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Abstract

We present AdVerb, a novel audio-visual dereverbera-
tion framework that uses visual cues in addition to the re-
verberant sound to estimate clean audio. Although audio-
only dereverberation is a well-studied problem, our ap-
proach incorporates the complementary visual modality to
perform audio dereverberation. Given an image of the en-
vironment where the reverberated sound signal has been
recorded, AdVerb employs a novel geometry-aware cross-
modal transformer architecture that captures scene geome-
try and audio-visual cross-modal relationship to generate a
complex ideal ratio mask, which, when applied to the rever-
berant audio predicts the clean sound. The effectiveness
of our method is demonstrated through extensive quanti-
tative and qualitative evaluations. Our approach signifi-
cantly outperforms traditional audio-only and audio-visual
baselines on three downstream tasks: speech enhancement,
speech recognition, and speaker verification, with relative
improvements in the range of 18% - 82% on the LibriSpeech
test-clean set. We also achieve highly satisfactory RT60 er-
ror scores on the AVSpeech dataset.

1. Introduction

Reverberation occurs when an audio signal reflects from

multiple surfaces and objects in the environment to alter the

dry sound thereby degrading its quality. Far-field speech

recorded at a considerable distance from the speaker is

significantly degraded by the strong reverberation effects

caused by the environment. The amount of reverberation

is highly correlated to the geometry of the surroundings and

the materials present in the vicinity [9, 11]. For instance, the

auditory experience changes drastically when listening to a

pleasant symphony in a large empty hallway vs. a relatively

small furnished living room (Fig. 2). Recent studies have
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Figure 1: We present AdVerb, a novel audio-visual dere-

verberation framework that leverages visual cues of the en-

vironment to estimate clean audio from reverberant audio.

E.g, given a reverberant sound produced in a large hall, our

model attempts to remove the reverb effect to predict the

anechoic or clean audio.

shown that the reverberation effects can be estimated from

a single image of the environment with reasonable accuracy

[69, 46, 36]. Removal of reverberation in recorded speech

signals is highly desirable and would help improve the per-

formance of several other auxiliary downstream tasks like

automatic speech recognition (ASR), speaker verification

(SV), source separation (SP), speech enhancement (SE),

etc., which are widely used in several day-to-day tools.

Audio-only dereverberation is a well-studied problem

with various systems achieving encouraging results [53, 34,

99, 91, 90]. In contrast, using the visual stream as an ad-

ditional cue to solve this task is a particularly understudied

problem. We attribute the lack of research in this space to

the scarcity of datasets. Most open-source datasets, both

real and synthetic, contain only room impulse responses

(RIRs) with no information about their source of origin

[77, 83]. Note that obtaining such RIRs can be challeng-

ing as doing so requires access to the physical environment,

thereby limiting their applicability. However, in real-world

settings, reverberant audio is naturally accompanied by a

visual stream; video conferencing, augmented reality (AR),
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Figure 2: Reverberation is a function of the speaker’s relative position and the surrounding environment. The visual signals

present critical details that determine the nature of the distortion. E.g, A© in a relatively small furnished room when the

speaker is nearby, reverb is less evident, whereas for B© in a large hallway (especially when the speaker is far away) the

reverb effect is very strong. The audio waveform illustrates the nature of reverberation, with the magnified section clearly

depicting a stronger reverberation effect in case B© over A©.

and web video indexing are some examples.

Recently, audio-visual speech enhancement meth-

ods [95, 79, 12, 48] have shown significant improvements

over the audio-only speech enhancement approaches. These

tasks benefit from the presence of sound-producing ob-

jects in the visual scene, which allows the model to ef-

fectively utilize these strong stimuli for accomplishing the

task. Many of these approaches track the lip movements

of the speaker to separate the noise from the voice compo-

nents in degraded speech which builds on the assumption

that a speaker is always close to and facing the camera.

These assumptions might not always hold in our case as

the scope of the problem under consideration (mid/far-field)

makes it difficult to obtain such cues. Thus, in a real-world

setting, the available cue for audio-visual dereverberation

is a panoramic view of the environment with or without a

speaker in the field of view. Effectively utilizing visual cues

in order to perform audio-visual dereverberation would re-

quire the model to understand the room’s implicit geometric

and material properties, which poses its own challenges.

Our Contributions: We propose AdVerb, comprising a

modified conformer block [24] with specially designed po-

sitional encoding to learn audio-visual dereverberation. The

network takes corrupted audio and the corresponding vi-

sual image1 of the surrounding environment (from where

the RIR is obtained) as input to perform this task (Fig.

1). Our approach employs a novel geometry-aware mod-
ule with cross-modal attention between the audio and visual

modalities to generate a complex ideal ratio mask, which is

applied to the reverberant spectrogram to obtain the esti-

mated clean spectrogram. This conformer block consists of

a modified (Shifted) Window Block [44] and Panoptic Blocks
to combine local and global geometry relations. We dis-

cuss key motivations behind our approach in Section 4. To

1We use panoramic images to train; inference can be done on both

panoramic and non-panoramic images.

learn audio-visual dereverberation, AdVerb solves two ob-

jectives, Spectrogram Prediction Loss and Acoustic Token
Matching Loss, which makes the output audio retain pho-

netic and prosodic properties. To summarize, our main con-

tributions are as follows:

(1) We propose AdVerb, a novel cross-modal frame-
work for dereverberating audio by exploiting complemen-

tary low-level visual cues and specially designed relative

position embedding.

(2) To this end, AdVerb employs a novel geometry-
aware conformer network to capture 3D spatial semantic

information to equip the network with salient vision cues

through (Shifted) Window Blocks and Panoptic Blocks.

(3) Our architecture involves the prediction of complex
ideal ratio mask and simultaneous optimization of two ob-

jective functions to estimate the dereverbed speech.

(4) On objective evaluation our approach significantly

outperforms traditional audio-only and audio-visual [12]

baselines with a relative improvement in the range 18%

- 82% on three downstream tasks: speech enhancement,

speech recognition, and speaker verification, when evalu-

ated on the LibriSpeech test-clean set on all difficulty lev-

els. It also achieves highly satisfactory RT60 error scores

on the AVSpeech dataset.

(5) User study analysis reveals our method outperforms

prior approaches on perceptual audio quality assessment.

2. Related Works
Audio Dereverberation: In communication and speech

processing applications, reverberation can reduce intelligi-

bility and weaken a dry audio signal [53, 34, 99, 91, 90].

Lately, there has been a paradigm shift from using the tradi-

tional signal processing-based methods to neural networks

and, subsequently, deep learning-based methods for dere-

verberation. Kinoshita et al. [35] presents a deep neural

network to estimate the power spectrum of the target sig-
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nal for weighted prediction error. Extending this, Wang et
al. [87] deploy a CNN-based model to separate the real

and imaginary parts of clean speech. Typically, there are

two prominent ways of training such models: through su-

pervised learning [92, 45] or through adversarial networks

(GANs) [73, 75]. Audio reverberation in nature is heavily

influenced by room acoustics [43]. We find studies in the

literature that try to capture room-specific information for

finer modeling of acoustic environments [72, 23]. Another

line of work [80, 41] attempts to extract visual features of

target lip movements. Work from Chen et al. [12] is most

similar in spirit to our proposed approach. These studies

motivate us to pursue audio-visual dereverberation by lever-

aging room-aware geometric cues. Our framework exploits

panoramic image features and is applicable even for out-of-

view speaker cases.

Room Impulse Response and Geometry Awareness: For

a given environment, the amount of reverberation in the

speech signal is mathematically described using a func-

tion known as room impulse response (RIR). RIR gen-

erators are used to simulate large-scale speech training

data [63, 64]. While [28, 71, 78] engage dedicated in-

room amenities to estimate this function, another line of

research [5, 50, 9, 81, 62] choose to produce RIRs syntheti-

cally. These works [37, 69] estimate RIRs from an RGB and

depth image. One downside of these approaches is that they

require access to paired image and impulse response data.

In contrast, some prior methods [32, 33, 51] for generating

RIR operate by using images taken at arbitrary distances

from the point of audio capture.

Video streams, by nature, capture the natural association

between visual and audio modalities. Wang et al. [85] pro-

pose a geometry-aware approach for room layout estimation

by horizon depth, which is only effective in the horizontal

direction. Hu et al. [31] and Eder et al. [16] introduce

gradient of depth and plane aware loss, respectively for im-

proved depth estimation of panoramic images. These works

inspire us to leverage room geometry to model this problem.

Audio-Visual Learning: Cross-modal learning powered by

large-scale video datasets has been pushing boundaries in

applications like audio-visual sound separation [98, 97, 22,

19, 93], audio-visual speech enhancement [1, 2, 27, 94], ac-

tive speaker detection [3, 4, 82, 67], talking head genera-

tion [86, 13, 60], embodied AI for audio-visual navigation

[7, 10, 47, 96], etc. In addition, many recent works have

utilized paired audio-visual data for representation learning.

Owens et al. [56] learned visual representations for mate-

rials from impact sounds. Another line of work learns fea-

tures, scene structure, and geometric properties [14, 57, 20]

respectively from audio. However, our approach to estimat-

ing the geometric cues for audio-visual dereverberation is

complementary to these methods.

3. Problem Formulation
We propose a novel framework that takes reverberant

speech Ar and the corresponding environment panoramic

image Vr as input and outputs estimated clean audio Ae.

Both Vr and Ar are captured from the listener position fo-

cusing on the environment surrounding the speaker (con-

siders far, mid, and near field examples). The reverberation

effects can be described using a transfer function known as

room impulse response R(t). Ar can be obtained by con-

volving clean speech As with R(t) (Equation 1) [54]. Here,

R depends on the listener and speaker positions, room ge-

ometry, and acoustic material characteristics.

Ar(t) = As(t) ∗ R(t) (1)

4. Our Approach: AdVerb
Fig. 3 depicts a pictorial representation of AdVerb, our

proposed audio-visual dereverberation model. Our primary

objective is to learn the inverse function given a reverberant

audio signal by exploiting the audio and visual cues. Elab-

orations on the individual components are as follows:

4.1. Feature Encoder

Vision Encoder: To encode geometric layout-specific vi-

sual features EV(·), we use HorizonNet [76], which is

based on ResNet-50 [26] backbone. HorizonNet takes a

panoramic image of the surroundings as input V , with di-

mensions 512 × 1024 × 3. The output is a 2D feature map

of 4 different scales. For each feature map, the height is

down-sampled, and the width N is up-sampled to obtain

1D spatial property-infused feature sequences with dimen-

sion R
D/4 and connect all the feature maps to obtain R

D,

where D is 1024 in our case.

Audio Encoder: For audio features, we employ Short-Time

Fourier Transform (STFT) EA(·) on the reverberant 1D au-

dio A to obtain a 2D spectrogram A(t, f), where t and f
index time and frequency, respectively. In contrast to prior

work, which learns a convolution network for this transfor-

mation [8], we employ STFT with the motivation of using

complex masks for learning dereverberation. We calculate

STFT with a window of size 400 samples or 25 millisec-

onds, a hop length of 160 samples or 10 milliseconds, and a

512-point FFT. All our audios are sampled at 16kHz.

4.2. Complex Ideal Ratio Masks

Intuition Behind Masks: We hypothesize that learning to

generate clean anechoic speech in an end-to-end fashion

might not be effective owing to the nature of the task. Tra-

ditionally, the input audio learns to align to the visual cues,

which proves to be effective for the visual acoustic match-

ing [8] task. Similarly, synthesizing speech directly has also

seen huge success in audio-visual speech enhancement, and
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Figure 3: Overview of AdVerb. AdVerb estimates clean source audio from a reverberant speech signal leveraging two pri-

mary components: 1© The visual stream processing path comprises a HorizonNet-based backbone EV(·) to obtain 1D feature

sequences, which are subsequently passed to the cross-modal geometry-aware attention subnetwork. 2© The audio processing

module applies STFT EA(·) to get 2D spectrograms which are fed to the cross-modal encoder. The cross-attention subnet-

work powered by geometry-aware (Shifted) Window Blocks, Panoptic Blocks, and Relative Position Embedding generates a

complex ideal ratio mask.

separation [25, 94], where the visual cues have a high corre-

lation with the contents of the speech, e.g., lip movements.

However, the dereverberation algorithm tries to learn an

inverse function making the task intrinsically challenging.

From Fig. 2 it is evident that the same speech content incurs

heavy reverberation artifacts when the speaker is far away in

a reverberant environment ( B©) while the corruption of the

speech signal is not significant when the speaker is closer

in a relatively less reverberant environment ( A©). Thus, we

hypothesize such visual cues can be instead used to learn a

mask that, when applied to the reverberated speech, sup-

presses reverberation effects. STFT mask prediction has

seen success in the past in a variety of tasks, including

source separation [98, 22], speech enhancement [89], etc.

Complex Ideal Ratio Mask Construction: A complex

ideal ratio mask (cIRM) [88] is an extension of the con-

ventional ideal ratio mask to process the real and imagi-

nary components of an audio signal separately. The product

of cIRM and reverberant speech results in estimated clean

speech. It is calculated in the time-frequency (T-F) domain,

and thus learning to generate cIRM enhances both the mag-

nitude and phase of reverberant speech, improving overall

perceptual speech quality. Given the STFT of reverber-

ant speech, Ar(t, f), and the cIRM, C(t, f), clean speech,

As(t, f), is computed as follows:

As(t, f) = C(t, f) ∗ Ar(t, f) (2)

where t and f are index time and frequency respectively.

Since the STFT is complex, ∗ indicates complex multipli-

cation. C(t, f) is computed by dividing the STFT of direct

speech, by the STFT of reverberant speech:

Ar
s(t, f)+ jAi

s(t, f) = C(t, f)∗Ar
r(t, f)+ jAi

r(t, f) (3)

C(t, f) = Ar
s(t, f) + jAi

s(t, f)

Ar
r(t, f) + jAi

r(t, f)
∗ Ar

r(t, f)− jAi
r(t, f)

Ar
r(t, f)− jAi

r(t, f)

=
Ar

s(t, f)Ar
r(t, f) +Ai

s(t, f)Ai
r(t, f)

Ar2
r (t, f)−Ai2

r (t, f)

+ j
Ai

s(t, f)Ar
r(t, f)−Ar

s(t, f)Ai
r(t, f)

Ar2
r (t, f)−Ai2

r (t, f)
(4)

4.3. Cross-Modal Geometry-Aware Conformer

Overview: In this module, we aim to learn cross-modal at-

tention between audio and visual features, which enables

incorporating fine-grained interactions between them in a

geometry-aware fashion. The visual and audio feature maps

obtained from corresponding encoders are used as inputs

here. The sequence of features from each time step rep-

resents a part of the input stream. These sequences are

then passed to the conformer-based [24] cross-modal en-

coder. For the audio stream, we obtain a complex ideal

ratio mask by employing a complex-valued self-attention

block. This is then fed into the geometry-aware cross-modal

self-attention (GCA) block for audio-visual modeling. We

specially design a relative position embedding to encode

position-specific information. Finally, the learned repre-

sentations are passed through a complex-valued decoder to
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generate the predicted cIRM. We next describe these com-

ponents in detail.

Complex Self-Attention: The self-attention mechanism

[84] transforms a sequence into a set of vectors, where

each vector is computed as the weighted sum of all other

vectors. Here the weights are determined by a learn-

able function based on the similarities between the input

and output. The primary difference between conventional

and complex self-attention (CSA) is that the latter oper-

ates on complex-valued representations and calculates self-

attention separately on the real and imaginary parts. We

use CSA instead of vanilla SA layers because of the nature

of our input spectrogram. For our implementation, we use

Complex-Valued Time-Frequency SA (CTSA) proposed in

[39], which improves over CSA by accurately modeling

inter-dependencies between real and imaginary components

of the encoded audio features.

Geometry-Aware Cross-Modal Encoder: A wealth of

studies [8, 14] establish that direct concatenation of cross-

modal features [21, 55] might lead to suboptimal perfor-

mance. A key observation here is such techniques don’t

seem suitable in our case, as our application demands more

robust reasoning on how different regions of the 3D space

contribute to the acoustics differently. For instance, if the

sound originates from inside a highly absorptive chamber,

less reverberation will be noticeable. In contrast, in the case

of a reflective surface, an extended reverberation effect will

persist. Hence, it is imperative to attend to image patches to

study how they contribute to the overall acoustics.

Inspired by Swin-Transformer [44], our novel GCA

module exploits window partitioning for robust spatial

modeling ability. However, we observe that using win-

dow partition alone limits the conception of the holistic

representation of the visual scene. As a result, we equip

our Transformer module with (Shifted) Window Blocks and

Panoptic Blocks to combine the local and global geometry

relations efficiently. Each loop contains four consecutive

blocks: Window Block, Panoptic Block, and Shifted Win-

dow Block, followed by another Panoptic Block. As shown

in Fig.4, the individual blocks follow the Transformer [84]

architecture, with modifications done before and after the

multi-head attention layer. Note that the dimension of the

sequence and corresponding positions of tokens don’t get

altered in any block.

In Window Block, we use a patchwise partition on the

input feature sequence to obtain N
Nw

window feature se-

quences R
Nw×D where Nw is the window length and is

set to 16 in our case. The window partition captures lo-

cal geometry relations and facilitates the calculation of self-

attention by reducing computation while calculating atten-

tion. Subsequently, window features are combined after the

multi-head attention, as depicted in Fig. 4 A©.

Feature Sequence

Window Partitioning

Cross-SA

Window Merging

Feature Sequence

Folding

Window Partitioning

Cross-SA

Window Merging

Feature Sequence

Cross-SA

Feature Sequence

Shifted Window Block

Unfolding

Vision cues Audio cues Multimodal output

Pos. embeddings

Feature Sequence

Cross-SA

Feature Sequence

Panoptic Block 

A

B

C C

A Window Block 

C

B

Figure 4: Overview of the Geometry-Aware Cross-Modal

Attention block. Window and Panoptic Relative Posi-

tion Embedding (RPE) are fused into Cross-modal Self-

Attention (CSA) blocks. In Window Block A©, partition-

ing and merging of windows before and after CSA. In B©,

Folding and Unfolding of sequence features before and af-

ter CSA, respectively. C© integrates another RPE to CSA.

Inspired by [44], we deploy Shifted Window Block,

which connects adjacent windows to facilitate the exchange

of information flow between nearby patches. Here a fold

and unfold operation is performed by a fraction of Nw

2 to re-

tain the original positions of the feature sequence even after

merging: refer to Fig.4 B©. Finally, the Panoptic Block fol-

lows the native Transformer [84] encoder to enhance holis-

tic geometry-aware relations of the visual scene (Fig. 4 C©).

To model the natural association between visual and au-

dio streams by ensuring cross-modal information flow, we

employ the conformer variant [24] of encoder blocks, which

adjoins a convolution layer inside the block for modeling

local interactions of audio features. Building on this, we in-

sert one cross-modal attention layer ξcm after the first feed-

forward layer, described as follows:

ξcm (Ai,Vi) = softmax

(
AQ

i VKT

i√S

)
VV
i . (5)

where superscripts K, Q, and V indicate Key, Query,

and Value, respectively. Here, we compute the attention

scores between the visual (Vi) and the audio (Ai) sequences

by dot-product. This is followed by softmax normalization

and scaling by 1√S , which is then used to factor Vi. The key

observation here is that cross-modal attention thus designed

enables the model to attend to spatial regions in the visual

stream and comprehend its acoustic nature.
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Position Embedding: The conventional attention module

is found to be insensitive to the positions of the tokens

producing suboptimal results. To this end, we introduce

specially designed relative position embedding (RPE) [61]

to strengthen its spatial identification ability. We denote

the input sequence of multi-head cross-modal self-attention

as X = {xi}Zi=1, where Z is the sequence length and

xi ∈ R
D. A bias matrix B ∈ R

Z×Z is added to Scaled

Query-Key product [84]:

αij =
1√D
(
xiWQ

) (
xjWK

)T
+ Bij ,

Attention (X ) = Softmax(α)
(XWV

)
,

(6)

where WQ,WK ,WV ∈ R
D×D are learnable project

matrices and each bias Bij comes from a learnable scalar

table. In (Shifted) Window Block, Z = Nw. We denote

the learnable scalar table as {bk}Nw−1
k=−Nw+1, and Bij cor-

responds to bj−i. This Patch RPE is fed into multi-head

attention.

For Panoptic Block, we consider Z = N . Here we pro-

pose a symmetric representation of only distance and denote

the learnable scalar table as {bk}nk=0, where n = N
2 . When

|j − i| ≤ N
2 , Bij corresponds to b|j−i|, otherwise Bij cor-

responds to bN−|j−i|.

4.4. Complex Mask Decoder

The complex mask decoder takes input from the con-

former and generates a complex ideal ratio mask C. The

decoder comprises a complex-valued ReLU activation func-

tion followed by a complex-valued convolutional layer, a

self-attention module, a dense block, and finally a normal-

ization layer.

4.5. Vocoder

After generating the complex ideal ratio mask C, we de-

code the output spectrogram G by performing the complex

multiplication operation between C and G. Next, we use a

pre-trained vocoder χ [73] to convert the spectral represen-

tation of the audio signal to the waveform. We perform this

step specifically to calculate the SSL-based HuBERT Loss,

which we describe later.

4.6. Model Optimization

Spectrogram Prediction Loss: The first of the two objec-

tive functions we use for model optimization is the Spec-

trogram Prediction Loss (SP). Learning to reconstruct the

clean spectrogram is a common optimization methodology

used in speech enhancement and dereverberation [10, 40].

It computes the L2 norm between the spectrogram predicted

by our network Θ and the ground truth clean spectrogram

As. It is defined as:

LSP = E(Ar,V)∼U ‖φ(Θ(Ar,V))− φ(As))‖2 , (7)

where Ar is the reverberant audio and V is the corre-

sponding panoramic image in some distribution U . φ is the

function that transforms the speech waveform to the corre-

sponding spectrogram representation.

Acoustic Token Matching Loss: Inspired by the recent

success of self-supervised speech representation learning

[49], we introduce Acoustic Token Matching Loss (ATM).

The traditional MSE loss ignores the inherent speech char-

acteristics, like phonetic and prosodic properties, that are

essential for learning and reconstructing speech information

[29]. Speech representations learned with SSL effectively

encode such characteristics in their latent representations

[59]. Thus, we propose a simple yet effective method to en-

force the output speech from AdVerb to encode such infor-

mation by solving the Acoustic Token Matching Loss . To

calculate ATM loss, we first generate latent representations

H̃ ∈ R
J×d from the clean waveform As with a pre-trained

HuBERT [30] model e(·), where d is the HuBERT embed-

ding dimension and J is the sequence length. Next, we

cluster these latent representations using K-means to gen-

erate a sequence of pseudo-labels P = {pt}Jt=1. These

pseudo-labels are representative of the latent space in our

speech input. Finally, we predict these pseudo-labels from

latent representations of Ae (estimated output audio from

AdVerb) obtained after passing it through HuBERT. The

ATM Loss function can be expressed as follows:

LATM (e;As,Ae) =
∑
t∈J

log pf

(
pt | H̃, t

)
(8)

where pf is the distribution over the target indices at each

timestep t. Finally, we optimize our model with a total loss

L as follows:

L = λLSP + μLATM (9)

where λ, μ ∈ R are hyper-parameters to balance the contri-

bution of each loss component.

5. Experiments and Results
For a fair assessment of our model, we evaluate our

model through speech dereverberation on three downstream

tasks: speech enhancement (SE), automatic speech recogni-

tion (ASR), and speaker verification (SV), respectively. The

environments are taken from Matterport3D [6], with speech

samples from the LibriSpeech dataset [58].

5.1. Dataset

SoundSpaces-Speech Dataset: We use the SoundSpaces-

Speech dataset proposed in [12] for our experiments. It

comes with paired anechoic and reverberant audio with
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Speech Enhancement (SE)† Speech Recognition (SR)† Speaker Verification (SV)† RTE* ↓Method PESQ ↑ WER (%) ↓ WER-FT (%) ↓ EER (%) ↓ EER-FT (%) ↓ (in sec)

Anechoic (Upper bound) 4.72 2.89 2.33 1.53 1.57 -

Reverberant 1.49 8.20 4.44 4.51 4.88 0.382

MetricGAN+ [18]‡ 2.45 (+64%) 7.48 (+9%) 4.86 (-9%) 4.67 (-4%) 2.85 (+42%) 0.187

HiFi-GAN [38]‡ 1.83 (+23%) 9.31 (-14%) 5.59 (-26%) 4.32 (+4%) 2.49 (+49%) 0.196

WPE [52]‡ 1.63 (+9%) 8.43 (-3%) 4.30 (+3%) 5.90 (-31%) 4.11 (+16%) 0.173

SkipConvGAN [40]‡ 2.10 (+41%) 7.22 (+12%) 4.17 (+6%) 4.86 (-8%) 3.98 (+18%) 0.119

VIDA [12] 2.37 (+59%) 4.44 (+46%) 3.66 (+18%) 3.97 (+12%) 2.40 (+51%) 0.155

AdVerb w/o Image 2.31 (+55%) 3.92 (+52%) 3.41 (+23%) 3.67 (+19%) 2.19 (+55%) 0.119

AdVerb w/ Random Image 2.54 (+70%) 4.12 (+50%) 3.62 (+18%) 3.76 (+17%) 2.26 (+54%) 0.110

AdVerb w/o ATM Loss 2.89 (+94%) 4.67 (+43%) 3.66 (+18%) 3.17 (+30%) 2.07 (+58%) 0.117

AdVerb w/o Complex SA 2.91 (+95%) 3.63 (+56%) 2.98 (+33%) 3.21 (+29%) 2.10 (+57%) 0.117

AdVerb w/o Geometry Aware Block 2.30 (+54%) 4.01 (+51%) 3.12 (+30%) 3.68 (+18%) 2.12 (+57%) 0.113

AdVerb w/o RPE 2.79 (+87%) 3.54 (+57%) 3.01 (+32%) 3.17 (+30%) 2.11 (+57%) 0.107

AdVerb w/o Window Block 2.81 (+89%) 3.61 (+56%) 2.99 (+33%) 3.14 (+30%) 2.12 (+57%) 0.108

A
B

L
AT

IO
N

AdVerb w/o Panoptic Block 2.92 (+96%) 3.59 (+56%) 2.92 (+34%) 3.29 (+27%) 2.01 (+59%) 0.107

AdVerb (ours) 2.96 (+98%) 3.54 (+57%) 2.91 (+34%) 3.11 (+31%) 1.98 (+59%) 0.101

Table 1: Comparison of AdVerb with various baselines on multiple spoken language processing tasks based on the Lib-

riSpeech test-clean set (marked with †) and on sim-to-real transfer based on the AVSpeech dataset (marked with *). “Ane-

choic (Upper bound)” refers to clean speech, while “Reverberant” refers to clean speech convolved with RIR. WER-FT and

EER-FT denote evaluations when the SR and SV models are finetuned with the audio-enhanced data. Numbers in parentheses

denote the relative improvement compared to Reverberant. Methods marked with ‡ are audio-only.

camera views from 82 Matterport3D [6] environment con-

volved with speech clips from LibriSpeech [58] sam-

ples. SoundSpaces [9] provide precomputed RIRs R(t),
which are convolved with speech waveforms to obtain re-

verberant signal Ar(t) for a total of 49,430/2,700/2,600

train/validation/test samples, respectively.

Acoustic AVSpeech Web Videos: Web videos offer natural

supervision between visuals and acoustics in abundance. To

be consistent with prior work, we use the collection from

[8], which is a subset of the AVSpeech[17] dataset. The clip

durations range between 3-10 seconds with a visible human

subject in each video frame. To evaluate our model on real-

world data in addition to synthetic data, we use these 3K

samples only for testing purposes.

Evaluation Tasks And Metrics: We follow the standard

practice of reporting Perceptual Evaluation of Speech Qual-

ity (PESQ) [66], Word Error Rate (WER), and Equal Error

Rate (EER) to compare our method with the baselines for

the three tasks. Following [12], we employ the pre-trained

models from the SpeechBrain [65] for ASR and SV tasks.

These models were evaluated on the LibriSpeech test-clean

set. SV evaluation was done on a set of 80K randomly sam-

pled utterance pairs from the test-clean set.

5.2. Baselines

WPE [52]: A statistical method that estimates an inverse

system for late reverberation. It deploys variance normal-

ization to improve dereverberation results with relatively

short observations.

MetricGan+ [18]: We use the implementation by [65] for

benchmarking. As presented by the authors, it can be used

to optimize different metrics. We optimize PESQ to report

values from the best model for individual downstream tasks.

SkipConvGAN [40]: A recent model where the generator

network estimates a complex time-frequency mask and the

discriminator aids in driving the generator to restore the lost

formant structure. The model achieves SOTA results on the

dereverberation task.

HiFi-GAN [38]: A GAN-based high-fidelity speech syn-

thesis system that shows satisfactory results on speech dere-

verberation. It models periodic patterns of audio to enhance

sample quality.

VIDA [12]: An end-to-end vision backed speech derever-

beration framework. It combines RGB-D image informa-

tion to estimate clean speech.

5.3. Results

Evaluation Setup on LibriSpeech: We compare model

performance on three speech tasks: Speech Enhancement

(SE), Automatic Speech Recognition (ASR), and Speaker

Verification (SV). To evaluate our trained models, we use

the dereverbed version of the test-clean set split of the Lib-

riSpeech dataset. Similar to [12], for SR and SV, we either

use pre-trained models from SpeechBrain [65] or fine-tune

a model from scratch using dereverbed LibriSpeech train-

clean-360 split.

Quantitative Analysis on LibriSpeech: Table 1 compares

the performance of AdVerb with the baselines. Experimen-

tal results show AdVerb outperforms all audio-only base-
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lines by a significant margin on all three tasks. We achieved

relative improvements of 41%, 51%, and 36% over the best

audio-only baseline, SkipConvGAN, on SE, SR, and SV, re-

spectively, in terms of relative gain from reverberant speech.

AdVerb also outperforms VIDA by 25%, 20%, and 22% on

SE, SR, and SV, respectively, which shows the superiority

of AdVerb in audio-visual dereverberation tasks.

Quantitative Analysis on AVSpeech: To examine the ro-

bustness of our proposed approach in real-world settings,

we evaluate our model on an in-the-wild AVSpeech audio-

visual dataset collected from YouTube [17]. The AVSpeech

dataset has non-panoramic images; therefore the field-of-

view is limited in the test dataset, and the performance of

our network trained on panoramic images is not optimal. In

the absence of the ground truth clean speech, we use the av-

erage reverberation time (RT) of the dereverberated speech

signal for evaluation. RT is the time taken to decay the

sound pressure in RIR by 60 decibels. We can estimate RT

from the reverberant speech signal [8]. According to Equa-

tion 1, in clean speech, RIR will be an impulse response

(δ(t)) and ≈ 0. The dereverberated speech with the least

amount of reverberation will have the lowest RT. Therefore,

reverberation time error (RTE) is the average RT of the dere-

verberated test speech samples. From Table 1, we can see

that AdVerb reports the lowest RTE.

Ablation Study: To show the importance of the individ-

ual components in AdVerb, we perform an extensive abla-

tion study shown in Table 1. Note that AdVerb sees the

steepest fall in performance across tasks when trained and

evaluated w/o images, i.e., in an audio-only setup. In this

setup, our GCA block is replaced with a simple uni-modal

self-attention block. There is also a considerable drop in

performance across all tasks w/o the geometry-aware mod-

ule, thus underlining the importance of this block. In this

setup, our GCA block is replaced with a simple cross-modal

self-attention block with queries as audio cues and keys and

values as visual cues. We carry out further ablations to

study the contributions of the individual components of the

cross-modal geometry-aware attention block. Interestingly,

the drop in performance when removing the individual ele-

ments is much less than the entire GCA block. This under-

lines that these components combine to have a telling im-

pact on the overall setup. Finally, we show that ATM loss

improves AdVerb’s SR performance by a significant mar-

gin. Refer to the supplementary for further ablations.

More Comparison Against Audio-only Methods: Table 2

demonstrates the performance of our model against SOTA

audio-only methods. AdVerb outperforms existing audio-

only methods and sets new benchmarks.

Results on Noisy Dataset: To evaluate the robustness of

the proposed AdVerb model to outdoor unwanted noise,

we add ambient sounds from urban environments to the

SE SR SV RTE ↓
Method PESQ ↑ WER (%) ↓ WER-FT (%) ↓ EER (%) ↓ EER-FT (%) ↓ (in sec)

Reverberant 1.49 8.20 4.44 4.51 4.88 0.382

DEMUCS [15] 2.17 7.97 (+2.8%) 5.20 (-17%) 3.82 (+15%) 2.96 (+39%) 0.129

VoiceFixer [42] 2.41 5.66 (+31%) 4.19 (+5%) 3.76 (+16%) 2.79 (+42%) 0.121

H-GAN [74] 1.94 8.14 (+1%) 5.01 (-12%) 4.22 (+6%) 3.13 (+35%) 0.196

Kotha. et al. [39] 2.54 5.32 (+35%) 4.13 (+6%) 3.71 (+17%) 2.68 (+44%) 0.124

AdVerb 2.96 3.54 (+57%) 2.91 (+34%) 3.11 (+31%) 1.98 (+59%) 0.101

Table 2: Comparison of AdVerb with more audio-only ap-

proaches. AdVerb results in a relative gain of 14%-56%.

Percentages in bracket represent an improvement on rever-

berant audio.

LibriSpeech test-clean dataset using the MUSAN dataset

[70]. Following [10], we maintain an SNR of 20 for our

mixture. Table 3 compares the performance of AdVerb

on three downstream speech-based tasks. All experiments

were done for the non-fine-tuned version of our experimen-

tal setup, where a pre-trained model was used from Speech-

Brain. Though we see a drop in performance compared

to the noise-free dataset, AdVerb outperforms all our base-

lines and maintains similar margins compared to the origi-

nal noise-free dataset.

SE SR SV
Method PESQ ↑ WER ↓ EER ↓

Anechoic (Upper bound) 4.72 2.89 1.53

Reverberant 1.57 11.45 4.76

MetricGAN+ 2.29 8.92 4.89

HiFi-GAN 1.95 10.55 4.73

WPE 1.88 9.10 5.11

SkipConvGAN 2.06 7.28 4.94

VIDA 2.14 4.97 4.01

AdVerb (Ours) 2.52 4.20 3.46

Table 3: Result comparison of AdVerb with baseline meth-

ods on noise added dataset splits for 3 speech tasks.

Ablation on Noisy Dataset: Table 4 illustrates the results

of the ablation study on the noisy LibriSpeech dataset. The

noise addition process is the same as before.

SE SR SV
Method PESQ ↑ WER ↓ EER ↓

w/o Image 2.03 4.68 3.81

w/o ATML 2.28 5.10 3.87

w/o Geom. aware 2.29 4.99 3.64

w/o Window block 2.34 4.43 3.43

w/o Panoptic block 2.39 4.37 3.51

Table 4: Ablation on LibriSpeech noisy data. AdVerb per-

forms considerably well on noisy data with the individual

modules contributing to the overall gain.

Analysis On Visual Features: To underline the importance

of the visual cues, we show the activations of the network

using Grad-CAM[68] in Fig. 5. Note that the network at-

tends to the sides of the hallway or empty regions with al-
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Figure 5: Grad-CAM visualization of activated regions. Our model attends to regions that cause heavy reverberation effects.

Figure 6: Some failure cases. The � denotes the regions with correct activation while � spurious detections.

Baseline SoundSpaces(in %) AVSpeech(in %)
Method (A% / B% / C%) (A% / B% / C%)

Clean Speech 61.3 / 8.1 / 30.6 – / – / –

VIDA[12] 16.5 / 6.5 / 77.0 13.5 / 0.0 / 86.5
WPE[52] 8.8 / 3.5 / 87.7 3.7 / 7.4 / 88.9
SCGAN[40] 9.2 / 0.0 / 90.8 0.0 / 8.0 / 92.0

Table 5: User study results. A% of participants find the

baseline audio samples better, B% have no preference, and

C% prefer AdVerb.

most or no sound absorbers which lead to longer reverber-

ation effects. Fig. 6 demonstrates some cases where our

model attends to spurious regions.

5.4. User Study For Subjective Evaluation

In addition to objective metric evaluation, we perform a

subjective human listening study on a synthetic (generated

using SoundSpaces) and an in-the-wild (AVSpeech) dataset

over Amazon MTurk. We believe this can be a good mea-

sure to understand how realistic and aesthetically pleasing

the output produced by our model is. Moreover, through

this, we try to understand other aural artifacts not captured

in an objective measure like PESQ. In our study, a total of

89 participants were presented with 8 sets of samples con-

taining the reverberant speech, clean speech (not present

for AVSpeech), and estimated dereverberant speech. Ta-

ble 5 demonstrates that users find samples generated by our

method better than the three other baselines VIDA [12],

WPE [52] and SkipConvGAN [40], in both cases.

6. Conclusions and Future Works

In this paper, we present a novel audio-visual dereverber-

ation framework. To this end, we introduce the GCA mod-

ule with a specially designed position embedding scheme

to capture the local and global spatial relations of the 3D

environment. The experimental analysis demonstrates how

modeling the visual information efficiently can lead to im-

proved performance of such a system. We believe our work

will encourage further research in this space. One limita-

tion of our approach is that the efficacy of the method drops

for non-panoramic images. Future work can aim towards

finding more sophisticated ways of modeling the acoustic

property of the environment and combining cross-modal in-

formation. Although our framework achieves highly satis-

factory results at all difficulty levels on both simulated and

real-world samples, we notice the performance of our model

can be improved for situations with extreme reverb effects,

and far away subjects. A potential use case of our work can

be to leverage the properties of target visual scenes to pro-

vide immersive experiences to users in AR/VR applications.

This work can also find applications in the audio/speech

simulation domain.
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