al. [66], we define three visual reasoning skills: object recognition, object counting, and spatial relation understanding. To evaluate each skill, we calculate accuracy based on the detection results of the generated images, as illustrated in Fig. 2. In the following, we explain the skill definitions (Sec. 3.1) and the data collection process (Sec. 3.2).

3.1. Skills

Object Recognition. Given a text describing a specific object class (e.g., an airplane), a model generates an image that contains the intended class of object.

Object Counting. Given a text describing M objects of a specific class (e.g., 3 dogs), a model generates an image that contains M objects of that class.

Spatial Relation Understanding. Given a text describing two objects having a specific spatial relation (e.g., one is right to another), a model generates an image including two objects with the relation.

There are other skills for image generation that the current three skills do not cover (e.g., text rendering). In this work, we focus on introducing skill-specific evaluation with object control skills fundamental to more complex skills.
We develop the simulator using Unity4 engine. The simulator takes a list of scene configurations and renders images from them. Each scene is represented as a list of objects, a text prompt, and a background, where each object has its own attributes, including class, location, and scale. Attributes can be specified or not. If an attribute is not specified, the simulator will use a default value or random sample from a uniform distribution while satisfying the other specified conditions. Backgrounds are sampled from 13 different images that do not contain object classes used in visual reasoning skill evaluation. We use 15 frequent object classes in MS COCO37: \{person, dog, airplane, bike, car, \ldots\}, object count range: \{1, 2, 3, 4\}, and 4 spatial relations: \{above, below, left, right\}.

As shown in Fig. 3, the simulator randomly assigns the object states (location, rotation, pose) and backgrounds, while satisfying the condition ‘car is right to dog’. We generate 23,250/21,600/13,500 and 2,325/2,160/2,700 scenes for train and test splits of object recognition/object counting/spatial relation understanding skills, respectively. In Table 1, we provide sample images and corresponding text prompts for each skill in PAINTSKILLS. The text prompts are generated by composing keywords with a template.

Our simulator can be easily extended with custom objects and attributes. In the appendix, we provide the full prompt templates and detailed scene configurations including parameters, objects, and attributes.

Table 1. Example images, templates, and prompts of PAINTSKILLS. See appendix for more examples.

3.2. PAINTSKILLS Dataset Collection

The widely used visual question answering datasets such as VQA2, 23 and GQA31 are created by first collecting images, then collecting question-answer pairs from the images. However, since a few common objects dominantly appear in the image dataset, such data collection process results in a dataset with a highly skewed distribution towards a few common objects, questions, and answers. This often causes models trained on the datasets to depend on statistical bias instead of the desired compositional reasoning process23, 1, 15, 17. PAINTSKILLS addresses this problem by explicitly controlling the statistical bias between objects and input text. We collect text-image pairs for PAINTSKILLS in three steps: (1) We define scene configurations for each skill, in which the objects, attributes (e.g., count), and relations are uniformly distributed. (2) We generate text prompts by creating templates with objects, numbers, and spatial relations. (3) We generate images from the scene configurations using a 3D simulator.

4. Evaluations

We evaluate text-to-image generation models on two new criteria: visual reasoning skills (Sec. 4.1) and social biases (Sec. 4.2).

4.1. Visual Reasoning Skill Evaluation

As illustrated in Fig. 2, we evaluate models with three visual reasoning skills: object recognition (object), object counting (count), and spatial relation understanding (spatial). Following26, we evaluate the skills based on how well an object detector can detect the object described in the input text. For each skill, we train a DETR11 object detector. We initialize DETR parameters from the official checkpoint with ResNet10124 backbone trained on the MS COCO37 train 2017 split. In Table 2, we show the accuracy of DETR on the test split of each skill dataset, which is the upper bound performance. We also provide human evaluation results showing our proposed skill metrics align with human perception in Table 3.

Object Recognition. We evaluate the skill with average accuracy on \(N\) test images of whether an object detector correctly identifies the target class from the generated
images: \(\frac{1}{N} \sum_{i}^{N} 1(o^{Det(i)} = o^{GT(i)} \text{ and } p^{Det(i)} > p^{th})\),
where \(o^{Det(i)}\) is a class that an object detection model predicts, \(p^{Det(i)}\) is the classification confidence and \(o^{GT(i)}\) is the ground-truth target object class.

Object Counting. We evaluate the skill with the average accuracy of whether an object detector correctly identifies the \(M\) objects of the target class from the generated images:
\[
\frac{1}{N} \sum_{i}^{N} 1(o^{Det(i)} = o^{GT(i)}, \forall j \in \{1...M(i)\})
\]
where \(o^{det(i)}\) is the class of the \(j\)-th object that an object detection model predicts, \(o^{GT(i)}\) is target object class, and \(M(i)\) is the number of objects for the \(i\)-th image.

Spatial Relation Understanding. We evaluate the skill with the average accuracy of whether an object detector correctly identifies both target object classes and pairwise spatial relations between objects:
\[
\frac{1}{N} \sum_{i}^{N} \left(1(o^{Det(i)} = GT(i) \text{ and } o^{Det(i)} = GT(i))\right)
\]
where \(o^{Det(i)}\) and \(o^{GT(i)}\) are the relation between two objects in the \(i\)-th image. We decide the spatial relation to be one of the four relations \{above, below, left, right\} based on the directions between two object positions from their 2D coordinates.

4.2. Social Bias Evaluation

As shown in Fig. 4, we measure the gender and skin tone biases of text-to-image generation models. For this, we first generate images from diagnostic prompts (Sec. 4.2.1), detect gender, skin tone, and attributes from the images (Sec. 4.2.2 and Sec. 4.2.3), and measure how they are skewed from an unbiased uniform distribution (Sec. 4.2.4).

4.2.1 Image Generation with Diagnostic Prompts

We create diagnostic prompts by composing a gender \(G \in \{\text{a man, a woman, a person}\}\) and a profession \(P \in \{\text{accountant, engineer, ...}\}\) (in total 83), using a template "a person who works as a/an \(P\)". We also include three prompts without profession (just "\(G\)"), making 252 prompts (=3 \(\times\) 83 + 3) in total; see appendix for the full list. The prompts starting with ‘a man/woman’ would reveal the bias of certain genders, and the prompts starting with ‘a person’ would reveal the bias of certain professions. We sample 9 images from a text-to-image generation model for each diagnostic prompt. From the generated images, we detect gender, skin tone, and attributes using automated detection models and verify the reliability of detection models with human evaluation (see appendix).

4.2.2 Detection Categories

Gender. For gender bias analysis, we use two gender categories: \{\text{male, female}\}. A wide range of genders is beyond the scope of finite categories [32]. However, even humans cannot reliably estimate the gender of other people across a wide spectrum of gender categories based only on appearance. Hence, following concurrent work [72, 3], we limit our gender categorization to binary for the current study, where we focus on exposing different types of bias in text-to-image generation models.

Skin Tone. Next, our skin tone analysis uses the Monk Skin Tone (MST) Scale [40], which transforms the continuous skin tone spectrum into 10 tones. Such fine-grained skin tone scales can better reflect a diversity of communities than binary categorizations such as ‘light’ and ‘dark’ skin. Although one may categorize people into racial categories (e.g., Black, White, etc.), race is not a biological concept and should be understood as a socially constructed and political concept [16, 7]. Because race is not naturally inherent, fixed, or mutually exclusive [7, 46], inferring one’s racial identity from appearance and assuming that one’s race falls into a single category could lead to an inaccurate inference of one’s racial identity.

Attribute. Lastly, we analyze the 15 attributes detected to measure the difference in the presentation of different genders, skin tones, and professions.
4.2.3 Automated Detection and Human Evaluation

We detect gender, skin tone, and attributes from the generated images using automated detection models and verify their reliability with human evaluation. We experiment with different detection models for gender, skin tone, and attributes to compare their accuracy and reliability. The following describes how we use the finally chosen detection models. See appendix for a detailed comparison between models and human evaluation.

Gender Detection. We use BLIP-2 [36] to detect gender in the generated images, by asking the question "the person looks like a male or a female?" and then detect whether BLIP-2 returns male/female in the answer. In our experiments, BLIP-2 showed less bias and higher accuracy than CLIP (ViT/B-32) [43] in COCO bias testing [53] and Adience gender dataset [19] (82% BLIP-2 vs. 66% CLIP; see appendix for more details).

Skin Tone Detection. We use FAN [8] to detect facial landmarks in the generated images, and use TRUST (BalancedAlb checkpoint) [20] to estimate the illumination of the images and albedo UV map of the facial crops. We take illumination into account when detecting skin tone, as raw pixel values are a function of both the scene lighting and the subject’s true skin tone [53]. On the detected facial albedo UV maps, we calculate the Individual Typology Angle (ITA) [13] based on L* (lightness) and B* (yellow/blue) components of the CIE-L*a*b* colorspace and find the closest skin tone in MST scale (1-10) [40]. In our experiments, using facial landmarks and addressing illumination improves the accuracy of skin tone detection (see appendix for more details).

Attribute Detection. We give BLIP-2 an image and a question, "Is the person wearing A?" for each attribute A (e.g. "a suit", "jeans") and check if the model responds with "yes"). In our experiments, BLIP-2 is more accurate than CLIP-based classification [72] in attribute detection (92% BLIP-2 vs. 79% CLIP; see appendix for details).

4.2.4 Measuring Bias: Average and Variance

From the detection results, we obtain distributions for gender (binary), skin tone (10-way categorical), and attribute (binary for each item). To show to which gender, skin tone, and attribute category the distribution is skewed, we report the average value of each bias category. To compute the overall bias distribution, we use mean absolute deviation (MAD) that measures the distance between detected gender/skin tone category/attribute distributions and unbiased uniform distribution: \[\frac{1}{N} \sum_{i=1}^{N} |p_i - \bar{p}|, \] where \(p_i \in [0, 1] \)

Table 2. DETR evaluation on images generated from the T2I models finetuned on PaintSkills.

<table>
<thead>
<tr>
<th>Evaluator</th>
<th>Images</th>
<th>Skill Accuracy (%) (†)</th>
</tr>
</thead>
<tbody>
<tr>
<td>DETR</td>
<td>GT (oracle)</td>
<td>100.0 97.8 96.2 98.0</td>
</tr>
<tr>
<td></td>
<td>GT shuffled (random)</td>
<td>6.3 1.7 0.3 2.8</td>
</tr>
<tr>
<td></td>
<td>DALL-E_{Small}</td>
<td>57.5 18.2 2.4 26.0</td>
</tr>
<tr>
<td></td>
<td>minDALL-E</td>
<td>89.9 47.5 50.7 62.7</td>
</tr>
<tr>
<td></td>
<td>Stable Diffusion</td>
<td>96.2 37.8 7.9 47.3</td>
</tr>
</tbody>
</table>

Table 3. Human and DETR evaluation on PaintSkills. For each skill, we sample 50 images, collecting 3x50 = 150 images for each model.

5. Experiments and Results

We introduce the evaluated text-to-image generation models in Sec. 5.1, then show the evaluation results of visual reasoning skills (Sec. 5.2) and social biases (Sec. 5.3).

5.1. Evaluated Models

Since the pretrained checkpoints of the original DALL-E model have not been released at the time of this analysis, we experiment with two different publicly available implementations of DALL-E: DALL-E_{Small} [64] and minDALL-E [33]. The models consist of a discrete VAE (dVAE) [34, 59, 47] that encodes images with grids of discrete tokens and a multimodal transformer that learns the joint distribution of text and image tokens. We also experiment with Stable Diffusion v1.4 [49] and Karlo [35], recent state-of-the-art diffusion models that publicly released their checkpoints. As Karlo has not released its training code, we use it only for social bias evaluation. We provide more details about each model in the appendix.

5.2. Visual Reasoning Skill Results

Object Detector Accuracy. In the top rows of the Table 2, we show the visual reasoning accuracy on the ground-truth
Skills	Object Recognition	Object Counting	Spatial Relation Understanding
Prompts | ‘a dog’ | ‘3 dogs’ | ‘2 bicycles’ | ‘a suitcase is left to a person’ | ‘an umbrella is right to a stop sign’

GT

DALL-E Small

minDALL-E

Stable Diffusion

Table 4. Images generated by three text-to-image generation models finetuned on PAINTSKILLS. Objects detected from the images are shown in colored bounding boxes.

Figure 5. Detailed analysis of count and spatial skills of 3 models, in terms of (a) per-split and (b) per-task accuracy.

(GT) PAINTSKILLS images and randomly shuffled GT images. With a high average oracle accuracy of 98.0%, we expect our evaluation to serve as good automated metrics for visual reasoning skills. The low average accuracy of randomly shuffled GT images (2.8%) indicates that a model cannot achieve a high score on PAINTSKILLS without correct placement of objects.

Which model is good at which skill? Table 2 shows that Stable Diffusion achieves the highest accuracy of 96.2% in object skill. This could be explained by its high-fidelity image generation based on the largest training data (5B) and highest resolution (512x512). However, in count and spatial skills, minDALL-E achieves better accuracy than Stable Diffusion. As shown in Table 4, even though Stable Diffusion could generate high-fidelity objects, the model often generates more (5 instead of 3 dogs) or fewer (1 instead of 2 bicycles) objects than the number described in the prompt. Likewise, Stable Diffusion often misses an object (person, umbrella) described in prompts for spatial skill. Overall, a huge gap exists between the performance of all models and the upper bound accuracy on count/spatial skills, indicating a large room for improvement.

Fine-grained Skill Analysis. Fig. 5 (a) shows the per-split accuracy of count and spatial skills. In count skill, the models score lower accuracy with prompts with more objects. In spatial skill, the models achieve similar accuracy for all four spatial relations. Fig. 5 (b) shows the per-task accuracy of the two skills. In count skill, a model needs to 1) generate the correct number of objects and 2) ensure all objects are in the right classes. For all three models, the accuracy difference between 1) and 1) + 2) is small, indicating that the bottleneck for this task is 1) generating the right number of objects rather than 2) generating the correct objects. In spatial skill, a model needs to 1) generate two right objects of the right classes and 2) satisfy the given spatial relation. Stable Diffusion shows a larger drop between 1) and 1) +
Figure 6. Gender, skin tone, and attribute detection results with automated and expert human evaluation. The images are generated by the Stable Diffusion model, using the gender/skin tone-neutral prompts (e.g., “a person who works as a biologist”). For gender estimation, both automated detection and human evaluation agreed on all examples here. For attribute and skin tone estimation, automated detection and human annotation are closely aligned in most cases. The detection results are presented in order of top-left → top-right → bottom-left → bottom-right. M: Male, F: Female, Y: Yes, N: No.

Table 5. PAINTSKILLS DETR-based accuracy of minDALL-E and Stable Diffusion v1.4 with different scales of training data.

<table>
<thead>
<tr>
<th>Training data</th>
<th>Model</th>
<th>Skill Accuracy (%) (↑)</th>
<th>Object</th>
<th>Count</th>
<th>Spatial</th>
<th>Avg.</th>
</tr>
</thead>
<tbody>
<tr>
<td>100%</td>
<td>minDALL-E</td>
<td>89.9</td>
<td>47.5</td>
<td>50.7</td>
<td>62.7</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Stable Diffusion</td>
<td>96.2</td>
<td>37.8</td>
<td>7.9</td>
<td>47.3</td>
<td></td>
</tr>
<tr>
<td>50%</td>
<td>minDALL-E</td>
<td>90.1</td>
<td>49.4</td>
<td>53.3</td>
<td>64.3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Stable Diffusion</td>
<td>96.0</td>
<td>42.2</td>
<td>7.6</td>
<td>48.6</td>
<td></td>
</tr>
<tr>
<td>10%</td>
<td>minDALL-E</td>
<td>90.8</td>
<td>50.9</td>
<td>38.2</td>
<td>60.0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Stable Diffusion</td>
<td>94.2</td>
<td>37.9</td>
<td>8.9</td>
<td>47.0</td>
<td></td>
</tr>
</tbody>
</table>

Table 5. PAINTSKILLS DETR-based accuracy of minDALL-E and Stable Diffusion v1.4 with different scales of training data.

2) accuracy, indicating that differentiating the four spatial relations is the bottleneck for this model.

Human Evaluation. To verify if our DETR-based evaluation aligns with human perception, we ask a human expert to evaluate the images generated from the models fine-tuned on PAINTSKILLS. The expert evaluated 150 images for each skill (3 models x 50 images). In Table 3, we find that DETR-based evaluation achieves similar accuracy with the human evaluation in all three models, and relative performance between models is the same in both evaluations.

Does PAINTSKILLS have enough finetuning data? As evaluation with PAINTSKILLS involves finetuning, we experiment with finetuning with different numbers of training data to see whether text-to-image generation models see enough training examples to learn skills and avoid domain gaps (e.g., real vs. synthetic images). Table 5 shows that model performances between 100% and 50% of the data are similar, indicating that PAINTSKILLS training dataset is large enough for the models to adapt.

5.3. Social Bias Results

As described in Sec. 4.2 and Fig. 4, we generate images with text-to-image generation models from diagnostic prompts (e.g., “a person who works as a nurse”). In Fig. 6, we show examples of gender, skin tone, and attribute detection based on automated methods and human annotators. Please see appendix for our human evaluation of the accuracy and reliability of automated detectors.

Gender Bias. Table 6 shows the per-profession and average gender bias of three models. While all three models have an overall tendency to generate male images, models have different gender biases in different professions. For example, from ‘Singer’ prompts, minDALL-E tends to generate more male images, whereas and Karlo and Stable Diffusion tend to generate more female images.

The ‘gender’ column of Table 8 column shows that minDALL-E achieves lower MAD than Karlo and Stable Diffusion, indicating that Karlo and Stable Diffusion have a stronger tendency to generate images of a specific gender from gender-neutral prompts than minDALL-E.

Table 9 compares the attribute presence for gender prompts. All three models tend to generate skirts only for woman prompts, and tend to generate suit/jacket/tie more frequently for man prompts.

Skin Tone Bias. Table 7 shows three models’ per-profession/average skin tone bias. Unlike the gender bias

6For social bias analysis, we only experiment with images from minDALL-E, Stable Diffusion, and Karlo, because we find that the visual quality of images from DALL-E small is highly distorted and does not provide meaningful semantics.
results in Table 6, where different professions correlate differently with genders, all three models tend to generate images with similar skin tones for all professions. All models generate tones around 5 and 6, indicating very light and dark skin tones are marginalized from the learned representation of the models. See appendix for the skin tone analysis per attributes.

The ‘skin tone’ column of Table 8 shows that all three models achieve similar MAD, while minDALL-E achieves the lowest value. The MAD of \(N\)-hot distributions of 10-category of are as follows: \(\text{MAD}(1\text{-hot}) = 0.18, \text{MAD}(2\text{-hot}) = 0.16, \text{MAD}(3\text{-hot}) = 0.14, \ldots, \text{MAD}(10\text{-hot}=\text{uniform}) = 0 \). As the models show MAD between 0.16 and 0.18, their skin tone distributions are similar to 1-hot and 2-hot distributions with a concentration on the MST scales of 5 and 6.

6. Conclusion

We propose two new evaluation aspects of text-to-image generation: visual reasoning skills and social biases. For visual reasoning skills, we introduce PAINTSKILLS, a compositional diagnostic evaluation dataset designed to measure three skills: object recognition, object counting, and spatial relation understanding. Our experiments show that recent text-to-image models perform better in recognizing objects than object counting and understanding spatial relations, while a large gap exists between the model performances and upper bound accuracy in the latter two skills. We also show that the models have learned specific gender/skin tone biases from web image-text pairs. We hope our evaluation provides novel insights for future research on learning challenging visual reasoning skills and understanding social biases.

Acknowledgments

We thank Heesoo Jang, Peter Hase, Hyounghun Kim, Adyasha Maharana, and Yi-Lin Sung for their helpful comments. This work was supported by ARO Award W911NF2110220, DARPA MCS Grant N66001-19-2-4031, ONR Grant N00014-23-1-2356, and a Google Focused Research Award. The views, opinions, and/or findings contained in this article are those of the authors and not of the funding agency.
References

[8] Adrian Bulat and Georgios Tzimiropoulos. How far are we from solving the 2d & 3d face alignment problem? (and a dataset of 230,000 3d facial landmarks). In International Conference on Computer Vision, 2017. 2, 6

[12] Huwien Chang, Han Zhang, Jarred Barber, AJ Maschiotto, Jose Lezama, Lu Jiang, Ming-Hsuan Yang, Kevin Murphy, William T. Freeman, Michael Rubinstein, Yuanzhen Li, and Dilip Krishnan. Muse: Text-To-Image Generation via Masked Generative Transformers. pages 1–22, 2023. 2

[18] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. ImageNet: A Large-Scale Hierarchical Image Database. In CVPR, 2009. 2

[38] Elman Mansimov, Emilio Parisotto, Jimmy Lei Ba, and Ruslan Salakhutdinov. Generating Images from Captions with Attention. In *ICLR*, 2016. 2

[40] Ellis Monk. Monk Skin Tone Scale. https://skintone.google, 2022. 2, 5, 6, 9

[70] Jiahui Yu, Yuanzhong Xu, Jing Yu Koh, Thang Luong, Gunjan Baid, Zirui Wang, Vijay Vasudevan, Alexander Ku, Yinfei Yang, Burcu Karagol Ayan, Ben Hutchinson, Wei Han, Zarana Parekh, Xin Li, Han Zhang, Jason Baldridge, and Yonghui Wu. Scaling Autoregressive Models for Content-Rich Text-to-Image Generation. Transactions on Machine Learning Research, 2022. 2

[71] Han Zhang, Tao Xu, Hongsheng Li, Shaoting Zhang, Xiaogang Wang, Xiaolei Huang, and Dimitris Metaxas. StackGAN: Text to Photo-realistic Image Synthesis with Stacked Generative Adversarial Networks. In ICCV, 2017. 2

[73] Dora Zhao, Angelina Wang, and Olga Russakovsky. Understanding and evaluating racial biases in image captioning. In International Conference on Computer Vision (ICCV), 2021. 3