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Abstract

We propose an algorithm, 4DRegSDF, for the spacetime
surface regularization to improve the fidelity of neural ren-
dering and reconstruction in dynamic scenes. The key idea
is to impose local rigidity on the deformable Signed Dis-
tance Function (SDF) for temporal coherency. Our ap-
proach works by (1) sampling points on the deformed sur-
face by taking gradient steps toward the steepest direc-
tion along SDF, (2) extracting differential surface geom-
etry, such as tangent plane or curvature, at each sample,
and (3) adjusting the local rigidity at different timestamps.
This enables our dynamic surface regularization to align
4D spacetime geometry via 3D canonical space more ac-
curately. Experiments demonstrate that our 4DRegSDF
achieves state-of-the-art performance in both reconstruc-
tion and rendering quality over synthetic and real-world
datasets. https://4dregsdf.github.io/

1. Introduction
Reconstructing 4D dynamic scenes from natural videos

is one of the fundamental problems of vision tasks that are
widely used in various fields, such as robotics, autonomous
driving, virtual reality, and many more [6, 8, 14, 24, 32].
It requires an understanding of not just the geometry of
scenes but also the texture, illumination, material proper-
ties, and refraction for photo-realistic rendering. How-
ever, because of the difficulty in reconstructing static 3D
geometry alone, learning the dynamics jointly has been a
challenge that most conventional methods decomposed the
task into multiple stages of geometry reconstruction, mo-
tion representation, texture mapping, and illumination es-
timation [6, 15, 33, 49, 68]. Such sequential pipelines that
first reconstruct geometry and learn motion separately are
not robust to many failure modes of each stage, resulting in
inaccurate reconstruction, which is one of the major bottle-
necks for photo-realistic and geometry-oriented spacetime
scene understanding.
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Figure 1. We present an implicit surface regularization method that
fully utilizes the properties of SDF for robust shape reconstruction
and novel-view rendering in dynamic scenes.

The recent advances in neural implicit representations,
however, made accurate 3D reconstruction with differen-
tiable volumetric rendering possible [40,41,46,50]. Milden-
hall et al. [41] use sinusoidal encoding on the position as
an input to multi-layered perceptrons (MLPs) to learn ap-
pearance and geometry of the target static scene. Specifi-
cally for photo-realistic rendering, neural radiance fields [4,
41, 54, 61, 63, 71, 79] mostly use density and color as the
main output. However, the density representation can result
in artifacts such as floaters and blurry boundaries since the
density representation has high degrees of freedom [67,70].
For accurate 3D reconstruction, the Signed Distance Func-
tion (SDF) started to gain traction for its high fidelity 3D
surface reconstruction [26, 47, 70, 76, 81]. One of the key
component for SDF learning is the Eikonol loss [25] which
regularizes the SDF to have valid gradient. This acts as a
strong regularization not just on the surface but on the en-
tirety of the empty space.

However, the 4D surface reconstruction from monocu-
lar RGB videos – which we reconstruct a dynamic scene –
is still a highly ill-posed problem where we have to recon-
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struct geometry and the dynamics of the scene simultane-
ously. Recent studies proposed to decompose the 4D space
into a static geometry/texture (canonical model) and defor-
mation to embed physical constraints into the 4D represen-
tation [51, 54]. The decomposition of the geometry could
regularize the 4D space, but many papers use additional
cues such as flow, or depth prediction [16, 21, 31, 34, 35,
69, 72, 78]. Still, the reconstruction is an ill-posed problem
and it often fails for two reasons: (1) learning deformation
is sensitive to topological variation and illumination change
that often requires energy minimization terms for stable
training. [28, 51, 60, 66]; (2) using the density representa-
tion – which has high degrees of freedom – could result in
overfitting, floaters, and blurry reconstructions [29, 37, 44]
as shown in Fig. 1. Thus, regularizing the spacetime domain
is one of the most crucial parts of the 4D scene understand-
ing in terms of geometry and graphics.

In this paper, we propose an algorithm for spacetime
surface regularization that improves the fidelity of neu-
ral rendering and reconstruction in dynamic scenes. The
key idea is to enforce the local rigidity on the deformable
Signed Distance Function (SDF) for the 4D geometry rep-
resentation. This allows us to (1) regularize the recon-
struction using more explicit surface representation instead
of fuzzy density measure [41]; (2) sample geometry effi-
ciently for surface regularizations. Specifically, previous
studies [37,47,70] show that Signed Distance Function can
reconstruct geometries accurately with fewer images since
learning the distance to the nearest surface to represent a
surface is strong regularizations compared to the density
function. In addition, the signed distance encodes not just
distance but direction to the closest surface from gradients,
thus allowing efficient surface sampling. Then, the sam-
pled points are used to minimize the deformation energy
and align 4D spacetime geometry via 3D canonical space.

We use three datasets to evaluate our method: one syn-
thetic dataset from Pumarola et al. [54], and two real
datasets: Park et al. [52] and Gao et al. [22]. Our method
achieves state-of-the-art performance on both geometry rep-
resentation and appearance as visualized in Fig. 1. We sum-
marize our contributions as follows:

• Extends the energy minimization in conventional 4D
surface reconstruction studies into learning neural dy-
namic scene reconstruction.

• Regularize geometric properties of the 4D surface by
the total variation of the curvature (TVC) and the ab-
solute curvature of the SDF.

• Robust performance of rendering and reconstruction
under the dynamic few-shot setup compared to recent
implicit geometric regularization studies [20, 44].

2. Related works
Conventional reconstruction and rendering. Video of-
ten contains time-varying properties, such as illumination
change, geometry deformation, topology changes, and rigid
or deformable motion. Such time-varying elements result
in multi-view inconsistency among different frames and in-
crease the level of difficulties of the video rendering task.
For this issue, previous studies often require exhaustive
multi-camera setup [5, 13, 48, 82] or synchronized multiple
videos [2, 3]. None-learning based methods [1, 28, 60, 62]
commonly assume the coarse geometry from RGB-D priors
to introduce the energy regularization for the realistic ge-
ometry and photometric description of the target dynamic
scenes. For instance, terzopoulos et al. [66] use elastic
energy to deform the surface, and Slavcheva et al. [60]
propose three typical energy minimization to prevent un-
controlled deformations. These ideas are related to the
local rigidity to reconstruct plausible and geometrically-
meaningful surface [1, 62] along the spatio-temporal do-
main.

Neural implicit reconstruction and rendering. Recently,
neural scene representation [9,23,40,43,45,50,53,64] gets
noticeable attention with their promising quality of implicit
shape representations, such as occupancy or signed distance
function. Not just geometry, the studies [36,46,58,59] han-
dle both geometry and appearance from multi-view images
by neural implicit representation. In terms of the novel-
view synthesis task, Mildenhall et al. [41] demonstrates the
impressive quality of rendered images. This paper takes a
5D radiance field (3D location and 2D viewing direction)
to infer color and density. Then, it accumulates per-point
inferences along each ray to determine pixel color. Such
formulation makes it possible to train MLPs for learning
geometry and appearance simultaneously. Based on this de-
sign, the series of following papers address the remaining
problems of the pioneering paper [41], such as generaliza-
tion [7, 57, 71], few-shot images [29, 44, 80], or surface re-
construction by SDF [70, 76, 77]. Nonetheless, these meth-
ods mostly focus on targeting static scenes without consid-
eration of the moving objects or temporal change.

Neural video rendering. More recently, several spacetime
view synthesis studies [21, 34, 51, 51, 54, 55, 72] adopt neu-
ral implicit representations to render novel view synthesis
from a video. Typically, these studies can be divided into
two dominant strategies: deformable NeRFs [19,35,51,54]
and prior-based video NeRFs [21, 34, 72]. Concurrent
works [19, 35] propose fast deformable neural rendering
methods by using voxel representations. Typically with-
out relying on off-the-shelf information, such as monocular
depth maps [34, 78], surface normal maps [81], or optical
flow [35], we aim to render and reconstruct scenes purely
from posed images.
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Regularization for neural implicit representation. Rely-
ing on the nature of the geometry, a series of papers [29,44,
55] present the effectiveness of the regularization in learn-
ing neural fields. Under the few-shot setup, Niemeyer et
al. [44] regularize the unobserved viewpoints via normal-
izing flow models. Kim et al. [29] apply entropy loss to
alleviate reconstruction inconsistency. Fu et al. [20] apply
multi-view consistency for the static surface reconstruction.
In light of the growing popularity of spatio-temporal surface
reconstruction and neural rendering, this paper proposes a
novel approach to regulating the spacetime surface through
the use of 3D canonical space. We have observed that the
direct application of the SDF to this deformation field can
result in low-fidelity reconstruction and rendering due to ill-
posed problems in dynamic scenes. To overcome this issue,
we highlight the importance of our regularization to achieve
precise reconstruction and rendering.

3. Preliminary

Neural radiance field [41] allows fully differentiable
learning of geometry and appearance by learning color and
density from RGB images. Recent studies [42, 70] on sur-
face reconstruction utilize Signed Distance Function (SDF)
to represent scene geometry since The SDF representation
has specific favorable characteristics that give it an edge for
this particular objective.

Differential surface geometry in SDF. The Signed Dis-
tance Function (SDF) stands as a predominant represen-
tation for implicit geometry. We can derive mathematical
attributes on a crisp surface from SDF that could be chal-
lenging to derive from density-based representations: sur-
face normal vector n = ∂s

∂p , tangent plane projection ma-
trix P = I − n⊤n, and surface curvature through the Hes-
sian matrix H = ∂2s

∂p2 [73] Note that I denotes the iden-
tity matrix, s the SDF value, and p a 3D coordinate. We
can derive these mathematical attributes because SDF rep-
resents the distance to the closest surface at every point. We
can force this property for implicit geometry by using the
Eikonal loss [25], which forces the norm of gradients of
SDF (∥n∥2−1)2 to be 1, and the loss has been widely used
as an important regularization for 3D reconstruction meth-
ods [20, 25, 70, 76].

NeuS [70] uses the same volumetric rendering equation in
NeRF [41]. However, the opaqueness α is derived from the
SDF value s as α=1−exp

(
−
∫ ti
ti+1

ρ(t)dt
)

where ρ is the

density function ρ=max
(
s−∆s
s+∆s , 0

)
and ∆s is the displace-

ment of the SDF. Following NeRF [41], NeuS utilizes the
volumetric rendering as:

Ĉ(r) =

N∑
i=1

Tiαici s.t. Ti = exp(−
i−1∑
j=1

σiδi), (1)

where ci denotes the color of the i-th sample point pi, αi

is the opaqueness over distance δi on the ray r = {pi}. Ti

is the cumulative transmittance along the ray. Based on this
formulation, NeuS [70] is trained purely from posed images
to describe the static scene surface using the SDF.

Deformable NeRF [51, 54] is one way of novel-view syn-
thesis methods in the 4D dynamic scenes. The idea is to
decompose the 4D deformed space [p; t] into the 3D canon-
ical geometry pc and the temporal deformation ∆p as:

pc = Deform([p; t]) = p+∆p, (2)

where ∆p(=h([p; t])) is the amount of space deformation,
a function h(·) represents a deformation field, and the defor-
mation field transports a point [p; t] to the canonical coor-
dinate pc = [xc, yc, zc]. Although progress has been made
in the field of dynamic neural rendering, we address the im-
portance of the spacetime surface regularization for learn-
ing appearance, geometry, and motion in dynamic scenes as
visualized in Fig. 1.

4. Method
This section presents our framework, 4DRegSDF. Our

network represents the 4D spacetime domain as a combi-
nation of the static geometry in Signed Distance Function
and the deformation field. Given a set of posed frames
from a monocular RGB video, our network is trained to
encode a dynamic scene (Sec. 4.1) and apply our space-
time surface regularization (Sec. 4.2). In contrast to previ-
ous video neural field papers that use priors such as depths
or flows [21, 34, 35], our method rely only on posed image
frames from a video as input to the system making the sys-
tem simple and efficient.

4.1. Deformable Signed Distance Function

Given a point p at time t within the deformed space and
its viewing direction d, our model f predicts the color c,
the SDF value s, and the deformation delta ∆p. This can
be expressed as:

[s; ∆p; c] = f([p; t],d), (3)

As visualized in Fig. 3, we use the same volumetric render-
ing on the SDF (Eq. 1) [70] to get color value per each ray r,
and minimize the photometric loss Lc as,

Lc =
∣∣∣C(r)− Ĉ(r)

∣∣∣
1
, (4)

where C and Ĉ are ground truth color and predicted color,
respectively, along a query ray r.

4.2. Spacetime surface regularization

Reconstructing dynamic surfaces from videos presents
challenges due to its inherent complexity, often leading to
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Figure 2. Surface sampling for our spacetime surface regularization in three stages.
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Figure 3. Ray sampling for neural rendering [70].

visual artifacts as shown in Fig. 6. Accordingly, designing
a robust regularization is one of the critical problems for
successful 4D reconstruction [1, 51, 60, 62, 66, 73].

In this section, we adopt three regularizations to enhance
the learning of deformable Signed Distance Function from
videos: 1. total variation of curvature, 2. the absolute cur-
vature space-time, and 3. the Eikonal loss [25]. The first
regularization aims to limit the amount of change in curva-
ture induced by motion and the second regularization flat-
tens out the 4D reconstruction and limits unnecessary kinks.
The last regularization [25] enforces the gradient of SDF to
be valid. First two regularizations are related to the prop-
erties of surface and can be computed only on the surface.
We elaborate on the sampling strategy and how to augment
the samples in continuous space and time, and lastly present
the regularizations. Overall pipeline is visualized in Fig. 2.

Spacetime surface sampling. The most commonly used
sampling in neural fields is ray casting where you select
points along a ray for rendering. Many regularizations pro-
posed for NeRF also use samples along a ray [20,29,37,44].
However, surface constraints we adopt require samples on
the surface of objects no along rays. For this, we use the
definition of the SDF for surface sampling.

The SDF is defined as the (signed) distance to the clos-
est surface from the query point. In static scenes, the
surface normal indicates the direction of the closest sur-
face [12, 39, 73]. However, in 4D dynamic scenes, time is
another component to determine the closest surface. In our
setup, our network f(·) is trained to infer the SDF value s
from a query [p; t]. Accordingly, the gradient step towards
the closest surface naturally involves and spatial update as

Algorithm 1 Spacetime surface regularization
Input: Randomly initialized 4D point [pi; ti].
Output: Total regularization Le.

1: function 4DRegSDF([pi, ti])
2: [p, t]← [pi, ti]
3: for iterations do
4: [p, t]← StepGrad([p; t]) ▷ Eq. 5
5: end for
6: pc ← Deform([p; t]) ▷ Eq. 2
7: t′ ← Random(0, 1) ▷ Time augmentation
8: p′ ← InvDeform([pc; t

′]) ▷ Eq. 6
9: Le ← ComputeLoss([p; t], [p′; t′]) ▷ Eq. 9

10: return Le

11: end function

well as the time update. Given randomly initialized point pi
at the time ti, each query point travels along the spacetime
SDF ‘hills’ to be located at the isosurface as:

[p; t] = StepGrad([pi; ti]) = [pi; ti]− s · ∂s

∂[pi; ti]
, (5)

where ∂s
∂[p;t] is the gradient of the SDF value s in terms

of [p; t]. By doing so, we can regularize the 4D sur-
face in a wide-spectrum time domain including unobserved
timestamps within training samples. Thus, by iteratively
conducting this operation above, we move the initial 4D
point [pi; ti] to [p; t] closer to the isosurface having smaller
SDF value, as described in L. 2-5 of Alg. 1.

Temporal augmentation. Given the surface samples [p; t]
from Eq. 5, we enforce the local rigidity to the surface
samples for temporal coherency. First, we augment the
time component t into randomly selected t′ as visualized
in Fig. 2-(b). Specifically, we use the inverse-deformation
network g [35, 45, 74] which is formulated as:

p′ = InvDeform([pc; t
′]) = g(pc, t

′), (6)

where pc indicates the points at the canonical space from
[p; t] (Eq. 3). p′ is a inverse-deformed point from pc at the
augmented time t′ as stated in L. 6-8 of Alg. 1. Through our
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temporal augmentation stage, we get a pair of two surface
samples that correspond to each other, ([p; t], [p′; t′]). This
pair will be used for evaluating spatio-temporal constraints
the next section.

Regularization on the spacetime curvature. Inspired by
the conventional 4D reconstruction studies [1,60,62,66], we
regularize geometric properties of dynamic surfaces: the to-
tal variation of curvature (TVC) and the absolute curvature
of SDF surface on continuous time. The TVC measures the
change of the curvature at different time steps and by mini-
mizing the change, we assumes that surface should deform
as little as possible while satisfying video observations. On
the contrary, the absolute curvature measures curvature val-
ues and thus regularizes the complexity of the reconstruc-
tion and movement by minimizing the distortion in space.
For the TVC, we adopt the stretching loss [73] where it
minimizes the difference of inner products of two tangent
vectors at two different time steps: v1, v2 at t and v′1, v

′
2 at

t′. The tangent vector is a remainder of a vector on surface
v = Pp where P (= I − nn⊤) is the tangential projec-
tion matrix and n(= ∂s

∂p ) is the surface normal vector at a
point p. Let J1, J2 be the Jacobians transforming v1, v2 to
v′1, v

′
2 respectively. Then, we compute the TVC as:

|v⊤1v2 − v′⊤1 v2| = |p⊤
1P

⊤
1P2p2 − p⊤

1P
⊤
1J

⊤
1J2P2p2|, (7)

∝ |PT
1 (I − JT

1 J2)P2|, (8)

The absolute curvature of the 4D SDF is the L1 norm of
the Hessian matrix H = ∂2s

∂p2 . By minimizing the absolute
curvature, the reconstruction removes unnecessary curva-
tures or kinks in the reconstructions making the surface as
smooth as possible. The total regularization is:

Le(p, p̂) = ∥P⊤(I − JgJf )P∥2 + ∥H∥1, (9)

where Jg and Jf are the Jacobians that transformed points
via the deformation network f(·) and the inverse deforma-
tion network g(·), respectively.

We summarize our spacetime surface regularization in
Algorithm 1. We achieve high-quality reconstruction re-
sults that are geometrically simple while they match video
observations through neural rendering and minimizing the
photometric loss. Finally, we train our network by combin-
ing the proposed losses as below,

L = λcLc + λccLcc + λeLe + λeikLeik. (10)

where λc = 1, λcc = 0.01, λe = 0.001, and λeik =
0.01. Leik represents the Eikonal loss [25] following
NeuS [70]. Also, we enforce cycle consistency loss in
learning forward/inverse deformation fields by Lcc = ∥p−
g(pc, t)∥1 [35, 45, 74].

5. Experiments

5.1. Novel-view synthesis

Given a set of posed images, the novel-view synthesis
aims to render images from viewpoints that are not in the
part of the provided posed images. Since our 4DRegSDF
also follows the neural rendering schemes, we compare the
quality of rendered images with the recent spacetime NeRF
papers on novel-view synthesis evaluation.

Dataset. We utilize the Dynamic NeRF Synthetic dataset
provided by D-NeRF [54] and the real-world scenes from
HyperNeRF dataset [52]. These datasets offer natural
monocular videos with dynamic frames and continuous
camera motion. We follow the official train/test split for
training and evaluation over ours and related studies. Fol-
lowing the conventions [41, 51, 54], we evaluate the render-
ing performance through PSNR, SSIM, and LPIPS.

Comparison. We compare our method with a few state-
of-the-art 4D NeRF papers, D-NeRF [54], TiNeuVox [19],
which also do not rely on the prior information [21, 34, 35].
Also, we extend NeuS [70] for the 4D dynamic recon-
struction task by adopting a deformation network from D-
NeRF [54]. We denote this deformable NeuS as ‘NeuS+D’
and use it One of the concurrent works, DeVRF [35], also
proposes a deformation-based dynamic neural rendering
task. However, the paper requires additional multi-view
static scenes for initialization so we did not include it in
our experiment.

When compared to existing research, our method
achieves state-of-the-art performance among the recent
spacetime NeRF methods as shown in Table 1 and Table 2.
Many of these studies rely on view-dependent surface rep-
resentations and the density function [41]. In contrast, our
method utilizes the SDF representation, allowing us to more
accurately represent geometry. This distinction influences
the rendering quality. Notably, in terms of the qualitative
reconstruction results, the previous state-of-the-art method
struggles to accurately capture surface details as illustrated
in Fig. 4 and Fig. 5. We suspect this limitation is rooted
in the inherent issues of the density representation. As a
result, many of the earlier spacetime NeRF studies place
a heavy emphasis on the rendering quality. However, we
claim that by imposing scene geometry constraints through
our spacetime surface regularization, we can further im-
prove the quality of the geometry under the precise geome-
try presentation, namely SDF.

5.2. Scene reconstruction

Dataset. Dycheck dataset [22] is one of the few datasets
that provide ground truth geometry information for dynamic
scenes. Yet, the ground truth depth maps are only pro-
vided for the training data split and we could not evalu-
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Dynamic Synthetic NeRF dataset [54]
Bouncing balls Hell warrior Hook Jumping jacks Lego Mutant Stand up T-rex
PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM

NeRF [41] 20.26 0.91 13.51 0.81 16.65 0.84 18.28 0.88 20.30 0.79 20.31 0.91 18.19 0.89 24.49 0.93
D-NeRF [54] 38.93 0.98 25.02 0.95 29.25 0.96 32.80 0.98 21.64 0.83 31.29 0.96 32.79 0.98 31.75 0.97
TiNeuVox [19] 40.73 0.99 28.17 0.97 31.45 0.97 34.23 0.98 25.02 0.92 33.61 0.98 35.43 0.99 32.70 0.98
TorchNGP [65] 40.44 0.99 24.54 0.94 31.46 0.97 31.45 0.95 25.07 0.93 35.86 0.99 35.29 0.99 31.35 0.97
NeuS+D [70] 36.98 0.96 23.77 0.94 28.09 0.94 28.28 0.93 24.17 0.90 30.17 0.94 30.99 0.95 24.94 0.93
Ours 40.89 0.99 25.72 0.95 32.20 0.98 33.63 0.99 25.10 0.94 31.83 0.96 33.60 0.99 33.64 0.99

Table 1. Rendering evaluation in the D-NeRF synthetic dataset. We use PSNR (↑) and SSIM (↑) for the metric.

HyperNeRF dataset [52]
Broom 3D Printer Chicken Peel-banana MEAN

PSNR MS-SSIM PSNR MS-SSIM PSNR MS-SSIM PSNR MS-SSIM PSNR MS-SSIM
NeRF [41] 19.9 0.653 20.7 0.780 19.9 0.777 20.0 0.769 20.1 0.745
NV [36] 17.7 0.623 16.2 0.665 17.6 0.615 15.9 0.380 16.9 0.571
Nerfies [51] 19.2 0.567 20.6 0.830 26.7 0.943 22.4 0.872 22.2 0.803
TorchNGP [65] 19.8 0.571 21.1 0.841 27.6 0.946 21.1 0.851 23.5 0.815
TiNeuVox [19] 21.5 0.686 22.8 0.841 28.3 0.947 24.4 0.873 24.3 0.837
NeuS+D [70] 21.9 0.689 22.1 0.839 25.9 0.933 24.6 0.875 23.6 0.834
Ours 23.3 0.702 23.9 0.859 29.8 0.965 25.4 0.881 25.3 0.851

Table 2. Quantitative evaluation in the HyperNeRF dataset [52].

Dycheck dataset [22]
Creeper Haru-sit Paper-windmill Sriracha-tree

RMSE↓ CD↓ F1↑ PSNR↑ RMSE↓ CD↓ F1↑ PSNR↑ RMSE↓ CD↓ F1↑ PSNR↑ RMSE↓ CD↓ F1↑ PSNR↑
TorchNGP [65] 0.340 0.050 87.78 17.32 0.502 0.081 76.33 27.59 0.311 0.057 81.98 23.3 0.311 0.052 81.44 27.9
TiNeuVox [19] 0.345 0.048 88.42 16.69 0.634 0.080 75.18 26.11 0.313 0.053 82.29 24.96 0.325 0.057 81.50 30.57
NeuS+D [70] 0.350 0.071 74.18 17.05 0.491 0.118 60.13 27.88 0.295 0.038 91.32 22.52 0.283 0.045 85.23 26.83
Ours 0.323 0.064 82.36 17.57 0.494 0.077 78.53 28.29 0.310 0.051 83.24 24.26 0.290 0.042 92.25 30.66

Table 3. Evaluation in the Dycheck dataset [22] Note that CD (↓) means Chamfer Distance and F1 (↑) is F1-score.

ate geometry reconstruction quality on the test split. Ac-
cordingly, we subsample the official train data to form a
new train/test split. The new split consists of 75% training
data and 25% test data per scene. For evaluation metrics,
we follow the three geometric measures, RMSE, Cham-
fer Distance, and F1-score. RMSE is a widely-adopted
metric for depthmap prediction evaluation [10, 17, 27, 56].
Chamfer distance [11, 18] measures the distance between
the ground truth point cloud and the prediction. Meanwhile,
the F1-score measures the 3D volume occupancy between
the ground truth and the predictions [11, 30, 75].

Comparison. To evaluate geometric reconstruction qual-
ity, we evaluate on both view specific depth map predic-
tion task and the 3D geometry reconstruction task. For
depth map prediction task, we extract the depth map at the
zero-crossing of SDF. For density-based NeRFs [19], we
render depth maps by computing the expected depth. For
the final metric, measure the RMSE in the neural volume
rendering schemes [41, 70]. For 3D reconstruction evalu-
ation, we follow the surface extraction pipeline provided
by the official D-NeRF implementation for density-based
methods [19, 54]. In our case, we extract mesh at the zero-
crossings of SDF by using marching-cube algorithm [38]
for 3D geometric evaluation. For evaluation metrics, we
utilize the Chamfer Distance (CD ↓), F1-score (F1 ↑), and
RMSE ↓.

Based on this formulation, we calculate the 2D/3D ge-
ometric performance by ours and recent studies [19]. As

described in Table 3, our method still consistently outper-
forms the quality of 4D surface reconstruction tasks. We
will state the detailed ablation study in the following sec-
tion, however, in short, the dominant performance improve-
ments are driven by the plausible surface representation by
Signed Distance Function and the proposed surface regular-
ization schemes. Finally, our 4DRegSDF successfully ren-
ders and reconstructs the 4D dynamic scenes thanks to the
plausible geometry representation and learning schemes

6. Ablation studies

In this section, we provide additional experiments to an-
alyze each module of the 4DRegSDF. Note that additional
ablation results are included in the supplementary material.

Effectiveness of surface regularization. Surface regular-
ization is the key to making 4D surfaces plausible shapes
while learning deformation. When comparing with Fig. 6-
(b) and (c), we found that Le affects the structure of the
reconstructed table. It implies that our surface regulariza-
tion takes a role in shaping plausible structures by aligning
geometry between surfaces at different times.

Comparison with different regularization schemes. We
compare our surface regularization with previous regular-
ization schemes, e.g. RegNeRF [44] and GeoNeuS [20], as
in Table 5. Based on these results, we claim that our space-
time surface regularization is particularly promising com-
pared to previous regularization strategies. Also, we pro-
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4DRegSDF (ours) Ground truth

PSNR: 25.55

TiNeuVox

PSNR: 24.87

No ground truth mesh

Figure 4. Reconstruction results (mesh) with rendered images from our 4DRegSDF and previous state-of-the-art method, TiNeuVox [19].

4DRegSDF (ours)NeuS + DeformationTiNeuVox Ground truth

PSNR : 25.96 PSNR : 23.77 PSNR : 26.85

PSNR : 30.27PSNR : 29.94 PSNR : 21.42

Figure 5. Qualitative results in HyperNeRF dataset [52]. We compare previous state-of-the-art method, TiNeuVox [19], NeuS [70] with
deformation [54] and our 4DRegSDF. Left: rendered color images, right: rendered surface normal maps.

vide details of our surface regularization in Table 6. Note
that we calculate avg. PSNR from HyperNeRF dataset [52],
and avg. RMSE from DyCheck dataset [22].

Deformation network design. Unlike deformable NeRF
methods [51, 54] that sequentially process deformation and

rendering (Eq. 2), our 4DRegSDF proposes to jointly learn
deformation and SDF through a unified network f (Eq. 3)
as stated in Sec. 4.1. It turns out that our network design
shows the better quality of surface normal maps as visu-
alized in Fig. 6-(a) and (c). Such architecture design can
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(c) 4DRegSDF with ℒ! (ours)(b) 4DRegSDF w/o ℒ!(a) NeuS + Deformation

Figure 6. Qualitative comparison on (a) NeuS [70] combined with a deformable network [54], (b) ours without surface regularization, and
our final 4DRegSDF method. Left: rendered color image, right: rendered surface normal map.

Ratio of trained data
100% (Tables 2,3) 25%

PSNR MS-SSIM CD PSNR MS-SSIM CD
TiNeuVox [19] 22.8 0.841 0.057 18.1 0.702 0.085
NeuS + D [70] 22.1 0.839 0.045 19.4 0.780 0.064
Ours w/o Reg. 22.4 0.839 0.042 18.1 0.770 0.060
Ours 23.9 0.859 0.042 21.1 0.852 0.058

Table 4. Ablation study on few-shot frames. We choose the two
scenes, 3D printer and Sriracha-tree, for the photometric and ge-
ometry evaluation. Ratio indicates the percentage of the data that
we used for training the methods.

Network Preserve (✓) Evaluation
RegNeRF GeoNeuS Ours PSNR ↑ RMSE ↓

4DRegSDF
✓ 24.1 0.414

✓ 24.7 0.384
✓ 25.3 0.354

Table 5. Comparison of various regularization methods. Reg-
NeRF [44] regularizes unobserved viewpoints and GeoNeuS [20]
applies multi-view consistency as constraint.

be one choice that reduces deformation ambiguity by learn-
ing jointly with SDF within a unified network f and having
cyclic deformation constraints (Lcc).

Sparse view. To further verify the benefit of our surface
regularization schemes, we conduct additional experiments
regarding the sparse input views [29, 44]. For experiments,
we use ‘3D printer’ and ‘Sriracha-tree’ for evaluation. As
stated in Table 4, when the training data is reduced by
25%, our method shows less performance drop when us-
ing a regularization scheme, showing less than 10% perfor-
mance drop. Such results consistently support the claim that
regularization techniques are effective for learning radiance
fields under the given sparse views [29, 44].

7. Conclusion

We introduce using geometric spacetime regularizations
for neural rendering and surface reconstruction in dynamic

Network Preserve (✓) Evaluation
TVC Abs 4D sample PSNR ↑ RMSE ↓

4DRegSDF
✓ ✓ 24.4 0.392

✓ ✓ 24.9 0.379
✓ ✓ ✓ 25.3 0.354

Table 6. Ablation study on regularization. We decompose Le

(Eq. 9) into total variation of curvature (TVC) and absolute curva-
ture of SDF (ABS). 4D sample indicates Eq. 5.

scenes from a monocular video. While previous dynamic
NeRF methods have primarily targeted rendering quality,
our approach places greater emphasis on providing accu-
rate geometry representation via surface regularization. Our
method has demonstrated promising performance in both
dynamic novel-view synthesis and 4D surface reconstruc-
tion tasks. However, a notable constraint of this work is
it limited capability in processing extended videos and we
will extend this work for long format videos.
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[56] René Ranftl, Katrin Lasinger, David Hafner, Konrad
Schindler, and Vladlen Koltun. Towards robust monocular
depth estimation: Mixing datasets for zero-shot cross-dataset
transfer. IEEE transactions on pattern analysis and machine
intelligence, 2020.

[57] Yufan Ren, Tong Zhang, Marc Pollefeys, Sabine Süsstrunk,
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