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Abstract

In digital photography, autofocus is a key feature that
aids high-quality image capture, and modern approaches
use the phase patterns arising from dual-pixel sensors as
important focus cues. However, dual-pixel data is prone to
multiple error sources in its image capturing process, in-
cluding lens shading or distortions due to the inherent opti-
cal characteristics of the lens. We observe that, while these
degradations are hard to model using prior knowledge, they
are correlated with the spatial position of the pixels within
the image sensor area, and we propose a learning-based
autofocus model with positional encodings (PE) to capture
these patterns. Specifically, we introduce Rol-PE, which en-
codes the spatial position of our focusing region-of-interest
(Rol) on the imaging plane. Learning with Rol-PE allows
the model to be more robust to spatially-correlated degra-
dations. In addition, we also propose to encode the current
focal position of lens as lens-PE, which allows us to sig-
nificantly reduce the computational complexity of the auto-
focus model. Experimental results clearly demonstrate the
effectiveness of using the proposed position encodings for
automatic focusing based on dual-pixel data.

1. Introduction

Automatically focusing to the region of interest is a fun-
damental problem in digital photography. When an object
of interest is not in focus, the captured image will contain
defocus blur, which significantly degrades perceptual im-
age quality. Furthermore, an autofocus module usually ap-
pears early in the image signal processing (ISP) pipeline of
a camera, making this type of blur propagate errors that are
difficult to remove.

Existing works on autofocus (AF) mainly fall into two
categories: contrast detection autofocus (CDAF) or phase
detection autofocus (PDAF). CDAF approach first defines
a sharpness metric of an image region of interest (Rol) and
then moves the lens back and forth to achieve maximum
sharpness. Since CDAF methods require a large number of
observations and physical lens movements while searching,

they are notoriously slow and power-consuming. Such limi-
tations in contrast-based AF algorithms led to an innovative
image sensor design, i.e. phase pixels (dual/quad-pixels),
which provides an important cue for focus estimation.

PDAF approach determines that a region is in-focus by
comparing the disparity between the left and right dual-
pixel image. Since the amount of defocus is correlated with
the disparity, many methods pre-calibrate the relationship
between disparity and focus distance to make the predic-
tion of the lens position in a single shot. However, these
pre-calibrated predictions can be error-prone due to many
physical / optical constraints, such as lens shading, geomet-
rical distortions due to optical refraction of the camera lens,
or extra variations when combined with optical zoom. Note
that PDAF can be formulated as an extremely narrow (sub-
pixel level) baseline stereo problem, and it is well known
that depth estimation is error-prone with a narrow base-
line [14, 26]. Moreover, recent smartphone cameras use
smaller pixels compared to DSLRs, which makes them even
more sensitive to signal noise and distortions. Individually
modeling all error sources is impractical, and we propose a
learning-based approach to tackle these problems.

In this paper, we present a novel framework for auto-
focus that better leverages the dual-pixel data. We focus
on two aspects: 1) improving AF accuracy by handling
spatially-varying distortions and 2) improving efficiency to
be practically applicable even on low-end smartphones.

First, we speculate that the phase statistic of the dual-
pixel data is different w.xt. its spatial position relative to the
full image sensor plane that receives light. Our motivation is
illustrated in Fig. |, where we observe that the same object
located at the same depth can have different disparities w.r.z.
the coordinates projected on the imaging plane. We also cal-
culate the absolute disparity of our full training dataset by
moving the lens from index 0~49 for the patches that have
the same ground truth depth (with focal index 10). Ideally,
the calculated disparity values should be the same regard-
less of the relative position in the image sensor plane ', but

I'The ideal setting assumes a thin-lens approximation. To be precise, the
disparity values of different position in the imaging plane can be different
due to the field curvature of the thick (real-world) lens, meaning that the
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Figure 1: Different characteristics of dual-pixel data de-
pending on the spatial position of each region of interest.
We plot the calculated disparities with the same GT depth
(focal index 10) w.r.t. each input lens position and also pro-
vide the reference disparity values in an ideal case. Note
that the two regions on the imaging plane with the same
depth should have the same disparities, but the values vary,
resulting in different depth predictions. This motivates us to
develop a new method that is robust to spatially-correlated
distortions that hinders consistent disparity calculation.

we can observe clear variations from the plot in our feasi-
bility test of Fig. |. Therefore, we propose to learn these
spatially-varying statistics by encoding the position of our
region-of-interest (Rol), which we name Rol-PE. Training
with our Rol-PE allows the model to effectively learn to be
more robust to distortions and significantly boosts the AF
accuracy. Note that, while our main target is to improve
PDAF performance by exploring dual-pixel data, the pro-
posed Rol-PE can also benefit CDAF algorithms by han-
dling global distortions e.g. lens shading (see Sec. +.2).
Second, we introduce a simple and compact representa-
tion to encode the current position of lens, named lens-PE.
Using lens-PE allows us to substantially decrease the com-
putational complexity of our AF model and also use smaller
baseline architectures with minimal performance drop. For
instance, we show in Sec. that lens-PE can make our
MobileNet-v2 [32] based AF model an order of magnitude
more efficient (in terms of the # of parameters or FLOPs).
Furthermore, our even smaller MCUNet [21] based model
can still outperform the state-of-the-art [12] with less than

regions located at the same GT metric depth can have different disparity
values. However, note that there are also many other sources of spatially-
varying distortions in the real world that can be compensated by learning
with the proposed Rol-PE, so we generously use the term “same depth” in
Fig. I.

4MB SRAM (with float32 precision).
Our contributions can be summarized as follows:

* We propose two positional encodings for camera auto-
focus, Rol-PE and lens-PE, that effectively capture the
complex characteristics of dual-pixel data.

* The proposed model significantly improves the focus-
ing accuracy and the computational complexity.

* We thoroughly analyze the effects of spatial position
in the dual-pixel data for various problem settings.

2. Related works

Conventional method for camera autofocus relies on the
sharpness (or contrast) of an image to determine an optimal
in-focus lens position. This approach is called contrast de-
tection autofocus (CDAF), and many novel techniques have
been proposed for robustly calculating the image sharpness
based on image statistics [0, 15, 49] or frequency-domain
image representations [13, 18, 19, 44, 47]. For CDAF, mul-
tiple images along the focal axis are sequentially captured to
construct a focus curve, and the peak position of the curve
is considered as the correct in-focus position of the lens
with maximum contrast. While showing good AF perfor-
mance, CDAF methods inevitably suffer from high latency
issues, since they require sequential lens movements and
image captures at multiple positions.

Recently, the latency issues of CDAF algorithms are be-
ing tackled by newly-developed image sensors that provide
phase information, and AF algorithms running on these sen-
sors are called phase detection autofocus (PDAF) [34]. The
most widely-used sensor type is dual-photodiode (2PD, also
called dual-pixel sensors), of which a single photodiode
(pixel) is split into two. PDAF algorithms then detect the
sign and the amount of disparity between the two (left/right)
split pixels, and the direction and the amount of lens move-
ment can be determined with a single image capture [17].
However, most of the existing methods require manual cal-
ibration that maps disparities to lens movements on hard-
ware, which are prone to errors from e.g. lens fabrication or
low-light noise. In this work, we mainly target dual-pixel
data, but note that our proposed techniques can be easily
extended to other hardware variations for phase detection
(e.g. SuperPD [46], 2x2 On-Chip Lens [25], etc.).

Existing works on PDAF are fast, but their accuracy suf-
fers from multiple sources of errors, which are difficult to
model individually. Thus, numerous works try to improve
the performance with learning-based solutions, including
task-specific AF approaches for microscopy images [30, 48]
and deep learning based methods with custom hardware set-
tings for obtaining phase information [41, 3, 4]. However,
existing works only utilize proprietary (dual-pixel) data,
which make them difficult to compare.

13159



Lens-PE

4-channel $

@ Channel-wise concatenation

5-channel

- -

L/ R/ Rol-PE

Left/Right sub-images

> MobileNet-v2 —— ———

L/ R /Rol-PE / Lens-PE

Autofocus model Predicted focal index

Figure 2: Overview of our AF framework with the proposed position encodings: Rol-PE and Lens-PE.

In the computer vision community, modern dual-pixel
sensors are gaining increased attention, being applied to
single-image depth estimation [27, 31], defocus deblurring
[45], etc. For the task of autofocus, Herrmann et al. [12]
is the first to propose a large-scale public dataset for train-
ing AF models on various settings, including the dual-pixel
RAW input images. While demonstrating the state-of-the-
art performance, [12] uses relatively heavier baseline model
compared with the previous approaches. In this work, we
use [12] as our baseline and introduce two position encod-
ings, Rol-PE and lens-PE, which enables us to significantly
boost the accuracy and the efficiency of our AF models.

Depth from focus. While there has been little attempts
for AF in the computer vision community, it is worth men-
tioning the progress in monocular depth estimation with fo-
cus cues. The basic principle of depth from focus (DfF)
methodology is to exploit the focus physics that the object
within the focus range will appear clear, but the object gets
blurry when outside the focus range due to the circle-of-
confusion (CoC) of the camera. Traditional DfF pipelines
start from building a focal sweep of multiple images by
gradually moving the camera lens, and then try to estimate
an accurate depth map of a scene [24, 29]. While build-
ing the full focal stack typically requires calibrated camera
capturing a static scene, Suwajanakorn et al. [37] enabled
uncalibrated DfF for dynamic scenes by accounting for par-
allax. In particular, [37] proposed a two-step procedure of
1) focal stack alignment and 2) depth reconstruction, which
is also adopted and improved by recent deep learning based
DfF methods [11, 43]. On the other hand, many previ-
ous works have tried to estimate depth from a single im-
age [2, 35, 38], which is a significantly more difficult prob-
lem compared to using the focal stack. Such complication
can be mitigated by using dual-pixel cues [8, 40] instead of
focus / defocus blurs of a conventional image.

Unlike DfF, the autofocus problem requires predicting
the exact lens position to guide the focus module, of which
information is difficult to gather from non-metric depth
maps [7]. Also, the main target setting of this work is to
use a single dual-pixel image of a (given) random lens po-
sition as input instead of the focal stack; therefore, multi-

image alignment issue due to rapid motion is a problem that
is orthogonal to our contributions.

Spatial position encoding. Recent self-attention based
architectures [39] have gained a lot of interest for its ex-
cellent performance in handling sequential data. One of the
key innovation behind this is positional encoding, which en-
abled easy parallel training of sequences by encoding the
absolute / relative position information of a certain token
as an additional input. Recently, there have been many at-
tempts to extend the positional encoding to 2-dimensional
data (i.e. images) [20, 22, 42]. Notably, in CoordConv [22]
or location-augmentation [42], both concatenate the 2-d co-
ordinates channel-wise to the input tensor, and this way
of providing hard-coded spatial information coincides with
our proposed Rol-PE. However, while the representations
may look the same, the motivation of Rol-PE originates
from the need to capture and account for the spatially-
correlated (geometric) distortions of the image sensors and
the camera lens for the task of autofocus. Also, our Rol-
PE is a cropped area that is either automatically detected or
chosen by the user, so the physical meanings behind Rol-PE
is completely different from CoordConv, which simply adds
additional 2-d coordinate channels to learn spatial transfor-
mations involving position, orientation, or shape changes.

3. Methods

In this work, we generally follow the autofocus problem
formulation as defined in Herrmann et al. [12]. Given an
input image I, we extract a patch I, where p € {1,..., P}
denotes the spatial position of the region of interest within
the input image and k& € {1, ..., n} denotes the lens position
discretized into n focus distances. We mainly focus on dual-
pixel data, so the input image I becomes a two-channel raw
image and I? € R?*"*% i5 a cropped patch of k-th lens
position with resolution A x w. Following [12], we refer
to the set of patches obtained by the full lens sweep {I%}
as a focal stack, a single patch I} as a focal slice, and k as
the focal index. One difference with [12] is that we keep the
spatial position index p, which we use as an additional input
to the AF model (see Sec. .7).
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Depending on the input space, an AF problem can be
categorized into 3 settings [ 12]:

 Full stack: {I} |k=1,...,n}— k*
* Single slice: I} — k*, Vk € {1,...,n}
* Multi-step: (I}z0 — kl), (I,fO,I,fl — kg), coo kF

Full-stack setting uses the full focal stack as input to an
AF model, and CDAF approaches fall into this category.
Single-slice setting uses a single focal slice at a random
starting lens position k and predicts the focus distance k*
with one-shot, and many existing PDAF methods follow
this formulation. Multi-step setting also receives a single
focal slice at the beginning, but the number of observed fo-
cal slice can be stacked as we increase the number of pre-
diction steps. In this work, we concentrate on more practi-
cal settings of single-slice and multi-step, which can better
leverage the power of dual-pixel sensors.

3.1. Overall framework

In this framework, we propose two position encodings
that can be attached to any baseline AF model as additional
input channels to further improve the AF performance in
terms of both accuracy and efficiency. First is the current
(2-dimensional) spatial coordinates of the region-of-interest
(Rol) patch, which captures the subtle spatial varieties in
the phase difference of dual-pixel data with respect to its
2-d position. Second is the current position of the lens,
which explicitly defines the focus distance of the current
input dual-pixel image. We name these two encodings as
Rol position encoding (Rol-PE) and lens position encoding
(lens-PE), respectively.

While the original model in [12] uses 98 input channels
to account for 49 focal indices of the left/right dual-pixel
images, we greatly reduce the input size by utilizing the
proposed PEs to only have 5 input channels: 2 for the dual-
pixel input, 2 for the Rol-PE, and the remaining 1 channel
for the lens-PE. We describe the details in Secs. 5.2 and
Our overall framework is illustrated in Fig.

3.2. Rol position encoding

The main hypothesis of our work is that the relationship
between the disparity and the focus distance is different for
each (spatial) position of the Rol. When an image sensor re-
ceives light, there exists multiple sources of degradation in-
cluding lens distortion, intensity shading, etc. The statistical
pattern of these degradation will be different for each pixel
position in the image sensor plane; the center of an image
will be the brightest, and the pixels near the boundary will
be darker, because certain portion of light will be blocked
by the aperture. Also, even if we were able to normalize the
pixel brightness of all position, lens shading correction will
also boost the low-light noise of the darker region, which

Full dual-pixel image Region-of-Interest (Rol)
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Figure 3: RoI-PE. We normalize the coordinates w.r.z. the
image width/height, and crop the regions corresponding to
the Rol patch of the dual-pixel image.

will again make the high-frequency patterns different w.r.z.
the pixel position. Such a difficult scenario motivates us to
model this spatial pattern using neural networks.

Let us assume that the input data I} has a spatial reso-
lution of h x w, which is cropped at the location p from a
much larger image. We can uniquely represent the position
p by the top-left coordinate (z1,y:1) and the bottom-right
coordinate (z2,y2), where zo = 21 + w and y2 = y1 + h.
Assuming that the resolution of the full image is H x W,
we can transform the absolute coordinate values (x,y) to
be relative to the image resolution, (ﬁ, %), where we
set the center of the image as the origin and normalize the
coordinates from -1 to 1. As illustrated in Fig. 5, we can
specify the relative x and y coordinates of pixels in our Rol
with two separate channels. Though it is possible to use
more complex and physics-inspired positional encoding, we
found that this simple setting of normalized linear coordi-
nates works well in practice and demonstrates its effects in
Secs. and

3.3. Lens position encoding

The single slice model, I} — k*, Vk € {1,...,n},
takes the form of an n-class classification model. Her-
rmann et al. [12] uses 2 x n input channels for the dual-
pixel input data, where only 2 channels out of the 2n input
channels are alive and the rest is masked as zeros (n = 49
in practice). We find this quite inefficient, since only 2 input
channels out of 98 are used for each sample, and the rest 96
channels are only existent to implicitly represent the current
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Figure 4: Lens-PE. We normalize the lens position from 0
to 1 and concatenate the (broadcasted) scalar value, which
allows us to remove the zero-masked channels in [12].

position of the lens.

In this work, we propose to just use the 2-channel input
data and encode the current lens position as a single addi-
tional channel to build a 3-channel lightweight input (total
5-channel if we include the Rol-PE). The modified input
configuration is illustrated in Fig. . Note that we normalize
the full range of the camera lens movement and define the
lens position encoding (lens PE) as f € [0, 1], which can be
represented as a single scalar value. In practice, we simply
use f = %, k € {1,...,n} toaccount for the discrete focal
indices in [12] and for the ease of comparison. The scalar
value of f is then broadcasted as the spatial resolution of
the input patch and concatenated channel-wise.

As a side effect of greatly reducing the number of input
channels (98 — 3), we could also reduce the width multi-
plier of MobileNet-v2 from 4.0 (in [ 2]) to 1.0 without any
accuracy drop. The baseline model of [12] required wider
channels to “prevent contraction in the number of chan-
nels between the input and the first layer” of MobileNet-v2,
but our lightweight input with lens-PE safely alleviated the
need for using a heavier model. To this end, we could even
reduce the complexity of our baseline model to MCUNet-
v2, which is more than 3 times lighter than MobileNet-v2,
without compensating much accuracy (see Sec. <.3).

3.4. Training

For end-to-end training of our model, we use the ordi-
nal regression loss [5]. We use the {5 cost metric as in
[12], but additionally incorporate a temperature T' to con-
trol the sharpness of the soft ordinal labels. Hence, given
the ground truth focal index f of rank 7, our target prob-
ability distribution at k¥ € {1,...,n} can be calculated as:

0.8
0.6
0.4
0.2:

0.0
21 22 23 24 25 26 27 28 29
Focal index

Figure 5: Target distribution w.z¢. different temperature val-
ues. We show an example for the GT focal index of 25.

o= (rs—1)*/T
Yr = 2?21 e*(rffri)2/T’ (1)

where 7y, is the rank at focal index k, and T is the tempera-
ture. Note that when 7" — 0, this resorts into a Kronecker
delta function as in a normal classification problem, and the
lossusedin [12] is when T = 1.

In practice, we keep 1" = 1 for the single-slice problem
setting and decrease the temperature values for training the
multi-step models for steps > 2. The intuition behind this
choice is that as temperature gets lower, the target distribu-
tion for calculating the cross-entropy loss becomes sharper
(see Fig. 5). Since the first step model already moved the
lens position to somewhere near the correct focal index,
we make the problem more difficult by sharpening the loss,
thereby forcing the model to fine-tune its predictions to be
close to the ground truth.

4. Experiments

For fair comparison, we borrow the experimental set-
tings of [12], but mainly focus on the dual-pixel baselines.
D*denotes a full-stack problem setting where all 49 dual-
pixel images (hence, 98 channels) are used for input to the
AF model. D1 denotes a single-slice setting, where a sin-
gle dual-pixel image is used as an input. For our model in
D1 setting, we include the proposed Rol-PE and lens-PE to
build a 5-channel input data, whereas [12] still uses a 98-
channel input with just a single dual-pixel image (2 chan-
nels) activated.

Baseline models. We use two types of network archi-
tecture for training our AF model: MobileNet-v2 [32]
and MCUNet-v2 [21]. Let us omit the (-v2) suffix for
both models to reduce clutter in this section. In particu-
lar, we use mcunet—-320kb-1mb_imagenet model for
the MCUNet baseline, which fits in 320KB SRAM and
IMB flash memory for a micro-controller unit when quan-
tized to 8-bit (here, we just use the full float32 precision).
We mainly compare with [12], which uses 4.0 MobileNet
(channel widths multiplied by 4.0). We also use 4.0 Mo-
bileNet for D* setting, but reduce the width to 1.0 for D1.
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Dataset. We use the AF dataset proposed by Herrmann et
al. [12], which includes 51 static scenes, 10 compositions
for each scene, and 49 focal depths for all instances cap-
tured with Google Pixel 3 smartphones. The 49 focal depths
are uniformly sampled from the inverse depth space ranging
from 0.102 meters to 3.91 meters to compose a single focal
stack, and the ground truth focal indices are obtained from
a multi-view stereo pipeline [9]. The resolution of the input
patch is 128 x 128, and there are 387,000 patches (460 focal
stacks) in the train set and 56,800 patches (50 focal stacks)
in the test set. For additional details on the dataset, we refer
the readers to [12].

Evaluation metric. We evaluate our model by calculating
the proportion of patches that are within 0, 1, 2, or 4 indices
away from the ground truth focal index. This metric resem-
bles the scheme used for Middlebury stereo [33], which is
adapted by [12]. Qualitatively, we can argue that a patch
with no more than 4-index difference lies inside the depth-
of-field (DoF) and thus, in-focus. We also report the mean
absolute error (MAE) and root-mean-square error (RMSE).
For single-slice models, we average the performance of all
49 starting positions of the lens to account for accuracy vari-
ations w.r.¢. the initial position. This also applies when eval-
uating our multi-step models.

Implementation details. We use PyTorch [28] for our
implementation. For training, we use the Adam [16] op-
timizer with batch size 128, initial learning rate 0.001,
(81, B2) = (0.5,0.999), and cosine learning rate decay [23]
for 60k iterations. When training the second-step model
for the multi-step setting, we initialize it with the pretrained
first-step model, set the temperature 7' = 0.5, and fine-tune
the model with the learning rate 10~* for 20k iterations.

4.1. Quantitative results

AF accuracy (effects of RoI-PE). We summarize the re-
sults of our AF model and the baselines in Tab. |. For
comparison, we take the methods with high performance
in Herrmann et al. [12] and a recent survey [29]. We can
observe that “Learning to Autofocus [12]”, which we use
as the baseline in building our model, greatly improved
the performance of all other classical methods. Our model
further enhanced the AF accuracy by a significant margin,
which is mainly due to the proposed Rol-PE. In particular,
the D1 setting of our models gave substantial gains of 7.6%
classification accuracy for the exact (= 0) predictions and
3.7% for < 4 focal index difference for MobileNet base-
line. Also, note that our MCUNet-based model already out-
performs [12] consistently, even though its computational
complexity is remarkably lower (see Tab. 7).

Though the advantage of using Rol-PE is more notable
in the D1 setting, it is also beneficial for the full-stack set-

higher is better lower is better
Algorithm =0 <1 <2 <4 |MAE RMSE

D* | Normalized SAD [10] 0.166 0.443 0.636 0.819|4.280 8.981
D* | Ternary Census (L1, e = 30) [36] | 0.171 0.450 0.633 0.802 | 4.347 8.794
D* | Rank Transform (L1) [50] 0.172 0.451 0.633 0.811|4.138 8.558
D* | Census Transform (Hamming) [50] | 0.179 0.473 0.663 0.842|3.737 8.126
D* | Ternary Census (L1, e = 10) [36] | 0.178 0.472 0.664 0.841|3.645 7.804
D* | Normalized Envelope (L2) [1] 0.155 0.432 0.633 0.856|2.945 5.665
D* | Normalized Envelope (L1) [1] 0.165 0.448 0.653 0.870 | 2.731 5.218
D* | Learning to Autofocus [12] 0.241 0.606 0.807 0.955|1.611 2.674
D* | Ours (MobileNet-v2) 0.273 0.675 0.851 0.972|1.356 2.128
D1 | ZNCC Disparity with Calibration || 0.064 0.181 0.286 0.448 | 8.879 12911
D1 | SSD Disparity [40] 0.097 0.262 0.393 0.547 | 7.537 11.374
D1 | Learned Depth [9] 0.108 0.289 0.428 0.586|7.176 11.351
D1 | Learning to Autofocus [12] 0.164 0.455 0.653 0.885|2.235 3.112
D1 | Ours (MCUNet-v2) 0.210 0.534 0.727 0.908 | 1.979 3.005
D1 | Ours (MobileNet-v2) 0.240 0.587 0.766 0.922 | 1.803 2.826

Table 1: Results of our AF model and baselines that use
the dual-pixel data as inputs. D*indicates the algorithms
that use the full focal stack of dual-pixel data. D1 methods
receive a single dual-pixel focal slice, where the initial posi-
tion is randomly chosen out of 49 focal indices. Our models
outperform all compared methods for both D* and D1 .

ting of D*, with an overall 1.7% increase in the patches
within the DoF (< 4 index). Given that 95.5% of the
patches were already in focus using [12], we believe that
a further boost to 97.2% is quite meaningful and proves the
effectiveness of our proposed Rol-PE.

Computational complexity analysis (effects of Lens-PE).
Table ” demonstrates the efficiency improvement for our fi-
nal model, which is mainly achieved by reducing the # of
input channels with our lens position encoding and the cor-
responding channel reduction of the main AF model (4.0
— 1.0 MobileNet — MCUNet). Compared with the base-
line [12], our models require significantly less compute re-
source, which makes it especially more suitable for low-
power mobile phones. Specifically, our MobileNet-based
model requires x 15 less # of parameters than [12], x18
less FLOPs, and x13 less GPU memory. We could fur-
ther push the resource constraints with our MCUNet-based
model, which uses x59 less parameters, x41 less FLOPs,
and x45 less memory when compared with [12]. For the
actual running time of the models, however, we could not
observe as significant improvements. This is because all
models (including 4.0 MobileNet) are relatively lightweight
for our current environment using an NVIDIA V100 GPU,
and almost all operations could be run in parallel at this
scale of channel widths. We believe that the runtime gap
will become much more evident on commodity hardwares
in our cameras.

In Tab. °, we analyze the importance of lens-PE in AF
accuracy. Starting from our re-implementation of Learning
to AF [12] for the single-slice setting (D1 ), simply discard-
ing all zero-masked channels and using the input dual-pixel
image results in an extremely degraded accuracy (Ours w/o
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Algorithm # of params FLOPs GPU memory Runtime

Learning to AF [12] 3475M  190TM 170.9MB 6.42ms

Ours (MobileNet-v2) 2.30M 105M 12.8MB 6.22ms
Ours (MCUNet-v2) 0.59M 46M 3.8MB 6.07ms

Table 2: Computational complexity comparison. Our mod-
els are significantly more efficient than [ 2], with more than
an order of magnitude less parameters, FLOPs, and peak
GPU memory.

Algorithm # of input higher is better lower is better

g channels =0 <1 <2 <4 | MAE RMSE
Learning to AF [12] 98 0.164 0.455 0.653 0.885|2.235 3.112
Learning to AF 98 0.183 0.470 0.659 0.876|2.324 3.577
Ours (w/o lens-PE) 2 0.068 0.178 0.244 0.405 | 7.429 9.788
Ours (w. lens-PE) 3 0.182 0.460 0.652 0.871 | 2.367 3.549

Table 3: Effects of lens PE in autofocus accuracy. Since
there is no open-source code available for [12], we repro-
duced the model and show the results (marked with {). We
can observe that the proposed lens PE is crucial in main-
taining the original AF accuracy.

Algorithm # of higher is better lower is better
g steps | =0 <1 <2 <4 |MAE RMSE
ZNCC Disparity with | 1 || 0.064 0.181 0286 0.448 | 8.879 12911
Calibration 2 {0100 0278 0426 06176662 10993
1 [ 0108 0289 0428 0586|7.176 11.351

Learned Depth [7] 2 0172 0433 0618 0.802|3.876 7.410
Leaming o AF[12] | | | 0.164 0455 0653 0.885]2.235 3.112
s 2 0201 0519 0723 0916 1931 2772

. 1 | 0240 0587 0766 0922 1.803 2.826

Ours (MobileNet-v2) | (550 0.604 0790 0.940 1.668 2.639

Table 4: Results for multi-step D1 models. Our single-step
model already outperforms all compared multi-step meth-
ods, and our 2-step further enhances the AF accuracy.

lens-PE). However, if we concatenate a single additional
input channel of lens-PE, we can safely remove the input
channels with almost no accuracy drop. From this result, we
can interpret that the current position of the lens is a crucial
information for finding the correct focus distance, and that it
is difficult for our models (MobileNet) to directly learn the
relationship between the phase difference of the dual-pixel
sub-images and the depth . Note that the inputs of [12] al-
ready includes the lens position implicitly with the activated
positions of the mask, while our model explicitly provides
the current position as lens-PE.

Multi-step models. The quantitative performance of the
multi-step models is summarized in Tab. <. Note that our

Theoretically, directly learning the depth is possible if we formulate
our AF problem as a stereo matching task between the left/right dual-pixel
images. However, such setting is impractical with an extremely narrow
baseline of 1/2 pixel pitch.

single-step model already outperforms the 2-step model of
[12], and our 2-step model notably increases the perfor-
mance gap. In terms of computational efficiency, our 2-step
model requires 4.60M parameters with 0.209 GFLOPs in
total, while the single-step model of [12] already requires
34.75M parameters and 1.907 GFLOPs.

The second step of our 2-step model is trained with the
ordinal loss function with temperature 7' = 0.5 in Eq. (1).
We further discuss the effects of temperature in Sec.

4.2. Qualitative results

We qualitatively demonstrate the effects of our proposed
RoI-PE in Fig. 6, where we show three different patches
with the same GT focal indices but at different spatial po-
sitions. Compared with Herrmann et al. [12], our model
predictions are more consistent w.r.¢. the different position,
being able to precisely estimate the focal index of < 1 GT
index. On the other hand, the predictions by [12] show > 2
index difference, and the patch nearer to the image center
sticks out with = 4 index away from the GT. We claim
that the more coherent predictions were possible because
the spatially-varying characteristics of the input dual-pixel
image is successfully captured by learning with our RoI-PE.

In Fig. 7, we show additional qualitative results. From
the first and the second row, we can observe that both Her-
rmann et al. [12] and our AF model are able to success-
fully detect severe defocus blur and move the focus module
close to the GT index of 22. However, Ours is more precise
and show sharper edges (better visual quality). From the
third row of Fig. 7, we observed that L2A [12] sometimes
breaks drastically and predict completely out-of-focus in-
dices, usually for cases with little texture in the target Rol.
While such case is a generally difficult scenario for AF since
there is very little disparity / blur cues, our model is able to
estimate the (approximately) correct focal index with higher
success rate. Given that our baseline network is much more
lightweight compared to L2A (see Tab. ), these results sup-
port the effectiveness of our proposed Rol-PE and lens-PE.

In Fig. ¢, we also analyze the remaining limitations and
the failure cases of our model. In general, the results follow
the well-known difficulties of PDAF: (a), it is difficult to
learn meaningful phase information in regions with almost
no texture, (b) our model successfully predicted the direc-
tion of lens movement but sometimes passed the correct in-
dex and overshot, (c) there exists focal breathing effects in
the dataset (which can be seen as labeling noise), and (d)
we calculate the phase difference between the left-right im-
ages, so horizontal lines are hard to detect (actually, it is
impossible if the line is perfectly parallel to the horizontal
direction). While further research is required to resolve all
of these issues, we discuss some possible directions below.
For (a) and (c), one could use a larger input Rol, so that
the AF model can better capture the image context. For (b),

13164



Input scene at GT focal index = 21 Input patch (index = 0) index =20 index =21 (GT) index =22 index =23

Figure 6: Qualitative result for the patches with the same depth at different positions. Given an input patch at focal index 0,
all patches have the same GT index of 21. While our model (green v' mark) is able to accurately and consistently predict the
focal index to < 1, the baseline model predictions [12] (white G mark) are not as close (for the second row, [12] estimates
index = 25). Note that this setting resembles that of Fig. |, where the estimated disparities become different even though the
actual depth values are the same.

Input =

Ours

GT

- [ ﬁw"”“m}q'
(a) No texture (b) Overshoot  (c) Focal breathing  (d) Horizontal

Input L2A [12] Qurs GT

Figure 8: Failure cases of our AF model. We visualize the

Figure 7: Additional qualitative comparison between L2A left image of the dual-pixel images.

[12] and ours. The numbers in the bottom-left corner of
each patch indicate the focal index, where 48 is the nearest
(10.2cm focus distance) and O the furthest. Ours demon-
strate more robust results with sharper focus predictions
closer to the GT. We visualize the left image of the dual-
pixel data. Best viewed zoomed in. 4.3. Analysis

OCL (on-chip lens) could easily mitigate this issue. For ad-
ditional qualitative results and analyses, please refer to the
supplementary material and our project page .

Effects of varying RoI-PE. To better understand the ef-
fects of Rol-PE, we varied the coordinate system that rep-
resents the spatial position of our Rols. In particular, we
explore polar coordinates, following our hypothesis that
the spatially correlated errors of conventional PDAF ap-

we think the problem is due to incomplete learning of the
correlation between the dual-pixel disparity and the focal
index; thus, better training recipe with larger data would be
helpful. For (d), it is extremely difficult to solve using the
current dual-pixel data, but improved sensors such as 2x2 3https://myungsub.github.io/autofocus/
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Figure 9: Visualization of the types of Rol-PE.

higher is better lower is better

ROLPEGPE] _ g 21 <2 <4 | MAE RMSE
v —y 0240 0.587 0766 0922 | 1803 2.826
polar 0238 0573 0754 0918 | 1.850 2.902
r 0211 0522 0714 0900 | 2.079 3.237

Table 5: Varying the types of RoI-PE. A simple (x, y) coor-
dinate system worked best in our experiments.

Algorithm higher is better lower is better

& =0 <1 <2 <4 |MAE RMSE

T* | Learning to AF [12] 0.233 0.600 0.798 0.957 | 1.600 2.446
I* | Ours (MobileNet-v2) | 0.267 0.663 0.848 0.970 | 1.395 2.220
11 | Learning to AF [12] 0.115 0.318 0.597 0.691 | 4321 6.737
11 | Ours (MobileNet-v2) | 0.131 0.339 0.490 0.710 | 4.147 6.546

Table 6: Results of Rol-PE on conventional raw image data.
Even without phase information, Rol-PE is still beneficial
to the AF performance, although the improvements are not
as dramatic as D* or D1 settings.

proaches originate from lens distortions (e.g. pincushion /
barrel). Denoting our original Rol-PE that uses a simple
(z,y) cartesian coordinate as x — y, polar is its polar co-
ordinate counterpart, and r stands for the first dimension of
(r, 0) polar coordinate system (thus, RoI-PE for r is single-
channel, while the others use 2 channels). We visualize the
type of Rol-PEs used in our experiments in Fig. 9, and the
experimental results are summarized in Tab.

Effects of Rol encoding on conventional image data. In
Tab. 6, we demonstrate the results of training with Rol en-
coding on a conventional single-channel raw image (we take
the average of the left and right images to get the single-
channel image). Recall our motivation of Rol-PE, which
was to capture the spatially-correlated distortions of the
dual-pixel data. While there is no phase information avail-
able for conventional images, our Rol-PE can still be benefi-
cial for learning to be more robust to spatial distortions such
as lens shading. Consequently, we can observe small per-
formance improvements for both the full-stack (I*) and the
single-slice (I1 ) settings. For I1 setting, note that our model
is significantly more efficient since we use a 5-channel input
including our Rol-PE and lens-PE with 1.0 MobileNet.
From these results, we can conclude that our proposed

higher is better lower is better
=0 <1 <2 <4 |MAE RMSE

Single-step | 1.0 || 0.240 0.587 0.766 0.922 | 1.803 2.826

1.0 |/ 0.250 0.593 0.778 0.935|1.721 2.741
Multi-step | 0.5 | 0.250 0.604 0.790 0.940 | 1.668 2.639
0.33 ] 0.250 0.604 0.790 0.940 | 1.674 2.661

Algorithm | T

Table 7: Effect of temperature 7" in ordinal regression loss.

Rol-PE is advantageous at all input settings, but it is espe-
cially more effective for dual-pixel inputs where the subtle
phase differences w.r.z. the spatial position within the image
sensor plane can be accounted for.

Effects of temperature in ordinal regression loss. Ta-
ble 7 summarizes the effects of using different temperature
T in the ordinal regression loss in our multi-step AF frame-
work. Regardless of the value of 7', multi-step models all
outperform the single-step baseline, but 77 = 0.5 shows
slightly better accuracy compared with the others. Interest-
ingly, we can observe that 7' = 0.5 and 1" = 0.33 settings
give identical performance until < 4, but differ in MAE
or RMSE. This is because the initial predictions that are
close to the ground truth focal index are both well-tuned,
but 7' = 0.5 can better refine the wrong (> 4 index differ-
ence) initial predictions to be closer to the correct index. In
other words, 7' = 0.33 could not bring the nearby classes
(indices) closer, since an ordinal loss with lower tempera-
ture becomes more similar to a standard cross entropy.

5. Conclusion

We proposed an improved autofocus model that can cap-
ture the subtle patterns of dual-pixel data depending on its
spatial position. We introduced two position encodings,
RoI-PE and lens-PE, that are channel-wise concatenated to
the dual-pixel input image. By encoding the spatial position
of the region-of-interest as Rol-PE, we could significantly
improve the AF accuracy. In addition, by compactly encod-
ing the current lens position with lens-PE, we could build
an order-of-magnitude more efficient AF model compared
with our baseline [12]. Experimental results clearly demon-
strated the effectiveness of using the proposed position en-
codings for dual-pixel data, and we extensively analyzed the
characteristics of our model on various autofocus problem
settings.
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