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Abstract

Recognizing objects from sparse and noisy events be-
comes extremely difficult when paired images and cate-
gory labels do not exist. In this paper, we study label-
free event-based object recognition where category labels
and paired images are not available. To this end, we pro-
pose a joint formulation of object recognition and image
reconstruction in a complementary manner. Our method
first reconstructs images from events and performs ob-
ject recognition through Contrastive Language-Image Pre-
training (CLIP), enabling better recognition through a rich
context of images. Since the category information is es-
sential in reconstructing images, we propose category-
guided attraction loss and category-agnostic repulsion loss
to bridge the textual features of predicted categories and
the visual features of reconstructed images using CLIP.
Moreover, we introduce a reliable data sampling strategy
and local-global reconstruction consistency to boost joint
learning of two tasks. To enhance the accuracy of pre-
diction and quality of reconstruction, we also propose a
prototype-based approach using unpaired images. Exten-
sive experiments demonstrate the superiority of our method
and its extensibility for zero-shot object recognition. Our
project code is available at https://github.com/
Chohoonhee/Ev-LaFOR.

1. Introduction
Event cameras are neuromorphic vision sensors that

asynchronously perceive per-pixel brightness changes with

high temporal resolution. They show advantages over con-

ventional frame-based cameras, such as high dynamic range

(HDR) and low latency. However, despite the superior-

ity of cameras, algorithms using events are still in their

infancy. Existing event-based object recognition meth-

ods [1, 4, 22, 24, 25, 26, 30, 32, 34, 36, 40, 53] have been

shown that object recognition is a crucial task for event fea-

ture learning [12, 29, 38] and endeavors have successfully
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Figure 1: We tackle label-free event-based object recog-

nition where category labels and paired images are not

available. Our approach can simultaneously perform ob-

ject recognition and image reconstruction through proposed

joint learning framework. Optionally, our method can lever-

age unpaired images to enhance object recognition perfor-

mance and reconstructed image quality.

classified the object with events. However, they rely on su-

pervision with category labels to achieve high performance.

Furthermore, the sparsity of events poses a challenge for

users to label them accurately when there are no paired im-

ages. Several unsupervised methods [25, 36] have been pro-

posed for object recognition, however, their performances

remain subpar. Hence, there is a natural need for robust and

effective label-free event-based object recognition methods.

In this paper, we study label-free event-based object

recognition where category labels and paired images are not

available as in Fig. 1. To tackle this task, we focus on two

following facts. Firstly, as demonstrated in [45, 60], per-

forming object recognition on reconstructed images with

spatially dense information and rich context shows better

performance than solely using events. Secondly, during re-

constructing images from events, taking the categories into
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account can improve the quality of the reconstructed im-

ages. From these observations, we propose a joint learning

framework of two closely-linked tasks: event-based object

recognition and event-to-image reconstruction.

In our joint learning framework, we first reconstruct im-

ages from events and perform object recognition on the re-

constructed images using Contrastive Language-Image Pre-

training (CLIP) [42]. CLIP is an image-text embedding

model that has been trained on a large number of image

and language pairs sourced from the web. We utilize the

textual features encoded from CLIP since they are well-

aligned with visual features, which is advantageous for our

tasks that lack labels and images. To this end, we propose

the category-guided attraction loss that aligns the visual fea-

tures from reconstructed images close to the texture features

of the predicted category from CLIP.

Although the above framework enables the joint learn-

ing of event-based object recognition and image recon-

struction, using the predicted categories brings two issues.

(1) Collapsing to the trivial solution, resulting in all out-

puts being assigned to a single category and (2) Interrupt-

ing the learning process due to unreliable (wrong) predic-

tions. To alleviate these problems, we propose (1) category-

agnostic repulsion loss to increase the distances between

visual features for preventing collapse and (2) a reliable

data sampling (RDS) method to reduce the effects of un-

reliable predictions. For RDS, we devise two reliable indi-

cators named posterior probability indicator (PPI) and tem-

porally reversed consistency indicator (TRCI). The PPI se-

lects reliable samples based on the probability of prediction.

For additional sampling, TRCI utilizes the characteristics

of events that temporally reversed ones should be catego-

rized into the same category as the original events. This

reliable data sampling enables stable learning even with the

predicted categories, leading to a substantial performance

improvement in object recognition. Furthermore, to restore

the local details, we introduce the local-global reconstruc-

tion consistency. Finally, to enhance the accuracy of recog-

nition and visual quality of reconstructed images, we ex-

pand our method by employing the existing unpaired im-

ages. Extensive experiments demonstrate that our method

shows outstanding results on the subset of the N-ImageNet

dataset over unsupervised and image reconstruction-based

approaches and even surpasses the supervised methods on

the N-Caltech101 dataset without using labels and images.

In addition, we show that our framework can be extended to

event-based zero-shot object recognition.

Our work presents four main contributions: (I) We pro-

pose a novel joint learning framework for event-based ob-

ject recognition and image reconstruction, without requir-

ing paired images and labels. (II) We introduce a reliable

data sampling strategy and local-global reconstruction con-

sistency that enhances label-free joint training. (III) We

further introduce employing unpaired images in our frame-

work for boosting performance. (IV) We conduct exten-

sive experiments of our method along with zero-shot object

recognition and superset categories learning, and demon-

strate our method’s superior performance and effectiveness.

2. Related Work
Event-based Object Recognition. Concurrent with the

success of event-based low-level tasks [9, 10, 11, 23, 52, 54,

63], there has been a surge of active research focused on ob-

ject recognition [3, 7, 19, 22, 27, 28, 31, 35, 43, 51, 53, 56],

which is considered as a fundamental task. Considering the

unique features of event data, numerous works [1, 4, 22,

24, 25, 26, 30, 32, 34, 36, 40, 53] have presented models

and representations that can effectively extract significant

patterns. However, these approaches require labels for each

event data for supervised learning, and since event data can-

not be crawled from the web like images, the labeling cost

of event data is extremely high. On the other hand, our

approach enables the learning of event-based object recog-

nition and image reconstruction simultaneously, without re-

quiring category labels and paired images.

Event-based Image Reconstruction is a well-known topic

in the field of event-based vision [2, 13, 17, 20, 21, 46, 49,

57]. Recent researches have been utilizing deep learning

to generate realistic outcomes [44, 45, 50, 62]. However,

these supervised approaches require the paired images of

each event stream to be accurately aligned and synchro-

nized in terms of pixels and time. Another line of approach,

such as Wang et al. [59] and Pini et al. [41], utilized gen-

erative adversarial networks (GANs) to reconstruct inten-

sity with unpaired images that are not related to the events

of the scene. However, GANs are prone to be sensitive to

various parameters, and when images that are significantly

irrelevant to objects are utilized, the quality of the recon-

structed images from events is notably low. An alternative

solution is a self-supervised method [37] that utilizes photo-

metric consistency, but this approach requires a continuous

sequence that spans an adequately long period. Differently,

our framework can reconstruct the intensity of event data

without images, very long event sequence and GANs. We

only exploit the category prompts of a bundle of event data,

not the class label of each event data.

Label-free Learning aims to solve the end-task only with

unlabeled data, and has been actively explored [8, 58].

HOTS [25] proposed a category-free method for recogniz-

ing objects based on events and SSL-E2VID [37] proposed

a self-supervised learning method for reconstructing im-

ages from only events. However, their performances fall

short of supervised learning methods with significant per-

formance gaps. Inspired by the success of using the pre-

trained model [5, 6, 39, 48, 55], we adopt CLIP [42] for

label-free event-based object recognition. We propose a
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Figure 2: Overall joint learning framework of event-based object recognition with event-to-image reconstruction. Our ap-

proach involves CLIP’s textual and visual encoders that derive textual and visual features, respectively, from given class

sets and events. Textual features are obtained from category prompts, while visual features are obtained from reconstructed

images. Then, logits and corresponding pseudo labels are generated by computing the cosine similarity between visual and

textual features. Lastly, our framework employs pseudo labels to facilitate joint learning using category-agnostic repulsion

loss and category-guided attraction loss. To mitigate the impact of unreliable pseudo labels and boost performance, we intro-

duce a reliable data sampling strategy and local-global reconstruction consistency.

novel joint learning framework that uses visual and tex-

tual knowledge to achieve superior performance in event-

to-image reconstruction and event-based object recognition

without category labels and paired images. To the best of

our knowledge, we are the first to incorporate textual knowl-

edge into event vision research, particularly in the context

of label-free tasks.

3. Method
In Sec. 3.1, we first introduce our joint formulation of

event-to-image reconstruction and object recognition for

label-efficient learning. In Sec. 3.2, we describe our reliable

data sampling (RDS) strategy for boosting joint learning

performance by filtering the unreliable data samples during

training. Sec. 3.3 introduces the local-global reconstruction

consistency for spatially regularizing the reconstructed im-

ages, which ensures capturing the local details. In Sec. 3.4,

we propose to further employ the unpaired images for better

recognition performance and reconstructed image quality.

3.1. Joint Formulation
We propose a joint formulation of event-to-image re-

construction and object recognition to perform event-based

(zero-shot) object recognition without using labels and

paired images of event data. Our joint formulation is based

on the fact that 1) image reconstruction can be helpful in

predicting categories from events, and 2) category infor-

mation is important in reconstructing images from events.

Therefore, we propose 1) the process of performing event-

to-image reconstruction and CLIP-driven object recognition

from the reconstructed images and 2) category-guided at-

traction loss and category-agnostic repulsion loss for learn-

ing this process without labels and paired images. The over-

all framework is shown in Fig. 2. Note that our joint learn-

ing framework can reconstruct intensity images from events

without using any images.

Event-to-Image Reconstruction. For the joint formula-

tion, we first reconstruct the intensity image I from the

event stream E = (ui, ti, pi)
N
i=1, where ui, ti, and pi denote

triggered pixel location, time, and polarity of each event,

and N is the temporal length of the event stream. We con-

vert the event stream into event spiking tensor (EST) [16],

which is then fed into the image reconstruction network G
to obtain the intensity image. The image reconstruction pro-

cess is formulated as follows:

I = G(EST(E)). (1)

CLIP-driven Object Recognition. We perform object

recognition on top of the reconstructed images instead of

raw event data. The advantage of using reconstructed im-

ages rather than using event data directly for object recog-

nition is that better performance can be achieved by using
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a network trained on rich image data [45, 60]. In partic-

ular, we use CLIP [42] for object recognition, which also

enables zero-shot object recognition. For an event dataset

of C classes, the category prompts are constructed by plac-

ing each category name into a pre-defined template, “image

of a [CLASS].” Then, CLIP’s textual encoder encodes cat-

egory prompts to obtain the D-dimensional textual features

F = (fi)
C
i=1 ∈ R

C×D. Meantime, the reconstructed image

I is encoded by CLIP’s visual encoder to a visual feature

v ∈ R
1×D and the class probability p ∈ R

1×C for the ob-

ject recognition are obtained as,

pi = softmaxi(vF
�), (2)

where pi and softmaxi(·) denote the probability for cate-

gory i and the softmax function. By taking the category of

maximum probability, we can predict the category c for the

event data E as,

c = argmax
i

(pi). (3)

Category-guided Attraction Loss. The challenging part of

our joint formulation is to train the reconstruction network

G without using paired images of event data. Once we re-

construct the intensity images from the event stream (Eq. 1),

we can perform object recognition using CLIP (Eq. 2). Mo-

tivated by the fact that category information is important in

reconstructing images from events, we propose category-

guided attraction loss to train the reconstruction network.

The proposed category-guided attraction loss brings the vi-

sual feature v encoded from the reconstructed image I
closer to the textual feature of the corresponding category,

guiding the model to reconstruct the image corresponding to

the category. Since category labels are not available for the

event data, we use the predicted categories as pseudo labels.

For event data with a batch size of B, the category-guided

attraction loss Latt is formulated as InfoNCE loss [33]:

Latt = −
B∑

i=1

log
exp(vif

�
ci )∑B

j=1 exp(vif
�
cj )

, (4)

where vi, ci, and fj denote the visual feature and predicted

category of the ith event data, and the textual feature of cat-

egory j. Minimizing Latt enables the image reconstruc-

tion network to generate images of the corresponding cat-

egory label, while object recognition benefits from the re-

constructed images.

Category-agnostic Repulsion Loss. Although Latt en-

ables joint learning, the use of pseudo labels may cause

collapsing, resulting in all outputs being assigned to a sin-

gle category. Therefore, we introduce a category-agnostic

repulsion loss to prevent collapsing by increasing the dis-

tances between visual features. To be specific, the category-

agnostic repulsion loss Lrep is applied to the set of visual

features as follows:

Lrep =
B∑

i=1

log(1 +
B∑

j=1,j �=i

exp(viv
�
j )). (5)

With Latt and Lrep, we can successfully formulate our joint

learning framework, enabling simultaneous event-to-image

reconstruction and (zero-shot) object recognition.

3.2. Reliable Data Sampling
As Latt relies on pseudo labels, the reliability of predic-

tions may affect the overall training procedure and perfor-

mance. To reduce the effects of unreliable predictions, we

devise two reliability indicators named posterior probability

indicator (PPI) and temporally reversed consistency indica-

tor (TRCI). Based on the resultant reliability of predictions,

we sample data with reliable predictions for Latt. The re-

maining unreliable data is excluded from calculating Latt

and used only for Lrep.

Posterior Probability Indicator. Given the reconstructed

image I and the predicted category c, the posterior proba-

bility pc = p(c|I) indicates the model confidence for cat-

egory c. Thus, we use the posterior probability as an indi-

cator of the reliability of the prediction. In particular, we

select K data samples corresponding to the top-K posterior

probabilities among B data samples in the mini-batch. The

set of selected sample indices from PPI, SPPI is defined as,

SPPI = [argsort
i

(p(ci|Ii))]K , (6)

where Ii and [·]K denote the reconstructed image of the ith

event data in the mini-batch and the set of the first K items.

The argsort(·) function returns indices that would sort an

input in descending order.

Temporally Reversed Consistency Indicator. Consider-

ing the temporal aspect of event data, we propose an addi-

tional reliability indicator based on the consistency between

predictions from the original events and the temporally re-

versed events. From the fact that the temporally reversed

events ER = (ui,maxj(tj) − ti, pi)
1
i=N should be catego-

rized into the same category as the original events E , we

presume that the consistent model prediction would indi-

cate the reliability of the data sample. To be specific, the set

of selected sample indices from TRCI, STRCI is defined as

follows:

STRCI = {i|ci = cRi , i = 1, 2, · · · , B}, (7)

where cRi denotes a predicted category of ith reversed event

data ER
i in the mini-batch.

Our final set of selected sample indices SRDS for reliable

data sampling (RDS) is the intersection of SPPI and STRCI:

SRDS = SPPI ∩ STRCI. (8)

Then, the modified attraction loss with RDS is as follows:

Latt = −
∑

i∈SRDS

log
exp(vif

�
ci )∑

j∈SRDS
exp(vif�

cj )
, (9)
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3.3. Local-global Reconstruction Consistency
Along with Latt and Lrep, we further introduce the

local-global reconstruction consistency for spatially regu-

larizing the reconstructed images in a self-supervised man-

ner. With random crop function H, we first crop the EST

of original events EST(E) to obtain the cropped tensor

H(EST(E)) for the local input. Then, the local-global re-

construction consistency loss Lcon is defined as,

Lcon = ‖G(H(EST(E)))−H(G(EST(E)))‖1. (10)

Compared to Latt and Lrep that work on visual features,

Lcon is applied directly to the reconstructed images and

considered as a spatial regularization for the reconstruction

network G. In addition, matching the reconstructed images

from local and global inputs enables the network to capture

the local details, improving the reconstruction quality.

The total loss function for the joint learning framework

is as follows:

Ltotal = λ1Latt + λ2Lrep + λ3Lcon, (11)

where λ1, λ2, and λ3 are weights for Latt, Lrep, and Lcon.

3.4. Employing Unpaired Images
In this section, we expand the use case of our method

by introducing how to employ the existing unpaired im-

ages. Here, we assume that the category of each image is

known, which is the common case for web crawling. Al-

though our framework is capable of event-to-image recon-

struction and object recognition without using any images

and labels, utilizing existing images can possibly improve

the image reconstruction quality and consequently improve

object recognition performance. As shown in Fig. 3, we

replace textual features in Latt with the prototype features

generated from unpaired images. For each category c, we

first encode all images of category c and apply a clustering

algorithm to obtain L clusters in total. Then, we aggregate

the features of each cluster by averaging them, resulting in

L prototype features W c = (wc
i )

L
i=1 ∈ R

L×D.

For data sample index i ∈ SRDS with corresponding vi-

sual feature vi and the predicted category ci, we replace the

textual features fci in Eq. 9 to the closest prototype feature

wci
li

, where the cluster index li is calculated as,

li = argmax
j

(vi(w
ci
j )�). (12)

Our modification of Latt to employ unpaired images is then

defined as follows:

Latt = −
∑

i∈SRDS

log
exp(vi(w

ci
li
)�)

∑
j∈SRDS

exp(vi(w
cj
lj
)�)

, (13)
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Figure 3: Proposed method employing unpaired images in

the category-guided attraction loss. Unpaired images are

further utilized to enhance object recognition performance

and reconstructed image quality.

4. Datasets
The experiments are conducted on two widely used

event-based object recognition datasets, N-Caltech101 [35]

and N-ImageNet [22], which are constructed by film-

ing Caltech101 [15] and ImageNet [14] datasets on LCD

monitor with event camera. Since N-Caltech101 and N-

ImageNet datasets do not provide APS frames, the image in

the original dataset and corresponding event sequence have

different resolutions and are not aligned in pixel-level. To

create a visual prototype in Sec. 3.4, we scrap images from

the original dataset, mimicking the web crawling. To avoid

including paired images of events in the train set, we ran-

domly split the event train set in half for each class. One half

is used to train the model, while the corresponding images

from the other half are used to create the visual prototype.

N-Caltech101 dataset consists of 8,246 event stream data

belonging to 101 different object classes. Each object is

captured with 320 × 245 resolution (average) for 300 mil-

liseconds. Existing works [45, 60] utilized this dataset

to evaluate the performance of image reconstruction and

event-based object recognition.

N-ImageNet is recently released large-scale dataset, con-

taining 1,781,167 event stream data of 1,000 object classes.

Compared to N-Caltech101, it has a larger resolution of

640 × 480 and a very short capturing time with 5 × 10−2

milliseconds. Therefore, each event stream contains signif-

icantly sparse edge information. N-ImageNet is too chal-

lenging for unsupervised studies without ground truth, so

we utilize a randomly sampled subset of 100 classes called

N-ImageNet (Mini). Details about the split of N-ImageNet

(Mini) are provided in the supplementary material.
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Image Class N-Caltech101 N-ImageNet (Mini)

Methods Pair Label Accuracy ↑ FID ↓ IS ↑ Accuracy ↑ FID ↓ IS ↑
Supervised Learning
Histogram [29] � 63.8 - - 49.8 - -

Ev-gait [61] � 61.9 - - 51.3 - -

EST [16] � 81.7∗ - - 52.5 - -

DiST [22] � 73.8 - - 57.9 - -

Unsupervised Learning
HOTS [25] 21.0∗ - - 1.6 - -

Image Reconstruction + CLIP
E2VID [44] (Pre-train) 64.0 83.90 12.81 13.3 147.14 7.82

E2VID [44] (Fine-tune) 59.8 85.31 12.91 13.4 144.57 7.48

E2VID [44] (Fine-tune) � 59.8 86.66 12.61 13.5 144.03 7.40

E2VID [44] (Fine-tune) � 60.1 85.50 12.85 12.7 145.79 7.33

E2VID [44] (Scratch) � 9.4 302.48 2.60 1.0 299.70 1.15

SSL-E2VID [37] (Pre-train) 28.2 281.09 2.36 1.6 324.43 2.08

SSL-E2VID [37] (Scratch) 30.5 228.30 4.37 1.7 250.55 3.00

Wang et al. [59] (Scratch) 42.7 160.34 6.83 10.1 231.94 5.00

Wang et al. [59] (Scratch) � 43.5 72.67 4.50 19.0 180.76 4.89

Wang et al. [59] (Scratch) � 39.7 179.79 4.18 13.2 216.37 4.70

Ours (Text Prompt) 82.46 62.29 14.81 30.16 150.58 7.92

Ours (Visual Prototype) 82.61 54.19 17.59 31.28 135.95 9.74

Table 1: The results of event-based object recognition and event-to-image reconstruction. The bold and underline denote

the best and the second-best performance except for supervised methods, respectively. ∗ denotes the values taken from the

original paper and italic denotes the performance of supervised methods.

5. Experiments
We compare our methods utilizing text prompts or visual

prototypes with other existing methods. We adopt four rep-

resentations (Histogram [29], Ev-gait [61], EST [16], and

DiST [22]) for supervised methods and an unsupervised

method (HOTS [25]). Additionally, three image reconstruc-

tion networks, E2VID [44], SSL-E2VID [37] and Wang et
al. [59], are utilized with CLIP. For a fair comparison with

image reconstruction networks, we record the performance

of three different models for each image reconstruction net-

work: the official pre-trained model, fine-tuned model, and

a model trained from scratch. We evaluate these models un-

der three conditions: paired images, images belonging to

the same class, and randomly selected images. Some cases

are overlooked when the pre-trained model is unavailable

or the training setup does not yield meaningful results. For

implementation details, see the supplementary material.

5.1. Label-free Object Recognition
Text Prompt. The quantitative results are presented in Ta-

ble 1. The proposed method outperforms supervised ob-

ject recognition methods on the N-Caltech101 dataset, de-

spite not using category labels. Also, our method sur-

passes existing unsupervised methods and image recon-

struction methods with CLIP by a large margin under all

metrics. Specifically, ours surpasses the best image recon-

struction with CLIP method, E2VID (Pre-train), by around

28% increase in accuracy even though it utilizes the image

while pre-training. On N-ImageNet, supervised methods

record higher accuracy than ours since the dataset is chal-

lenging due to the sparse events captured within a short

period. However, ours shows a significant improvement

in all metrics compared to other unsupervised and image

reconstruction-based methods. Our approach demonstrates

the ability to perform object recognition and image recon-

struction from event data, even when trained solely on tex-

tual features without any image data.

Visual Prototype. Besides text prompts, our framework

can employ visual prototypes generated from scrapped im-

ages. By incorporating visual information, our visual

prototype-based approach exceeds the performance of re-

lying solely on textual prompts and achieves the best per-

formance among unsupervised and image reconstruction-

based methods under all metrics across both datasets. This

demonstrates the superiority of the visual prototypes.

5.2. Image-free Image Reconstruction
We also compare the reconstruction results of our meth-

ods with other event-to-image reconstruction networks in

Table 1. Note that, as mentioned in Sec. 4, the resolu-

tion and pixel positions of events and corresponding orig-
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(a) N-Caltech101

E2VIDWang et. al. ImageOurs (Prompt) Ours (Proto.)Events

(b) N-ImageNet

Ours (Proto.)*E2VID*

Figure 4: Visual results of event-to-image reconstruction network on (a) N-Caltech101 and (b) N-ImageNet datasets. Ours

shows a higher quality of reconstructed images with fine-grained details than other methods (Wang et al. [59] and pre-trained

E2VID [44]). * denotes the images with brightness and contrast adjustment.

inal images are not aligned. Therefore, pixel-wise metrics

(e.g., L1, PSNR) cannot be used for comparison. Instead,

to assess the visual quality of the reconstructed images, we

utilize two metrics: inception score (IS) [47] and Fréchet

inception distance (FID) [18].

Despite not utilizing any images during training, our text

prompt-based approach surpasses all other image recon-

struction techniques in terms of FID and IS metrics on the

N-Caltech101 dataset. However, in the case of N-ImageNet,

our text prompt approach is the strongest by an IS indica-

tor but falls behind pre-trained E2VID in FID. Since ours

is trained from events of short periods without paired im-

ages, it becomes challenging to learn the distribution of real

images. Instead, utilizing the visual prototype results in the

highest FID and IS indicators in both datasets. This implies

that it can acquire the ability to reconstruct images without

requiring paired images that correspond to events.

We also present the qualitative results in Fig. 4. Wang et
al. [59] utilize the paired image in training but the method

lacks the ability to effectively display intensity contrast, re-

sulting in the loss of many details. While pre-trained E2VID

shows better image quality over [59], it still struggles to

preserve fine details as it operates in a distinct training en-

vironment. This is particularly apparent in the N-ImageNet

dataset, where E2VID generates results that deviate signifi-

cantly from the original image. Conversely, our framework

is able to recover intensity effectively and preserve details

in reconstructed images, even without access to paired im-

ages. Our results closely resemble real images, even in the

challenging N-ImageNet dataset.
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Image Class N-Caltech101 N-ImageNet (Mini)

Methods Pair Label Accuracy ↑ FID ↓ IS ↑ Accuracy ↑ FID ↓ IS ↑
Image Reconstruction + CLIP
E2VID [44] (Pre-train) 58.4 194.26 6.47 31.7 203.05 6.64

E2VID [44] (Fine-tune) 61.7 203.39 7.56 30.0 199.83 6.73

E2VID [44] (Fine-tune) � 61.1 203.40 7.45 30.9 199.44 6.80

E2VID [44] (Fine-tune) � 61.5 202.23 7.56 29.4 203.97 6.08

E2VID [44] (Scratch) � 21.3 362.08 2.43 4.9 333.13 1.36

SSL-E2VID [37] (Pre-train) 24.7 332.43 2.07 5.7 352.53 2.04

SSL-E2VID [37] (Scratch) 25.3 289.36 3.93 6.1 287.98 2.79

Wang et al. [59] (Scratch) 47.5 228.77 4.67 18.7 241.87 6.12

Wang et al. [59] (Scratch) � 48.5 230.74 4.91 20.5 236.78 3.90

Wang et al. [59] (Scratch) � 43.7 215.63 4.66 15.6 237.38 4.40

Ours (Text Prompt) 84.31 147.31 6.81 45.10 202.29 6.31

Ours (Visual Prototype) 85.56 107.58 9.35 51.50 174.24 7.32

Table 2: The results of event-based zero-shot object recognition using CLIP.

5.3. Zero-shot Object Recognition
We further demonstrate the advantages of our framework

over supervised methods by enabling it to be used for zero-

shot object recognition. The reconstructed images can be

utilized for zero-shot object recognition thanks to CLIP’s

capacity to align images with any semantic concepts in an

open vocabulary for zero-shot object recognition. To define

“unseen” categories that are not seen during training, we use

only 80 of the 100 categories for training and the remaining

20 for zero-shot testing.

In Table 2, we present the performance of zero-shot ob-

ject recognition. Without any category labels, our methods

with text prompt achieve a promising 84.31% and 45.10%
on N-Caltech101 and N-ImageNet, respectively. This is

25.91% and 13.4% higher than E2VID pretrained with a

large number of image pairs. These results validate that

although our model learns through the process of being

category-aware, generalization is possible for other cate-

gories, especially “unseen” in this case. Although FID and

IS of our method using text prompts are relatively poor

compared to pre-trained E2VID on N-ImageNet, this can

also be overcome by using visual prototypes. Our method

using the visual prototype is able to achieve a substan-

tial improvement under all metrics. Specifically, in the N-

Caltech101 dataset, our method increases the IS from 6.81

to 9.35, while in the N-ImageNet dataset, it increases the

accuracy from 45.10 to 51.50.

6. Ablation Study and Dicussion

6.1. Ablation Study

We conduct an ablation study to understand how the

components influence performance. Table 3 illustrates the

effectiveness of each component on N-ImageNet dataset.

Latt Lrep Lcon
RDS

Accuracy ↑
PPI TRCI

(1) � 9.50

(2) � � 14.00

(3) � � � 15.68

(4) � � � 28.42

(5) � � � � 28.90

(6) � � � � 28.91

(7) � � � � � 30.16

Table 3: Ablation study of the proposed method.

We start with a baseline, which denotes the removal of ev-

erything except attraction loss, Latt. During the experi-

ment, we notice that if we only apply attraction loss towards

the network without repulsion loss, Lrep, the collapse often

takes place. Therefore, Lrep is essential for stable learning

of Latt. It is worth mentioning the impact of the proposed

PPI on performance. Upon analyzing (4), which displays

the results when PPI is added to (2), it can be seen that the

accuracy has increased by 14.42. Upon examining (5) and

(7), it can be observed that the accuracy increases by 1.26,

validating the impact of the sub-sampling process via TRCI.

Furthermore, the ablation results between (6) and (7) show

that the reconstruction consistency between global and local

preserves the spatial details of the image, leading to perfor-

mance improvement. Finally, the model (7) that has all of its

components incorporated achieves the highest performance.

6.2. Number of Samples in PPI
The K used in PPI for selecting the sample with the high-

est probability impacts the performance of object recogni-

tion. Fig. 5 shows the evaluation of performance on N-

ImageNet dataset based on different values of K. When

K is set to 32, which includes all samples in the batch, the

19873



10
20
30
40

K = 2 K = 4 K = 6 K = 8 K = 16 K = 32

27.28 28.98 30.16 27.66
20.84

15.68

K KK K K K

Figure 5: Object recognition accuracy on N-ImageNet

(Mini) according to K in PPI.
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Figure 6: Object recognition accuracy on N-Caltech101 ac-

cording to K in PPI.

N-Caltech101 N-ImageNet (Mini)

λ2 \ λ3 0.5 1 2 0.5 1 2

0.001 82.71 82.93 81.26 29.62 26.34 30.08

0.005 83.52 82.02 81.66 29.38 26.92 28.72

0.01 82.24 82.46 81.99 29.34 30.16 29.80

0.05 81.99 82.39 82.61 27.50 27.92 29.00

0.1 81.37 82.46 82.17 25.76 26.28 26.32

Table 4: The accuracy according to hyper-paramter in

Eq. 11 when λ1 = 1.

attraction loss, Latt, is applied to even those samples with

low reliability, resulting in the poorest performance. Due

to the same reason, the performance is better when K is

16 than when it is 32, but since unreliable samples are also

selected, the accuracy is relatively lower than in other favor-

able situations. As K decreases, the performance improves,

but it starts to decline when K is less than 6, indicating that

even with high reliability, it is challenging to achieve opti-

mal training if Latt is applied with very few samples. Simi-

larly, we report the accuracy according to the K value on the

N-Caltech101 in Fig 6. Unless an extremely small number

of samples are drawn, as the value of K increases, the per-

formance also improves. However, once a certain threshold

is reached, there is little significant change, and it starts to

decline with further increases. The accuracy exceeds 80%

in all cases, showing robustness to K values. Although the

level of sensitivity varies depending on the dataset, we do

confirm that satisfactory results can be obtained between

K = 4 and K = 10.

6.3. Hyper-parameter Analysis

In Table 4, we report the accuracy according to λ2 and

λ3 in Eq. 11. If the weight of the repulsion loss, λ2, is set

too high, the performance decreases. However, this can be

mitigated by increasing the weight of the local-global re-

72
76
80
84

0 20 40 60 80 100 150 200 300

82.46
81.62

81.00
80.64

79.84
78.86

78.13
77.87

75.18

The number of extra category prompts

Figure 7: Object recognition accuracy on N-Caltech101 ac-

cording to the number of extra category prompts.

construction consistency loss, λ3. The results verify the ro-

bustness of our method according to the λ on both datasets.

6.4. Learning with Superset Categories

In practical terms, it can be challenging for users to find

corresponding categories of the event dataset. As a re-

sult, they often end up taking more categories as prompts.

We tackle these issues by demonstrating that our joint

learning framework works robustly even when employing

more prompts than the categories of the event on the N-

Caltech101 dataset. To avoid using additional prompts that

are too irrelevant to the N-Caltech101 dataset, we randomly

take additional prompts from N-ImageNet. We show the

performance results according to the number of extra cate-

gory prompts in Fig. 7. While the performance decreases

with an increase in extra category prompts, it is worth not-

ing that our algorithm remains reliable even when faced

with over 100 additional prompts beyond the corresponding

category. This suggests that our algorithm can function with

superset categories, even in a situation when the number of

extra categories is much larger than the actual categories.

7. Conclusion
In this work, we propose a joint learning framework for

event-based object recognition with image reconstruction

from events without labels and paired images. With the pro-

posed losses and the reliable data sampling strategy, our ap-

proach allows stable learning of two tasks simultaneously

from pseudo labels. As a result, our approach achieves

exceptional performance in event-based object recognition

and event-to-image reconstruction, all without requiring

category labels and paired images. Our approach success-

fully addresses the challenge of label dependency in event-

based research, which has been a significant obstacle. We

anticipate that our work can be further extended to other

tasks such as event-based zero-shot object detection, zero-

shot semantic segmentation, etc., that have not explored so

far in the research field for event cameras.

Acknowledgements. This work was supported by

the National Research Foundation of Korea(NRF)

grant funded by the Korea government(MSIT) (NRF-

2022R1A2B5B03002636).

19874



References
[1] Arnon Amir, Brian Taba, David Berg, Timothy Melano, Jef-

frey McKinstry, Carmelo Di Nolfo, Tapan Nayak, Alexander

Andreopoulos, Guillaume Garreau, Marcela Mendoza, et al.

A low power, fully event-based gesture recognition system.

In Proceedings of the IEEE conference on computer vision
and pattern recognition, pages 7243–7252, 2017. 1, 2

[2] Patrick Bardow, Andrew J Davison, and Stefan Leuteneg-

ger. Simultaneous optical flow and intensity estimation from

an event camera. In Proceedings of the IEEE conference
on computer vision and pattern recognition, pages 884–892,

2016. 2
[3] Yin Bi, Aaron Chadha, Alhabib Abbas, Eirina Bourtsoulatze,

and Yiannis Andreopoulos. Graph-based object classifica-

tion for neuromorphic vision sensing. In Proceedings of the
IEEE/CVF International Conference on Computer Vision,

pages 491–501, 2019. 2
[4] Marco Cannici, Marco Ciccone, Andrea Romanoni, and

Matteo Matteucci. A differentiable recurrent surface for

asynchronous event-based data. In Computer Vision–ECCV
2020: 16th European Conference, Glasgow, UK, August 23–
28, 2020, Proceedings, Part XX 16, pages 136–152. Springer,

2020. 1, 2
[5] Hila Chefer, Sagie Benaim, Roni Paiss, and Lior Wolf.

Image-based clip-guided essence transfer. In Computer
Vision–ECCV 2022: 17th European Conference, Tel Aviv,
Israel, October 23–27, 2022, Proceedings, Part XIII, pages

695–711. Springer, 2022. 2
[6] Runnan Chen, Youquan Liu, Lingdong Kong, Xinge Zhu,

Yuexin Ma, Yikang Li, Yuenan Hou, Yu Qiao, and Wenping

Wang. Clip2scene: Towards label-efficient 3d scene under-

standing by clip. arXiv preprint arXiv:2301.04926, 2023. 2
[7] Wensheng Cheng, Hao Luo, Wen Yang, Lei Yu, Shoushun

Chen, and Wei Li. Det: A high-resolution dvs dataset for lane

extraction. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition Workshops, pages

0–0, 2019. 2
[8] Hoonhee Cho, Jegyeong Cho, and Kuk-Jin Yoon. Learning

adaptive dense event stereo from the image domain. In Pro-
ceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pages 17797–17807, 2023. 2

[9] Hoonhee Cho, Jaeseok Jeong, and Kuk-Jin Yoon. Eomvs:

Event-based omnidirectional multi-view stereo. IEEE
Robotics and Automation Letters, 6(4):6709–6716, 2021. 2

[10] Hoonhee Cho and Kuk-Jin Yoon. Event-image fusion stereo

using cross-modality feature propagation. In Proceedings of
the AAAI Conference on Artificial Intelligence, volume 36,

pages 454–462, 2022. 2
[11] Hoonhee Cho and Kuk-Jin Yoon. Selection and cross simi-

larity for event-image deep stereo. In European Conference
on Computer Vision, pages 470–486. Springer, 2022. 2

[12] Gregory Cohen, Saeed Afshar, Garrick Orchard, Jonathan

Tapson, Ryad Benosman, and Andre van Schaik. Spatial and

temporal downsampling in event-based visual classification.

IEEE Transactions on Neural Networks and Learning Sys-
tems, 29(10):5030–5044, 2018. 1

[13] Matthew Cook, Luca Gugelmann, Florian Jug, Christoph

Krautz, and Angelika Steger. Interacting maps for fast visual

interpretation. In The 2011 International Joint Conference
on Neural Networks, pages 770–776. IEEE, 2011. 2

[14] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li,

and Li Fei-Fei. Imagenet: A large-scale hierarchical image

database. In 2009 IEEE conference on computer vision and
pattern recognition, pages 248–255. Ieee, 2009. 5

[15] Li Fei-Fei, Rob Fergus, and Pietro Perona. Learning gener-

ative visual models from few training examples: An incre-

mental bayesian approach tested on 101 object categories. In

2004 conference on computer vision and pattern recognition
workshop, pages 178–178. IEEE, 2004. 5

[16] Daniel Gehrig, Antonio Loquercio, Konstantinos G Derpa-

nis, and Davide Scaramuzza. End-to-end learning of repre-

sentations for asynchronous event-based data. In Proceed-
ings of the IEEE/CVF International Conference on Com-
puter Vision, pages 5633–5643, 2019. 3, 6

[17] Daniel Gehrig, Henri Rebecq, Guillermo Gallego, and Da-

vide Scaramuzza. Asynchronous, photometric feature track-

ing using events and frames. In Proceedings of the Euro-
pean Conference on Computer Vision (ECCV), pages 750–

765, 2018. 2
[18] Martin Heusel, Hubert Ramsauer, Thomas Unterthiner,

Bernhard Nessler, and Sepp Hochreiter. Gans trained by a

two time-scale update rule converge to a local nash equilib-

rium. Advances in neural information processing systems,

30, 2017. 7
[19] Yuhuang Hu, Hongjie Liu, Michael Pfeiffer, and Tobi Del-

bruck. Dvs benchmark datasets for object tracking, action

recognition, and object recognition. Frontiers in neuro-
science, 10:405, 2016. 2

[20] Hanme Kim, Ankur Handa, Ryad Benosman, Sio-Hoi Ieng,

and Andrew J Davison. Simultaneous mosaicing and track-

ing with an event camera. J. Solid State Circ, 43:566–576,

2008. 2
[21] Hanme Kim, Stefan Leutenegger, and Andrew J Davison.

Real-time 3d reconstruction and 6-dof tracking with an event

camera. In Computer Vision–ECCV 2016: 14th European
Conference, Amsterdam, The Netherlands, October 11-14,
2016, Proceedings, Part VI 14, pages 349–364. Springer,

2016. 2
[22] Junho Kim, Jaehyeok Bae, Gangin Park, Dongsu Zhang, and

Young Min Kim. N-imagenet: Towards robust, fine-grained

object recognition with event cameras. In Proceedings of
the IEEE/CVF International Conference on Computer Vi-
sion, pages 2146–2156, 2021. 1, 2, 5, 6

[23] Taewoo Kim, Yujeong Chae, Hyun-Kurl Jang, and Kuk-Jin

Yoon. Event-based video frame interpolation with cross-

modal asymmetric bidirectional motion fields. In Proceed-
ings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pages 18032–18042, 2023. 2

[24] Simon Klenk, David Bonello, Lukas Koestler, and Daniel

Cremers. Masked event modeling: Self-supervised pretrain-

ing for event cameras. arXiv preprint arXiv:2212.10368,

2022. 1, 2
[25] Xavier Lagorce, Garrick Orchard, Francesco Galluppi,

Bertram E Shi, and Ryad B Benosman. Hots: a hierarchy

of event-based time-surfaces for pattern recognition. IEEE
transactions on pattern analysis and machine intelligence,

39(7):1346–1359, 2016. 1, 2, 6

19875



[26] Jun Haeng Lee, Tobi Delbruck, and Michael Pfeiffer. Train-

ing deep spiking neural networks using backpropagation.

Frontiers in neuroscience, 10:508, 2016. 1, 2
[27] Hongmin Li, Hanchao Liu, Xiangyang Ji, Guoqi Li, and

Luping Shi. Cifar10-dvs: an event-stream dataset for ob-

ject classification. Frontiers in neuroscience, 11:309, 2017.

2
[28] Iulia-Alexandra Lungu, Federico Corradi, and Tobi

Delbrück. Live demonstration: Convolutional neural

network driven by dynamic vision sensor playing roshambo.

In 2017 IEEE International Symposium on Circuits and
Systems (ISCAS), pages 1–1. IEEE, 2017. 2

[29] Ana I Maqueda, Antonio Loquercio, Guillermo Gallego,

Narciso Garcı́a, and Davide Scaramuzza. Event-based vision

meets deep learning on steering prediction for self-driving

cars. In Proceedings of the IEEE conference on computer
vision and pattern recognition, pages 5419–5427, 2018. 1, 6

[30] Nico Messikommer, Daniel Gehrig, Antonio Loquercio, and

Davide Scaramuzza. Event-based asynchronous sparse con-

volutional networks. In Computer Vision–ECCV 2020: 16th
European Conference, Glasgow, UK, August 23–28, 2020,
Proceedings, Part VIII 16, pages 415–431. Springer, 2020.

1, 2
[31] Diederik Paul Moeys, Daniel Neil, Federico Corradi, Em-

mett Kerr, Philip Vance, Gautham Das, Sonya A Cole-

man, Thomas M McGinnity, Dermot Kerr, and Tobi Del-

bruck. Pred18: Dataset and further experiments with davis

event camera in predator-prey robot chasing. arXiv preprint
arXiv:1807.03128, 2018. 2

[32] Daniel Neil, Michael Pfeiffer, and Shih-Chii Liu. Phased

lstm: Accelerating recurrent network training for long or

event-based sequences. Advances in neural information pro-
cessing systems, 29, 2016. 1, 2

[33] Aaron van den Oord, Yazhe Li, and Oriol Vinyals. Repre-

sentation learning with contrastive predictive coding. arXiv
preprint arXiv:1807.03748, 2018. 4

[34] Garrick Orchard, Ryad Benosman, Ralph Etienne-

Cummings, and Nitish V Thakor. A spiking neural

network architecture for visual motion estimation. In

2013 IEEE Biomedical Circuits and Systems Conference
(BioCAS), pages 298–301. IEEE, 2013. 1, 2

[35] Garrick Orchard, Ajinkya Jayawant, Gregory K Cohen, and

Nitish Thakor. Converting static image datasets to spiking

neuromorphic datasets using saccades. Frontiers in neuro-
science, 9:437, 2015. 2, 5

[36] Garrick Orchard, Cedric Meyer, Ralph Etienne-Cummings,

Christoph Posch, Nitish Thakor, and Ryad Benosman.

Hfirst: A temporal approach to object recognition. IEEE
transactions on pattern analysis and machine intelligence,

37(10):2028–2040, 2015. 1, 2
[37] Federico Paredes-Vallés and Guido CHE de Croon. Back to

event basics: Self-supervised learning of image reconstruc-

tion for event cameras via photometric constancy. In Pro-
ceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pages 3446–3455, 2021. 2, 6, 8

[38] Paul KJ Park, Baek Hwan Cho, Jin Man Park, Kyoobin Lee,

Ha Young Kim, Hyo Ah Kang, Hyun Goo Lee, Jooyeon

Woo, Yohan Roh, Won Jo Lee, et al. Performance improve-

ment of deep learning based gesture recognition using spa-

tiotemporal demosaicing technique. In 2016 IEEE Interna-
tional Conference on Image Processing (ICIP), pages 1624–

1628. IEEE, 2016. 1
[39] Or Patashnik, Zongze Wu, Eli Shechtman, Daniel Cohen-Or,

and Dani Lischinski. Styleclip: Text-driven manipulation of

stylegan imagery. In Proceedings of the IEEE/CVF Inter-
national Conference on Computer Vision, pages 2085–2094,

2021. 2
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