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Abstract

Recently, DALL-E [45], a multimodal transformer lan-
guage model, and its variants including diffusion models
have shown high-quality text-to-image generation capabil-
ities. However, despite the realistic image generation re-
sults, there has not been a detailed analysis of how to eval-
uate such models. In this work, we investigate the visual
reasoning capabilities and social biases of different text-to-
image models, covering both multimodal transformer lan-
guage models and diffusion models. First, we measure three
visual reasoning skills: object recognition, object count-
ing, and spatial relation understanding. For this, we pro-
pose PAINTSKILLS, a compositional diagnostic evaluation
dataset that measures these skills. Despite the high-fidelity
image generation capability, a large gap exists between the
performance of recent models and the upper bound accu-
racy in object counting and spatial relation understanding
skills. Second, we assess the gender and skin tone biases
by measuring the gender/skin tone distribution of gener-
ated images across various professions and attributes. We
demonstrate that recent text-to-image generation models
learn specific biases about gender and skin tone from web
image-text pairs. We hope our work will help guide future
progress in improving text-to-image generation models on
visual reasoning skills and learning socially unbiased rep-
resentations.1

1. Introduction
Generating images from textual descriptions based on

machine learning is an active research area [21]. Recently,
DALL-E [45], a 12B parameter transformer [60] trained to
generate images from text, has shown a diverse set of gener-
ation capabilities, including creating anthropomorphic ob-
jects, editing images, and rendering text, which previous
models have never shown. Even though DALL-E and its
variants have gained much attention, there has not been a

1Code and data: https://github.com/j-min/DallEval
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Figure 1. Overview of our proposed evaluation process for text-to-
image generation models. In addition to conventional image-text
alignment and image quality evaluation, we propose to measure
visual reasoning skills (Sec. 4.1) and social biases (Sec. 4.2) of
models. The example images are generated with Stable Diffusion.

concrete quantitative analysis of what they can do.
Most works have only evaluated their text-to-image gen-

eration models with two types of automated metrics [21]: 1)
image-text alignment [69, 30, 26] - whether the generated
images align with the semantics of the text descriptions;
2) image quality [52, 25] - whether the generated images
look similar to images from training data. Hence, to pro-
vide novel insights into the abilities and limitations of text-
to-image generation models, we propose to evaluate their
visual reasoning skills and social biases, in addition to the
previously proposed image-text alignment and image qual-
ity metrics. Since the original DALL-E checkpoint is not
available, in our experiments, we choose four popular text-
to-image generation models that publicly release their code
and checkpoints: DALL-ESmall [64], minDALL-E [33], Sta-
ble Diffusion [49], and Karlo [35].

First, we introduce PAINTSKILLS, a compositional di-

This ICCV paper is the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it is identical to the accepted version;
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agnostic evaluation dataset that measures three fundamen-
tal visual reasoning capabilities: object recognition, object
counting, and spatial relation understanding. To avoid sta-
tistical bias that hinders models from learning composi-
tional reasoning [23, 1, 15, 17], for PAINTSKILLS, we cre-
ate images based on a 3D simulator and control our images
to have a uniform distribution over objects and relations. To
calculate the score for each skill, we employ a widely-used
DETR object detector [11] on the PAINTSKILLS dataset that
can detect objects on the test split images with very high or-
acle accuracy. We also show that our object detection-based
evaluation is highly correlated with human judgment. Then
we measure whether the objects in the images satisfy the
skill-specific semantics of the input text (see Fig. 2 for ex-
amples). Our experiments show that recent text-to-image
generation models perform well at object recognition by
generating high-fidelity objects but struggle at object count-
ing and spatial relation understanding, with a large gap be-
tween the model performances and upper bound accuracy.

Second, we introduce social bias evaluation for text-to-
image generation models. Recent work has reported social
biases in vision-and-language datasets and models learned
from them [50, 6]. We evaluate whether models trained
on such datasets show bias when generating images from
text. For this, we generate images of people with different
professions that should not be related to a specific gender
or skin tone (e.g., nurse, doctor, teacher). Then, we de-
tect gender, skin tone, and attributes from the generated im-
ages. We quantify biases by analyzing the distribution of
the detected gender/skin tones and their relation to various
professions/attributes. Our quantitative study shows that re-
cent text-to-image models learned certain biases when gen-
erating images from some text prompts (e.g., receptionist
→ female / plumber → male / female → wearing skirts /
male → wearing suits). For automated gender and attribute
detection, we use BLIP-2 [36] by asking visual questions
(e.g., “the person looks like a male or a female?”). For au-
tomated skin tone detection, we detect faces from images
with FAN [8] and estimate illumination and facial albedo
with TRUST [20]. Then we calculate Individual Typol-
ogy Angle (ITA) [13] and find the closest skin tone in the
MST scale [40]. Our final automated detection methods are
highly correlated with human evaluation.

Our contributions can be summarized as follows: (1)
We introduce PAINTSKILLS, a diagnostic evaluation dataset
for text-to-image generation models, which allows carefully
controlled measurement of the three fundamental visual rea-
soning skills. We show that recent models are relatively
good at object recognition (generating a single object) skill,
but a large gap exists between the performance of recent
models and the upper bound accuracy in object counting
and spatial relation understanding skills. (2) We introduce
a gender and skin tone bias assessment based on automated

and human evaluation. We show that recent models learn
specific gender/skin tone biases from web image-text pairs.

Overall, our observations suggest that current text-to-
image generation models are good initial contributions, but
have several avenues for future improvements in learning
challenging visual reasoning skills and understanding so-
cial biases. We hope that our evaluation work will allow the
community to systemically measure such progress.

2. Related Works

Text-to-Image Generation Models. [38, 48] pioneered
deep learning-based text-to-image generation. [48] intro-
duced the GAN [22] framework to improve the visual real-
ity of images. [71, 69] proposed to generate images in mul-
tiple stages by gradually increasing image resolution. Re-
cently, the multimodal language model and diffusion model
have been widely used for this task. X-LXMERT [14] and
DALL-E [45] introduce multimodal transformer language
models that learn the distribution of the sequence of discrete
image codes given text input. Denoising diffusion mod-
els [54, 29, 49, 41] is another widely used model type in
which a text-conditional denoising autoencoder iteratively
updates noisy images into clean images. Recent multimodal
language models (e.g., Parti [70] and MUSE [12]) and dif-
fusion models (e.g., Stable Diffusion [49], DALL-E 2 [44],
and Imagen [51]) deliver a high level of photorealism in a
wide range of domains.
Metrics for Text-to-Image Generation. The text-to-image
community has commonly used two types of automated
evaluation metrics: image quality and image-text align-
ment. For image quality, Inception Score (IS) [52] and
Fréchet Inception Distance (FID) [25] are the metrics most
commonly used. They use the features of a pretrained im-
age classifier such as Inception v3 [57] to measure the di-
versity and visual reality of the generated images. These
metrics use a classifier pretrained on ImageNet [18] that
mostly contains single-object images. Therefore, they are
not suitable for more complex datasets [21]. To measure
image-text alignment, metrics based on retrieval, caption-
ing, and object detection models have been proposed. R-
precision [69] evaluates the multimodal semantic relevance
by the retrieval score of the original text given generated
images with a pretrained image-to-text alignment model.
[30, 26] employ an image caption generator to obtain cap-
tions for generated images and report language evaluation
metrics such as BLEU [42] and CIDEr [61]. Semantic Ob-
ject Accuracy (SOA) [26] measures whether an object de-
tector can detect an object described in the text from a gen-
erated image. Evaluation based on R-precision and cap-
tioning can fail when different captions correctly describe
the same image [26, 21].2 In addition, unlike object detec-

2An image including 2 apples can be described as, “there are 2 apples”
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Figure 2. Illustration of the visual reasoning evaluation process with PAINTSKILLS (Sec. 3). We generate images from text prompts that
require three different visual reasoning skills. Based on object detection results, we evaluate the visual reasoning capabilities of models by
checking whether the generated images align with input text prompts. The example images are generated with Stable Diffusion.

tion, the retrieval/captioning models do not provide visually
interpretable evidence of the scoring. SOA only focuses
on the existence of objects, which makes it not well suited
to evaluate object attributes and the relationship between
objects [26, 21]. In contrast to existing alignment met-
rics, where reasoning based on alignment scoring is hard to
understand, our PAINTSKILLS measures the text-to-image
generation ability in a more fine-grained and transparent
manner with three skills, including object recognition, ob-
ject counting, and spatial relation understanding, to pinpoint
model weaknesses.

Measuring Bias in Multimodal Models. While much re-
search has been done on evaluating common social biases
in image-only [65, 56] and text-only [74, 10] models, recent
research work conduct such studies in multimodal mod-
els and datasets. [55, 50] showed social biases in visually
grounded word embeddings. [6, 5, 58, 9, 73, 28, 62, 27]
examine social biases in image-text datasets. [39] evaluate
the diversity and inclusiveness of images containing peo-
ple of specific occupations with respect to gender and race.
[63, 68, 67, 6, 4] investigate biases in image-text retrieval
models. Bansal et al. [3] and Zhang et al. [72] measure how
text-to-image generation models behave differently with an
intervention (e.g., adding phrases about gender, attributes,
or skin color) to an original prompt. To our knowledge,
our work provides the first evaluation metrics and analysis
of measuring gender and skin tone biases in text-to-image
generation models from diverse prompts with combinations
of gender and professions, without prompt intervention.

or “two apples”, which results in different values from text metrics.

3. PAINTSKILLS: A Diagnostic Evaluation
Dataset for Compositional Visual Reason-
ing Skills

We introduce PAINTSKILLS, a diagnostic evaluation
dataset for compositional visual reasoning skills of text-to-
image generation models. Inspired by the recent vision-
language skill-concept analysis of Whitehead et al. [66], we
define three visual reasoning skills: object recognition, ob-
ject counting, and spatial relation understanding.3 To evalu-
ate each skill, we calculate accuracy based on the detection
results of the generated images, as illustrated in Fig. 2. In
the following, we explain the skill definitions (Sec. 3.1) and
the data collection process (Sec. 3.2).

3.1. Skills

Object Recognition. Given a text describing a specific ob-
ject class (e.g., an airplane), a model generates an image
that contains the intended class of object.

Object Counting. Given a text describing M objects of a
specific class (e.g., 3 dogs), a model generates an image that
contains M objects of that class.

Spatial Relation Understanding. Given a text describing
two objects having a specific spatial relation (e.g., one is
right to another), a model generates an image including two
objects with the relation.

3There are other skills for image generation that the current three skills
do not cover (e.g., text rendering). In this work, we focus on introduc-
ing skill-specific evaluation with object control skills fundamental to more
complex skills.
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# scenes for spatial relation understanding skill
scenes = [
{

“objects”: [
{“shape”: “dog”, “relation”: None, ...},
{“shape”: “car”, “relation”: “right_0”, ...}

],
“text”: “there are 2 objects. one is dog and the 

other is car; the car is right to the dog”,
“background”: “static-openroad”,
...

},
...]

Render with
3D Simulator

Figure 3. Dataset generation process (spatial relation understand-
ing skill shown in this example) of PAINTSKILLS. For each skill,
we generate scene configurations where object/attribute/layout
combinations have a uniform distribution to avoid statistical short-
cuts for reasoning. We use a 3D simulator for rendering images.

Skills Object Recognition Object Counting Spatial Relation Understanding
Description a specific object a specific number of an object two objects with a specific spatial relation
Template a photo of <obj> a photo of <N> <obj> a <objB> is <rel> a <objA>

Keywords obj: car N: 4, obj: car objA: car, objB: airplane, rel: below

Table 1. Example images, templates, and prompts of
PAINTSKILLS. See appendix for more examples.

3.2. PAINTSKILLS Dataset Collection

The widely used visual question answering datasets such
as VQA [2, 23] and GQA [31] are created by first col-
lecting images, then collecting question-answer pairs from
the images. However, since a few common objects dom-
inantly appear in the image dataset, such data collection
process results in a dataset with a highly skewed distribu-
tion towards a few common objects, questions, and answers.
This often causes models trained on the datasets to depend
on statistical bias instead of the desired compositional rea-
soning process [23, 1, 15, 17]. PAINTSKILLS addresses
this problem by explicitly controlling the statistical bias be-
tween objects and input text. We collect text-image pairs for
PAINTSKILLS in three steps: (1) We define scene configu-
rations for each skill, in which the objects, attributes (e.g.,
count), and relations are uniformly distributed. (2) We gen-
erate text prompts by creating templates with objects, num-
bers, and spatial relations. (3) We generate images from the
scene configurations using a 3D simulator.

We develop the simulator using Unity4 engine. The sim-
ulator takes a list of scene configurations and renders im-
ages from them. Each scene is represented as a list of
objects, a text prompt, and a background, where each ob-
ject has its own attributes, including class, location, and
scale. Attributes can be specified or not. If an attribute
is not specified, the simulator will use a default value or
random sample from a uniform distribution while satisfy-
ing the other specified conditions. Backgrounds are sam-
pled from 13 different images that do not contain object
classes used in visual reasoning skill evaluation. We use
15 frequent object classes in MS COCO [37]: {person,
dog, airplane, bike, car, . . . }, object count
range: {1, 2, 3, 4}, and 4 spatial relations: {above,
below, left, right}.

As shown in Fig. 3, the simulator randomly assigns the
object states (location, rotation, pose) and backgrounds,
while satisfying the condition ‘car is right to dog’. We gen-
erate 23,250/21,600/13,500 and 2,325/2,160/2,700 scenes
for train and test splits of object recognition/object count-
ing/spatial relation understanding skills, respectively. In Ta-
ble 1, we provide sample images and corresponding text
prompts for each skill in PAINTSKILLS. The text prompts
are generated by composing keywords with a template.

Our simulator can be easily extended with custom ob-
jects and attributes. In the appendix, we provide the full
prompt templates and detailed scene configurations includ-
ing parameters, objects, and attributes.

4. Evaluations
We evaluate text-to-image generation models on two

new criteria: visual reasoning skills (Sec. 4.1) and social
biases (Sec. 4.2).

4.1. Visual Reasoning Skill Evaluation

As illustrated in Fig. 2, we evaluate models with three
visual reasoning skills: object recognition (object), object
counting (count), and spatial relation understanding (spa-
tial). Following [26], we evaluate the skills based on how
well an object detector can detect the object described in
the input text. For each skill, we train a DETR [11] ob-
ject detector. We initialize DETR parameters from the of-
ficial checkpoint with ResNet101 [24] backbone trained on
the MS COCO [37] train 2017 split. In Table 2, we show
the accuracy of DETR on the test split of each skill dataset,
which is the upper bound performance. We also provide hu-
man evaluation results showing our proposed skill metrics
align with human perception in Table 3.

Object Recognition. We evaluate the skill with average
accuracy on N test images of whether an object detec-
tor correctly identifies the target class from the generated

4https://unity.com
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Figure 4. Overview of our social bias analysis (Sec. 4.2). Models
generate images with a set of diagnostic prompts (e.g., a person
who works as a nurse), then with automated detectors and human
evaluation, we estimate the gender, skin tone, and attributes shown
in the images. Images in the examples were generated with Stable
Diffusion.

images: 1
N

∑N
i 1(oDet(i) = oGT (i) and pDet(i) > pth),

where oDet(i) is a class that an object detection model pre-
dicts, pDet(i) is the classification confidence and oGT (i) is
the ground-truth target object class.

Object Counting. We evaluate the skill with the aver-
age accuracy of whether an object detector correctly iden-
tifies the M objects of the target class from the generated
images: 1

N

∑N
i 1(o

Det(i)
j = oGT (i),∀j ∈ {1 . . .M (i)}),

where o
Det(i)
j is the class of the j-th object that an object

detection model predicts, oGT (i) is target object class, and
M (i) is the number of objects for the i-th image.

Spatial Relation Understanding. We evaluate the skill
with the average accuracy of whether an object detec-
tor correctly identifies both target object classes and pair-
wise spatial relations between objects: 1

N

∑N
i 1(o

Det(i)
1 =

o
GT (i)
1 and o

Det(i)
2 = o

GT (i)
2 and relDet(i) = relGT (i)),

where relDet(i) are the relation between two objects in the
i-th image. We decide the spatial relation to be one of
the four relations {above, below, left, right}
based on the directions between two object positions from
their 2D coordinates.

4.2. Social Bias Evaluation

As shown in Fig. 4, we measure the gender and skin
tone biases of text-to-image generation models. For this, we
first generate images from diagnostic prompts (Sec. 4.2.1),

detect gender, skin tone, and attributes from the images
(Sec. 4.2.2 and Sec. 4.2.3), and measure how they are
skewed from an unbiased uniform distribution (Sec. 4.2.4).

4.2.1 Image Generation with Diagnostic Prompts

We create diagnostic prompts by composing a gender G ∈
{a man, a woman, a person} and a profession P ∈
{accountant, engineer, · · · } (in total 83), using a
template "G who works as a/an P". We also in-
clude three prompts without profession (just "G"), making
252 prompts (=3 × 83 + 3) in total; see appendix for the
full list. The prompts starting with ‘a man/woman’ would
reveal the bias of certain genders, and the prompts starting
with ‘a person’ would reveal the bias of certain professions.
We sample 9 images from a text-to-image generation model
for each diagnostic prompt. From the generated images, we
detect gender, skin tone, and attributes using automated de-
tection models and verify the reliability of detection models
with human evaluation (see appendix).

4.2.2 Detection Categories

Gender. For gender bias analysis, we use two gender cat-
egories: {male, female}. A wide range of genders is
beyond the scope of finite categories [32]. However, even
humans cannot reliably estimate the gender of other peo-
ple across a wide spectrum of gender categories based only
on appearance. Hence, following concurrent work [72, 3],
we limit our gender categorization to binary for the current
study, where we focus on exposing different types of bias in
text-to-image generation models.

Skin Tone. Next, our skin tone analysis uses the Monk
Skin Tone (MST) Scale [40], which transforms the contin-
uous skin tone spectrum into 10 tones. Such fine-grained
skin tone scales can better reflect a diversity of communi-
ties than binary categorizations such as ‘light’ and ‘dark’
skin. Although one may categorize people into racial cat-
egories (e.g., Black, White, etc.), race is not a biological
concept and should be understood as a socially constructed
and political concept [16, 7]. Because race is not natu-
rally inherent, fixed, or mutually exclusive [7, 46], infer-
ring one’s racial identity from appearance and assuming that
one’s race falls into a single category could lead to an inac-
curate inference of one’s racial identity.

Attribute. Lastly, we analyze the 15 attributes from
Zhang et al. [72]. We use the frequency of the attributes
detected to measure the difference in the presentation of dif-
ferent genders, skin tones, and professions.
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4.2.3 Automated Detection and Human Evaluation

We detect gender, skin tone, and attributes from the gen-
erated images using automated detection models and ver-
ify their reliability with human evaluation. We experiment
with different detection models for gender, skin tone, and
attributes to compare their accuracy and reliability. The fol-
lowing describes how we use the finally chosen detection
models. See appendix for a detailed comparison between
models and human evaluation.

Gender Detection. We use BLIP-2 [36] to detect gender
in the generated images, by asking the question "the
person looks like a male or a female?"5

and then detect whether BLIP-2 returns male/female in the
answer. In our experiments, BLIP-2 showed less bias and
higher accuracy than CLIP (ViT/B-32) [43] in COCO bias
testing [63] and Adience gender dataset [19] (82% BLIP-2
vs. 66% CLIP; see appendix for more details).

Skin Tone Detection. We use FAN [8] to detect facial
landmarks in the generated images, and use TRUST (Bal-
ancedAlb checkpoint) [20] to estimate the illumination of
the images and albedo UV map of the facial crops. We
take illumination into account when detecting skin tone, as
raw pixel values are a function of both the scene lighting
and the subject’s true skin tone [53]. On the detected fa-
cial albedo UV maps, we calculate the Individual Typol-
ogy Angle (ITA) [13] based on L* (lightness) and B* (yel-
low/blue) components of the CIE-L*a*b* colorspace and
find the closest skin tone in MST scale (1-10) [40]. In our
experiments, using facial landmarks and addressing illumi-
nation improves the accuracy of skin tone detection (see ap-
pendix for more details).

Attribute Detection. We give BLIP-2 an image and a
question, "Is the person wearing A?" for each
attribute A (e.g. "a suit", "jeans") and check if the
model responds with “yes”. In our experiments, BLIP-2
is more accurate than CLIP-based classification [72] in at-
tribute detection (92% BLIP-2 vs. 79% CLIP; see appendix
for details).

4.2.4 Measuring Bias: Average and Variance

From the detection results, we obtain distributions for gen-
der (binary), skin tone (10-way categorical), and attribute
(binary for each item). To show to which gender, skin tone,
and attribute category the distribution is skewed, we report
the average value of each bias category. To compute the
overall bias distribution, we use mean absolute deviation
(MAD) that measures the distance between detected gen-
der/skin tone category/attribute distributions and unbiased
uniform distribution: 1

N

∑N
i=1 |pi − p̄|, where pi ∈ [0, 1]

5We experimented with several prompts and found this produces the
best results.

Evaluator Images Skill Accuracy (%) (↑)

Object Count Spatial Avg.

DETR

GT (oracle) 100.0 97.8 96.2 98.0
GT shuffled (random) 6.3 1.7 0.3 2.8

DALL-ESmall 57.5 18.2 2.4 26.0
minDALL-E 89.9 47.5 50.7 62.7
Stable Diffusion 96.2 37.8 7.9 47.3

Table 2. DETR evaluation on images generated from the T2I
models finetuned on PAINTSKILLS.

Evaluator Images Skill Accuracy (%) (↑)

Object Count Spatial Avg.

(A) Human
DALL-ESmall 52.0 42.0 4.0 30.7
minDALL-E 86.0 64.0 64.0 68.7
Stable Diffusion 94.0 48.0 16.0 54.7

(B) DETR
DALL-ESmall 64.0 34.0 0.0 28.0
minDALL-E 86.0 54.0 66.0 64.0
Stable Diffusion 98.0 44.0 4.0 54.0

Table 3. Human and DETR evaluation on PAINTSKILLS. For
each skill, we sample 50 images, collecting 3x50 = 150 images for
each model.

are the normalized counts of the i-th gender or skin tone
category, p̄ is the mean normalized counts (0.5 for gender;
0.1 for skin tone), and N is the number of gender/skin tone
scales (2 for gender; 10 for skin tone). MAD is minimized
to 0 when the category distribution is uniform (unbiased)
and maximized when the category distribution is one-hot
(entirely biased to a single category).

5. Experiments and Results
We introduce the evaluated text-to-image generation

models in Sec. 5.1, then show the evaluation results of vi-
sual reasoning skills (Sec. 5.2) and social biases (Sec. 5.3).

5.1. Evaluated Models

Since the pretrained checkpoints of the original DALL-
E model have not been released at the time of this anal-
ysis, we experiment with two different publicly avail-
able implementations of DALL-E: DALL-ESmall [64] and
minDALL-E [33]. The models consist of a discrete VAE
(dVAE) [34, 59, 47] that encodes images with grids of dis-
crete tokens and a multimodal transformer that learns the
joint distribution of text and image tokens. We also experi-
ment with Stable Diffusion v1.4 [49] and Karlo [35], recent
state-of-the-art diffusion models that publicly released their
checkpoints. As Karlo has not released its training code,
we use it only for social bias evaluation. We provide more
details about each model in the appendix.

5.2. Visual Reasoning Skill Results

Object Detector Accuracy. In the top rows of the Table 2,
we show the visual reasoning accuracy on the ground-truth
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Skills Object Recognition Object Counting Spatial Relation Understanding

Prompts ‘a dog’ ‘a bicycle’ ‘3 dogs’ ‘2 bicycles’ ‘a suitcase is left to a person’ ‘an umbrella is right to a stop sign’

GT

DALL-ESmall

minDALL-E

Stable Diffusion

Table 4. Images generated by three text-to-image generation models finetuned on PAINTSKILLS. Objects detected from the images are
shown in colored bounding boxes.
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Figure 5. Detailed analysis of count and spatial skills of 3 models, in terms of (a) per-split and (b) per-task accuracy.

(GT) PAINTSKILLS images and randomly shuffled GT im-
ages. With a high average oracle accuracy of 98.0%, we
expect our evaluation to serve as good automated metrics
for visual reasoning skills. The low average accuracy of
randomly shuffled GT images (2.8%) indicates that a model
cannot achieve a high score on PAINTSKILLS without cor-
rect placement of objects.

Which model is good at which skill? Table 2 shows that
Stable Diffusion achieves the highest accuracy of 96.2% in
object skill. This could be explained by its high-fidelity im-
age generation based on the largest training data (5B) and
highest resolution (512x512). However, in count and spa-
tial skills, minDALL-E achieves better accuracy than Stable
Diffusion. As shown in Table 4, even though Stable Diffu-
sion could generate high-fidelity objects, the model often
generates more (5 instead of 3 dogs) or fewer (1 instead of
2 bicycles) objects than the number described in the prompt.
Likewise, Stable Diffusion often misses an object (person,

umbrella) described in prompts for spatial skill. Overall, a
huge gap exists between the performance of all models and
the upper bound accuracy on count/spatial skills, indicating
a large room for improvement.

Fine-grained Skill Analysis. Fig. 5 (a) shows the per-split
accuracy of count and spatial skills. In count skill, the mod-
els score lower accuracy with prompts with more objects.
In spatial skill, the models achieve similar accuracy for all
four spatial relations. Fig. 5 (b) shows the per-task accuracy
of the two skills. In count skill, a model needs to 1) gener-
ate the correct number of objects and 2) ensure all objects
are in the right classes. For all three models, the accuracy
difference between 1) and 1) + 2) is small, indicating that
the bottleneck for this task is 1) generating the right number
of objects rather than 2) generating the correct objects. In
spatial skill, a model needs to 1) generate two right objects
of the right classes and 2) satisfy the given spatial relation.
Stable Diffusion shows a larger drop between 1) and 1) +
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“computer programmer” “biologist” “shop assistant”

Gender Skintone
M M M M
M M M M

Automated
Human

Gender Skintone
F M F M
F M F M

Gender Skintone
F F F F
F F F F

Attribute (Shirt)
Y Y Y Y
Y Y Y Y

Attribute (Suit)
N N N N
N N N N

Attribute (Uniform)
Y Y N Y
Y Y N N

Figure 6. Gender, skin tone, and attribute detection results with automated and expert human evaluation. The images are generated by
the Stable Diffusion model, using the gender/skin tone-neutral prompts (e.g., “a person who works as a biologist”). For gender estimation,
both automated detection and human evaluation agreed on all examples here. For attribute and skin tone estimation, automated detection
and human annotation are closely aligned in most cases. The detection results are presented in order of top-left → top-right → bottom-left
→ bottom-right. M: Male, F: Female, Y: Yes, N: No.

Training data Model Skill Accuracy (%) (↑)

Object Count Spatial Avg.

100% minDALL-E 89.9 47.5 50.7 62.7
Stable Diffusion 96.2 37.8 7.9 47.3

50% minDALL-E 90.1 49.4 53.3 64.3
Stable Diffusion 96.0 42.2 7.6 48.6

10% minDALL-E 90.8 50.9 38.2 60.0
Stable Diffusion 94.2 37.9 8.9 47.0

Table 5. PAINTSKILLS DETR-based accuracy of minDALL-E
and Stable Diffusion v1.4 with different scales of training data.

2) accuracy, indicating that differentiating the four spatial
relations is the bottleneck for this model.

Human Evaluation. To verify if our DETR-based evalu-
ation aligns with human perception, we ask a human ex-
pert to evaluate the images generated from the models fine-
tuned on PAINTSKILLS. The expert evaluated 150 images
for each skill (3 models x 50 images). In Table 3, we find
that DETR-based evaluation achieves similar accuracy with
the human evaluation in all three models, and relative per-
formance between models is the same in both evaluations.

Does PAINTSKILLS have enough finetuning data? As
evaluation with PAINTSKILLS involves finetuning, we ex-
periment with finetuning with different numbers of train-
ing data to see whether text-to-image generation models see
enough training examples to learn skills and avoid domain
gaps (e.g., real vs. synthetic images). Table 5 shows that
model performances between 100% and 50% of the data
are similar, indicating that PAINTSKILLS training dataset is
large enough for the models to adapt.

5.3. Social Bias Results

As described in Sec. 4.2 and Fig. 4, we generate im-
ages with text-to-image generation models6 from diagnostic
prompts (e.g., “a person who works as a nurse”). In Fig. 6,
we show examples of gender, skin tone, and attribute de-
tection based on automated methods and human annotators.
Please see appendix for our human evaluation of the accu-
racy and reliability of automated detectors.

Gender Bias. Table 6 shows the per-profession and average
gender bias of three models. While all three models have an
overall tendency to generate male images, models have dif-
ferent gender biases in different professions. For example,
from ‘Singer’ prompts, minDALL-E tends to generate more
male images, whereas and Karlo and Stable Diffusion tend
to generate more female images.

The ‘gender’ column of Table 8 column shows that
minDALL-E achieves lower MAD than Karlo and Stable
Diffusion, indicating that Karlo and Stable Diffusion have
a stronger tendency to generate images of a specific gender
from gender-neutral prompts than minDALL-E.

Table 9 compares the attribute presence for gender
prompts. All three models tend to generate skirts only for
woman prompts, and tend to generate suit/jacket/tie more
frequently for man prompts.

Skin Tone Bias. Table 7 shows three models’ per-
profession/average skin tone bias. Unlike the gender bias

6For social bias analysis, we only experiment with images from
minDALL-E, Stable Diffusion, and Karlo, because we find that the vi-
sual quality of images from DALL-ESmall is highly distorted and does not
provide meaningful semantics.
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Profession Average Gender (male: -1 / female: +1)

minDALL-E Karlo Stable Diffusion

Engineer -0.78 -1.0 -1.0
Library assistant -0.11 1.0 1.0
Scientist -0.11 0.56 -0.33
Singer -0.33 0.33 0.56
Baker -0.11 -0.33 0.33

Average -0.25 -0.22 -0.42

Table 6. Per-profession examples and average gender bias of im-
ages generated from gender-neutral prompts: ‘a person who works
as a/an [profession]’. -1 and 1 refer to male and female, respec-
tively. See appendix for the full table.

Profession Average Skin Tone (1-10)

minDALL-E Karlo Stable Diffusion

Judge 5.13 5.05 5.04
Miner 5.5 5.18 5.59
Porter 5.33 5.55 5.44
Secretary 5.05 5.0 5.0
Tailor 5.09 5.44 5.31

Average 5.19 5.13 5.14

Table 7. Per-profession examples and average skin tone bias of im-
ages generated from prompts: ‘a [person/man/woman] who works
as a/an [profession]’. We use Monk Skin Tone (MST) Scale of
1-10 [40]. See appendix for the full table.

results in Table 6, where different professions correlate dif-
ferently with genders, all three models tend to generate im-
ages with similar skin tones for all professions. All models
generate tones around 5 and 6, indicating very light and dark
skin tones are marginalized from the learned representation
of the models. See appendix for the skin tone analysis per
attributes.

The ‘skin tone’ column of Table 8 shows that all
three models achieve similar MAD, while minDALL-
E achieves the lowest value. The MAD of N-
hot distributions of 10-category of are as follows:
MAD(1-hot) = 0.18,MAD(2-hot) = 0.16,MAD(3-hot) =
0.14, · · · ,MAD(10-hot=uniform) = 0. As the models
show MAD between 0.16 and 0.18, their skin tone distri-
butions are similar to 1-hot and 2-hot distributions with a
concentration on the MST scales of 5 and 6.

6. Conclusion
We propose two new evaluation aspects of text-to-image

generation: visual reasoning skills and social biases. For
visual reasoning skills, we introduce PAINTSKILLS, a com-
positional diagnostic evaluation dataset designed to mea-
sure three skills: object recognition, object counting, and
spatial relation understanding. Our experiments show that

Model MAD (↓)

Gender Skin Tone

uniform (unbiased) 0.0000 0.0000

minDALL-E 0.1984 0.1687
Karlo 0.3545 0.1707

Stable Diffusion 0.3618 0.1698

one-hot (entirely biased) 0.5000 0.1800

Table 8. Comparison of overall gender and skin tone bias of each
model. MAD measures the distance between detected gender/skin
tone distribution and an unbiased uniform distribution. The best
(lowest) values are bolded.

Model Prompts Attributes (presence: 1 / absence: 0)

skirt suit jacket tie

minDALL-E
Woman 0.1 0.12 0.11 0.02

Man 0.0 0.39 0.29 0.23

Woman - Man +0.1 -0.27 -0.18 -0.21

Karlo
Woman 0.05 0.16 0.02 0.0

Man 0.0 0.27 0.17 0.18

Woman - Man +0.05 -0.11 -0.15 -0.18

Stable Diffusion
Woman 0.07 0.19 0.07 0.0

Man 0.0 0.35 0.26 0.2

Woman - Man +0.07 -0.16 -0.19 -0.2

Table 9. Presence of attributes for images from gender-specific
prompts: ‘a [man/woman] who works as a/an [profession]’.
The ‘Woman - Man’ rows show the relative differences in at-
tribute presence between two gender-specific prompts (i.e. nega-
tive/positive values indicate the attributes are more correlated to
woman/man, respectively). See appendix for more attributes.

recent text-to-image models perform better in recognizing
objects than object counting and understanding spatial re-
lations, while a large gap exists between the model perfor-
mances and upper bound accuracy in the latter two skills.
We also show that the models have learned specific gen-
der/skin tone biases from web image-text pairs. We hope
our evaluation provides novel insights for future research
on learning challenging visual reasoning skills and under-
standing social biases.
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