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Abstract

This paper studies the problem of 2D sketch to 3D shape
retrieval, but with a focus on democratising the process. We
would like this democratisation to happen on two fronts:
(i) to remove the need for large-scale specifically sourced
2D sketch and 3D shape datasets, and (ii) to remove re-
strictions on how well the user needs to sketch and from
what viewpoints. The end result is a system that is train-
able using existing datasets, and once trained allows users
to sketch regardless of drawing skills and without restric-
tion on view angle. We achieve all this via a clever use
of pivoting, along with novel designs that injects 3D un-
derstanding of 2D sketches into the system. We perform
pivoting using two existing datasets, each from a distant
research domain to the other: 2D sketch and photo pairs
from the sketch-based image retrieval field (SBIR), and 3D
shapes from ShapeNet. It follows that the actual feature
pivoting happens on photos from the former and 2D pro-
jections from the latter. Doing this already achieves most
of our democratisation challenge – the level of 2D sketch
abstraction embedded in SBIR dataset offers demoraliza-
tion on drawing quality, and the whole thing works without
a specifically sourced 2D sketch and 3D model pair. To
further achieve democratisation on sketching viewpoint, we
“lift” 2D sketches to 3D space using Blind Perspective-n-
Points (BPnP) that injects 3D-aware information into the
sketch encoder. Results show ours achieves competitive per-
formance compared with fully-supervised baselines, while
meeting all set democratisation goals.

1. Introduction
Sketches are highly expressive [37]. This particular

sketch strait has been explored to a large extend for image
retrieval, especially under the fine-grained setting. The 3D
literature followed a similar trend, starting with category-
level retrieval of 3D shapes using sketches [45], but only
very recently moved onto the fine-grained instance-level
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Figure 1. Collecting 2D sketches for 3D shapes is difficult since
the viewpoints often needs to be pre-defined that arguably makes
sketch collection for 3D shapes an ill-posed problem to start with
– there is no one good view that caters for everyone. We remove
the need for large-scale 2D sketch and 3D shape datasets through
a clever use of pivoting across two separate domains (i) paired 2D
freehand sketches from well-studied FG-SBIR literature [91], and
(ii) the 3D shape domain, where we have ample data at our dispoal
(e.g., ShapeNet [11]). Our pivoting happens on paired 2D photos
from FG-SBIR and 2D projections from 3D shapes.

setup [58]. The very reason behind such a time lag lies
with that of data collection – just as how collection of 2D
sketches for images was difficult [70, 18, 66, 43], sketches
for 3D models had been proven to be even harder to collect
[47, 58]. In particular, since one is collecting a 2D sketch
for a 3D model, viewpoints often need to be pre-defined
[95], which arguably makes sketch collection for 3D shapes
an ill-posed problem to start with – there is no one good
view that caters for everyone.

There is however a strong voice in the 3D community
stating the opposite – that different to images, sketches can
be freely rendered for 3D models, other than collected by
hand. This is because 3D models are well-defined and with-
out cluttered background unlike natural photos, so well-
tailored non-photorealistic rendering (NPR) algorithms [26]
should suffice to produce pseudo-sketches good enough for
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downstream tasks [19]. Indeed synthetic sketches has been
explored for 3D shape retrieval [82]. Conclusion is how-
ever that they lack generalization ability to real free-hand
sketches, therefore requiring an art-trained person to pro-
duce “edge-like” sketches as input.

In this paper, we set off to address all said constraints,
and in effect produce for the first time a democratised
fine-grained 2D sketch to 3D shape retrieval system. This
democratisation happens on two fronts (i) we remove en-
tirely the need for specifically sourced 2D sketch and 3D
shape datasets, and (ii) we enable amateur users without
art training (i.e., you and me) to still enjoy decent accuracy
with their “ordinary” (more abstract) sketches.

The key innovation behind our democratisation process
lies with that of pivoting [87, 41, 34, 32]. Pivoting is by now
a well-explored concept in the language domain, commonly
used for language translation. The idea is that by perform-
ing feature pivoting on a third shared domain, one bridges
two otherwise disconnected domains (e.g., Japanese → En-
glish → French, where English is the pivoting domain). Our
pivoting (see Fig. 1) also operates across two separate do-
mains (i) the domain of paired 2D free-hand sketches, taken
from the well-studied literature of fine-grained sketch-based
image retrieval (FG-SBIR) [91], and (ii) the 3D shape do-
main, where we have ample data at our disposal (e.g.,
ShapeNet [11]). It follows that the pivoting factor is paired
2D photos from the former, and 2D projections of the 3D
shapes from the latter. The result of this pivoting procedure
is therefore a 2D sketch to 3D shape retrieval system that (i)
is trainable entirely using existing datasets already proposed
for diverse problem settings (FG-SBIR [91] and ShapeNet
[11]), and (ii) understands sketch abstraction which is well-
reflected in the sketch-photo dataset used and previously
successfully modeled for FG-SBIR [52, 5].

Our democratisation challenge is mostly addressed al-
ready with just this clever use of pivoting. To inject 3D-
aware knowledge into our 2D shared encoder (where pivot-
ing is conducted), we further “lift” 2D sketch to 3D space.
However, a naive 2D sketch to 3D shape generation is sub-
optimal since (i) we would otherwise need 2D sketch and
3D shape pairs, thereby defeating our purpose of democrati-
sation on specifically sourced data, and (ii) reconstructing
3D shape from sparse 2D sketches is a complex task [19]
that makes our training unstable with noisy gradients. The
way forward to is therefore using softer constraints. For
that, we use the Blind Perspective-n-Points (BPnP) algo-
rithm [10, 8, 9] to solves the pose and orientation between
a 2D projection and 3D shapes, and later transfer this 3D-
aware knowledge to sketch encoders using pivoting. Train-
ing without any 2D sketch and 3D shape pairs, the re-
sulting framework reach an impressive SBSR performance
(both category and fine-grained), reaching that of super-
vised (with 2D sketch - 3D shape pairs) SOTAs [58].

In summary, our contributions are: (i) we democratise
fine-grained 2D sketch to 3D shape retrieval system that
enable amateur users enjoy decent accuracy with their ab-
stract sketches. (ii) The resulting framework trains without
2D sketch and 3D shape pairs via a clever use of pivoting
existing FG-SBIR dataset [91] and ample 3D shapes from
ShapeNet [11]. (iii) We inject 3D-aware knowledge into
our 2D sketch encoder, to “lift” 2D sketch to 3D space us-
ing the BPnP algorithm [8] that solves for 2D and 3D pose
and orientation. (iv) Training without any 2D sketch and 3D
shape, the resulting method performs quite close to super-
vised SOTA [58] that use 2D sketch and 3D shape labels.

2. Related Works
Sketch for 3D Modeling: Sketching is an easy medium for
people to visualize imaginary 3D objects. However, model-
ing 3D shape from freehand 2D sketch is an ill-posed prob-
lem [92] as any 3D object can have infinite 2D projections
[1], making sketch-acquisition difficult [54]. To overcome
this lack of freehand sketches, several approaches synthe-
sise pseudo-sketches [26] for training. Despite its progress,
pseudo-sketches were limited [82, 83, 92] by its inability
to model deformations observed in human drawn sketches.
To model these geometric distortions, hand-crafted [94] or
image translation techniques [93] were applied to generate
stylised sketches. Having uniform drawing style however,
stylised sketches deviated significantly from their freehand
counterpart. Aiming to mitigate these issues, GANs were
employed, which although generated “standardized sketch”
[82], removed deformations and useful drawing styles [69]
observed in human-drawn freehand sketches. Similarly, do-
main adaptation via a domain discriminator [92] learns in-
variant features between synthetic and freehand sketches,
but loses freehand sketch-specific information [69, 17]. In
this work, instead of transforming freehand sketches to their
synthetic versions, we advocate the use of pivot learning
[32], where photos and 2D projection act as a pivot be-
tween freehand sketches and 3D shapes. This simultane-
ously avoids the use of inadequately represented pseudo-
sketches and collecting large datasets of fine-grained 2D
sketches for 3D shapes.
Sketch-Based 3D Shape Retrieval: Early works focused
on category-level retrieval where the objective is to find a
shape that belongs to the same category as the query sketch
[89, 64, 44, 46]. Traditional techniques used diffusion ten-
sor fields [90], BoF with Gabor filters [28], and part struc-
ture information [48] among others [39, 78]. This progress
was motivated by the development of large category-level
datasets [45, 47]. With the advent of deep learning, a com-
mon theme evolved that mapped encoded features from
sketch and shape into a shared embedding space using met-
ric learning [80, 96, 22, 86, 36, 77]. However, naively map-
ping 2D sketch to 3D shape is an ill-posed problem due to
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view variance – there exists multiple drastically different
2D sketches drawn from different viewpoints for the same
3D shape. To address this problem at category-level, prior
works rendered multiple 2D projections [88] that are en-
coded using a shared CNN followed by max pool [77], or
Wasserstein barycenters [86], or triplet-center loss [36]. Al-
ternatively, siamese networks [91] learn intra-domain and
cross-domain similarities from only two views [80], or com-
pute global 3D shape descriptor using LD-SHIFT [24] or
3D-SHIFT with LLC [22]. To avoid lowering 3D shape
to 2D, recent works leveraged voxels [51], point cloud
[42, 59] representations, and designed 3D shape encoders
like 3DCNN [84, 51] or PointNet [60, 61] accordingly.

Despite significant progress on category-level sketch-
based shape retrieval (SBSR), the specialty of sketch in
modelling fine-grained details [7, 16] remains largely un-
explored. However, instance-level mapping not only ag-
gravates existing problems like lack of view invariance and
freehand sketch deformations [96] but is also hindered by
scarcity of large-scale datasets [62]. The only work on fine-
grained SBSR [58] tackles these problems by (i) curating a
new dataset with 4, 680 sketch-3D pairs, (ii) rendering mul-
tiple (n ≥ 24) 2D projections of 3D shape for an optimal
match with query sketch. To avoid losing geometric details
while lowering a 3D shape to 2D space, we lift [33] 2D
sketches to 3D, using an auxiliary task that solves the Blind
Perspective-n-Points (BPnP) problem [8, 9, 10, 12, 13]. The
BPnP algorithm solves the optimisation problem of predict-
ing the pose of a 3D object by estimating correspondence
between a set of 3D points and their 2D projections. Learn-
ing this 2D-3D correspondence provides access to valuable
3D geometric constraints that help fine-grained SBSR.

Fine-Grained Sketch-Based Image Retrieval: The abil-
ity of sketches to offer inherently fine-grained visual de-
scription led to a plethora of works on fine-grained sketch-
based image retrieval (FG-SBIR) [17, 6, 4, 67]. The ob-
jective is to learn pair-wise correspondence for instance-
level sketch-photo matching. Aided by fine-grained sketch-
photo datasets [75, 76], FG-SBIR flourished with the in-
troduction of deep triplet-ranking model [91] for instance-
level matching. This was subsequently enhanced via hy-
brid generative-discriminative cross-domain image genera-
tion [55], providing attention mechanism with higher or-
der retrieval loss [76], utilising textual tags [75], or pre-
training strategy [56, 2], optimal transport based retrieval
[15], test-time training [67], incremental learning [3], noise-
tolerant SBIR [4], invertible neural networks [17], and
meta-learning [6]. Here, we show the potential of FG-SBIR
to solve a long-standing problem in sketch-based 3D mod-
elling, which aims to eliminate the dependence on pseudo-
sketches [38, 53, 27, 35]. In particular, FG-SBIR can help
instance-level alignment between 2D sketch and 3D model
via 2D photos using a pivot-based learning paradigm [14].

3. Proposed Methodology
Overview: We aim to devise a fine-grained sketch-based
shape retrieval (FG-SBSR) framework that explicitly ad-
dresses two long-standing problems (i) freehand sketch de-
formation – existing methods rely on synthesising pseudo-
sketches [26] or learn feature embeddings [82] that ig-
nore the disparity between freehand and synthetic sketches
[18]. Ignoring deformations specific to freehand sketches
not only limits generalisation but also deprives future re-
search from exploring important sketch-specific informa-
tion like drawing styles [69]. (ii) view variance – collecting
large-scale instance-level 2D sketches for 3D shapes is not
only difficult but ill-posed since different 2D sketches can
be drawn from different viewpoints for the same 3D shape.
This calls for a solution that is robust to view-variance and is
simultaneously aware of deformations in a freehand sketch.

3.1. Baseline Retrieval Framework

Given a 2D sketch (s ∈ RH×W×3) and 3D geometry1

(g ∈ RNg×3) pairs, existing SBSR [59] takes a simpli-
fied approach to encode a 2D sketch using 2DCNN [74, 91]
F2D(·) and a 3D shape using 3DCNN [84, 51] or PointNet
[60, 61] F3D(·) to extract a feature map fs = F2D(s) ∈ Rd

and fg = F3D(g) ∈ Rd. Following [58], we use VGG-
16 [74] to encode 2D sketch, and PointNet++ [61] to en-
code 3D coordinates from an order-invariant 3D shape point
cloud. To instill discriminative knowledge, the model is
trained on a cross-modal triplet objective where the cosine
distance δ(·, ·) to a 2D sketch anchor (s) from a negative
geometry (g−) should be increased while that from the pos-
itive geometry (g+) should be decreased. Training is done
via triplet loss with hyperparameter µ > 0 as:

Ltrip = max{0, µ+ δ(fs, f
+
g )− δ(fs, f

−
g )} (1)

There are some inherent limitations to this naive baseline.
Firstly, collecting instance-level 2D sketches for a 3D shape
is an ill-posed and laborious process since each 3D geom-
etry can have multiple drastically different 2D drawings.
To our best knowledge, the only instance-level paired 2D
sketch – 3D shape dataset [58] contains 4, 680 one-to-one
pairing across two categories (‘chair’ and ‘lamp’). In addi-
tion, sketches in [58] are only drawn from three fixed views
( 0°, 30°, 75° for ‘chairs’, and 0°, 45°, 90° for ‘lamps’).
Naive solutions like generating synthetic sketches [38, 53]
from 3D shapes fail to solve this dataset bottleneck due to
the freehand sketch deformation problem – lack of robust-
ness to human drawn sketches being unable to model real-
world sketch deformations. Secondly, instance-level match-
ing of a 2D sketch and 3D geometry is non-trivial since
each 3D shape can be rendered into drastically different 2D
projections. Existing frameworks [58] avoid this problem

1We use Shape and Geometry interchangeably.
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Figure 2. Our proposed method comprise of – pivoting and lifting.
Pivoting bridges two disconnected datasets – sketch/photo pairs in
FG-SBIR [91], and rendered 2D projections for 3D shapes [11]
where photos and 2D projections act as pivot. Pivoting combines
(i) triplet loss for paired sketch – photos, (ii) triplet loss for paired
3D shape – 2D projections, and (iii) distribution matching for un-
paired photos – 2D projections (KL-divergence). For lifting, we
combine sampled 2D points and 2D projection features to solve
for pose (2D-3D correspondence) via BPnP [13]. This injects 3D-
aware knowledge in the 2D encoder shared across sketch, photo,
and 2D projections to simultaneously lift sketch for FG-SBSR.

by rendering n ≥ 24 2D projections for each 3D shape
followed by an optimal matching with a 2D query sketch.
This increases retrieval time by n−folds. Thirdly, existing
frameworks that directly encode a 2D sketch using CNN
[91, 74] and 3D shape using PointNet [60] for category-
level retrieval [59] fail to generalise to instance-level map-
ping [58] due to the view variance problem that leads to
an inability in capturing fine-grained 3D geometric details2.
Therefore, this demands a further investigation on how to
design a training procedure that alleviates the burden of
collecting large-scale instance-level 2D sketch – 3D shape
dataset while simultaneously addressing the view variance
problem and allowing a faster encoding of 2D sketches and
3D shapes without the need of an elaborate pre-processing
step of multiple 3D shape projections.

3.2. Pivot Learning for Sketch-Based 3D Retrieval

Pivot-based learning originated in neural machine transla-
tion (NMT) [14] for low-resource setups. It consists of three
steps: (i) a source to pivot (src → piv), and (ii) a pivot to
target (piv → trg) – parallel datasets, that are used to (iii)
learn a cascaded source to target (src → trg) translation
model. The cascaded model is learned via joint training
[14, 41] to maximise its likelihood. Formally,

P (trg|src) =
∑
piv

P (trg|piv) · P (piv|src) (2)

Leveraging the ease of data collection and abundance of
FG-SBIR datasets [91, 75, 70], we define the first step of

2See supplementary for more details.

our pivot-based learning, i.e., src → piv as an instance-
level retrieval between sketch (s) and its paired photo (Is).
In the second step, i.e., piv → trg we render multiple 2D
projections (Ig) for a 3D geometry (g) [11] without any an-
notation cost and learn instance-level retrieval. We refor-
mulate pivot-based learning objective for instance-level re-
trieval with hyper-parameter µ ≥ 0 as:

Lsrc→piv
trip = max{0, µ+ δ(fs, f

+
Is
)− δ(fs, f

−
Is
)}

Lpiv→trg
trip = max{0, µ+ δ(fIg , f

+
g )− δ(fIg , f

−
g )}

(3)

where, fs = F2D(s), fIs = F2D(Is), and fIg = F2D(Ig),
and fg = F3D(g). The 2D encoder F2D is shared across
sketch (s), photo (Is), and 2D projections (Ig). Hence, the
resulting loss is defined as:

Lsrc→trg
trip = Lsrc→piv

trip + Lpiv→trg
trip (4)

Two noticeable differences exist compared to traditional
pivot learning paradigms. Firstly, prior methods in NMT
[14] worked in two scenarios where: (i) src, piv and trg
all belong to the same modality [87], (ii) piv belongs to
either src [34] or trg [32] modality, where src and trg
are in different modalities. Contrarily, our proposed pivot-
learning paradigm considers src, piv and trg all to be in
three different modalities – sketch (s), image (Is, Ig), and
3D shape (g). Secondly, pivot-based learning has been
explored for generative tasks like NMT [14, 87] where
maximising the joint likelihood (Eq. 2) helps generalise to
P (trg|src). However, ours (Eq. 3) is a retrieval framework
that learns two different metric spaces [25, 40] for instance-
level mapping between sketch (s) ↔ image (Is), and im-
age (Ig) ↔ geometry (g). To facilitate the cascaded align-
ment across the two metric spaces allowing instance-level
retrieval between sketch (s) ↔ geometry (g), we minimise
the f -divergence [31] of cosine distances δ(·, ·) between s
↔ Is and Ig ↔ g. Formally,

Dsrc→piv = {δ(f i
s, f

j
Is
) : (i, j) ∈ [1, N ]2}

Dpiv→trg = {δ(f i
Ig , f

j
g) : (i, j) ∈ [1,M ]2}

Ldist = DKL(Dsrc→piv || Dpiv→trg)

(5)

where, N and M represent the number of paired sketch
(s) – image (Is) and 2D rendering (Ig) – 3D shape (g)
pairs respectively. DKL(·) is the Kullback-Leibler diver-
gence between two probability distributions Dsrc→piv and
Dpiv→trg. Intuitively, we force the information radius [73]
of cosine distances from sketch (s) with image (Is) to be
similar to that of 2D projections (Ig) with 3D shape (g).
Hence, the total loss for our pivot-based learning is,

Lpiv = Lsrc→trg
trip + Ldist (6)

While retrieval via pivoting helps to alleviate the bottleneck
of collecting instance-level 2D sketches for robustness to
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freehand sketch deformation in FG-SBSR, naively match-
ing the encoded feature representation from 2D sketch and
3D shape using a triplet-based metric loss [68, 91] is non-
trivial, as every 3D shape can be projected into largely dif-
ferent 2D views. Existing FG-SBSR frameworks [58] em-
ploy a cumbersome approach of rendering several (n ≥ 24)
2D projections of each 3D shape followed by finding an op-
timal match with the query 2D sketch. Instead of losing
information by lowering a 3D shape to 2D space, we take
the alternative approach of lifting 2D sketch to 3D space as
an additional auxiliary task that provides valuable geomet-
ric constraints [33] for better instance-level retrieval.

3.3. Lifting 2D Sketch to 3D Coordinates

BPnP

Weights

Predicted pose

LIFTING Loss

Pivoted 
2D

2D points

Sampled

2D Sketch

2D Projection

LIFTIN
G

 
SK

ETC
H

Ground-truth pose
2D points

Sampled Inference

Predicted 
3D points

Training

LIFTING

Figure 3. We inject 3D-aware knowledge into the shared 2D CNN
pivoted across (sketch – photo/projections – shape) by training to
predict 3D points for sampled 2D points in 2D projection. The
predicted 3D points, weights, and sampled 2D points are given as
input to a BPnP algorithm [13] that solves for pose of 2D projec-
tion. We compare the predicted pose with ground-truth pose of 2D
projection and backpropagate this 3D-aware knowledge into the
pivoted 2D CNN. Once trained, we can give input sketch to the
pivoted 2D CNN along with randomly sampled points to predict
their 3D coordinates. Learning 3D-aware features from sketches
using the pivoted 2D encoder provides additional geometric con-
straints necessary for fine-grained sketch-based shape retrieval.

To provide access to valuable geometric constraints [33]
necessary for fine-grained retrieval, one can “lift” 2D sketch
to 3D space3. However, as we do not have paired 2D-
3D sketch – shape instances, we inject 3D aware knowl-
edge into the 2D encoder F2D(·) by solving the Blind
Perspective-n-Points (BPnP) algorithm between 2D projec-
tions and 3D shapes, as shown in Fig. 3. As the 2D encoder
is shared across input sketch (s), its paired photo (Is), and
rendered 2D projections (Ig) from 3D shape, “lifting” Ig (in
2D space) to 3D space helps F2D(·) learn 3D aware knowl-
edge, which in turn helps transform 2D sketch information

3Unlike [33], by “lifting” we do not reconstruct a 3D sketch from 2D,
but inject 3D aware knowledge into the 2D sketch encoder.

(s) to 3D space. Blind Perspective-n-Points (BPnP) algo-
rithm [8, 9] is a pose-driven (i.e. positions and orientation)
loss function, computed from a set of 3D points in shape
space, and their 2D projections in image space, by learning
to construct 2D-3D correspondences. Essentially, it aims
to solve pose (rotation, translation) and 2D-3D correspon-
dence simultaneously. We use BPnP as an auxiliary task
only during training, without increasing inference time.

Solving the BPnP problem infuses 3D geometric knowl-
edge into our 2D encoders F2D(·). Given a set of (64 ×
64) uniformly sampled 2D points x = {x1, x2, . . . , xK}
in Ig, we predict their corresponding 3D points z =
{z1, z2, . . . , zK} and weights w = {w1, w2, . . . , wK} in ge-
ometry (g) via a dense correspondence network [13, 49] as,

{z,w} = Fdc(fIg ,x) (7)

where xi ∈ R2, zi ∈ R3, wi ∈ R2, and fIg = F2D(Ig).
Directly regressing on the predicted z with ground-truth 3D
points to learn 2D-3D correspondence does not leverage ge-
ometric priors [13]. Hence, we supervise by solving pose
using geometry-based BPnP algorithms to have stable gen-
eralisation [13, 12]. The BPnP algorithm takes sampled 2D
points (x), predicted 3D points (z) and weights (w) as in-
put to solve for an optimal pose y = {R, t} (rotation matrix
R ∈ R3×3 and translation vector t ∈ R3×1). Hence, instead
of supervising the output of Fdc, we add a BPnP module to
compute loss on predicted pose (y). BPnP minimises the
projection error given by the following optimisation:

ypred = argmin
y

1

2

N∑
i=1

||wi ◦ (π(Rzi + t)− xi)︸ ︷︷ ︸
Φi(y)

||2 (8)

where π(·) represents the 2D projection function with in-
trinsic camera parameters, and ◦ represents element-wise
product. The projection error in Eq. 8 is analogous to least
squares error ||ypred − ygt||2 that leads to non-unique solu-
tions4 [12, 13]. To overcome this ambiguity [71, 50] in esti-
mating pose ypred from 2D projections, following the defi-
nition in [13], we reformulate Eq. 8 as a probability density
estimation problem as:

p(z, x,w|y) = p(θ|y) = exp
(
− 1

2

N∑
i=1

||Φi(y)||2
)

where Φi(y) = wi ◦ (π(Rzi + t)− xi)

(9)

Hence, the new training objective matches the predicted
pose distribution p(y|θ) with ground-truth pose distribution
p(ygt) using KL-divergence as,

LKL = DKL(p(ygt) || p(y|θ)) =

−
∫

p(ygt) log p(θ|y)dy + log

∫
p(θ|y)dy

(10)

4Why non-unique? Please see supplementary for more details.
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While we model the probability distribution of the predicted
pose using p(y|θ), its ground-truth (GT) pose distribution
p(ygt) corresponds to one unique pose. We thus choose the
ground-truth p(ygt) as a narrow Dirac delta distribution as,

LKL =
1

2

N∑
i=1

||Φi(ygt)||2︸ ︷︷ ︸
reprojection at GT pose

+ log

∫
exp−1

2

N∑
i=1

||Φi(y)||2dy︸ ︷︷ ︸
reprojection at predicted pose

(11)
The first term in Eq. 11 measures the uncertainty of projec-
tion error given the ground-truth pose ygt, whereas the sec-
ond term represents the variance of projection error over the
predicted pose y. Lowering the variance term helps increase
discriminative ability, thus lowering pose ambiguity. To
solve the variance of projection error, we use Monte-Carlo
approach following the Adaptive Multiple Importance Sam-
pling (AMIS) algorithm [20] as,

Lvar = log

∫
exp−1

2

N∑
i=1

||Φi(y)||2dy ≈

log
1

K

K∑
j=1

1

q(yj)

{
exp−1

2

N∑
i=i

||Φi(yj)||2
} (12)

where q(yj) is the proposal distribution for position and ori-
entation. The choice of q(yj) strongly affects the numerical
stability. Following existing literature [79, 13], for position
we choose 3 DoF multivariate t-Distributions, and for orien-
tation we use the angular central Gaussian distribution. The
final loss used in BPnP regularisation loss becomes5,

Lreg =
1

2

N∑
i=1

||Φi(ygt)||2 + Lvar (13)

Our final training objective, combines a pivot-based re-
trieval learning Lpiv (in Eq. 6) with a regularisation loss
Lreg (in Eq. 13) over a weighting hyperparameter λ as,

Ltot = Lpiv + λ · Lreg (14)

4. Experiments
Datasets: Being a recently explored task, there exists only
one dataset for FG-SBSR by Qi et al. [58] that comprises
1005 and 555 sketch-3D shape quadruplets of ‘chairs’ and
‘lamps’. Each quadruplet contains three sketches from dif-
ferent views ( 0°, 30°, 75° for ‘chairs’, and 0°, 45°, 90°
for ‘lamps’) and one 3D shape. Following [58], we use
804 and 444 quadruplets respectively (i.e., 80%) for train-
ing, and the rest for testing. Our pivot-based training re-
quires two datasets: (src → piv) and (piv → trg).
For source to pivot, we use QMUL-Chair-V2 [91] con-
sisting of 1275/725 sketched chairs and 300/100 pho-
tos for training/testing respectively. Pivot to target can
be freely generated by 2D projections (n = 360) of 3D

5For a detailed tutorial, see supplementary material.

shape models in Qi et al. [58]. Although our focus is
FG-SBSR, we also test for generalisability of our pro-
posed method on category-level SBSR tasks. In particu-
lar, we evaluate on SHREC’13 [45] and SHREC’14 [47]
sketch track benchmark datasets to compare with exist-
ing state-of-the-art category-level SBSR methods [88, 86].
SHREC’13 [45] includes 7, 200 hand-drawn sketches and
1, 258 3D shapes from 90 categories. SHREC’14 [47] ex-
tends SHREC’13 [45] with 13, 680 hand-drawn sketches
and 8, 987 3D shapes from 171 categories. On average, both
datasets have 80 sketches for each category divided into 50
for training and 30 for testing [86].
Implementation Details: Our model is implemented in Py-
Torch on a 11GB Nvidia RTX 2080-Ti GPU. We train our
model for 200 epochs using Adam optimiser with learn-
ing rate 0.0001, batch size 8, accumulating gradients over 8
steps. The margin value for triplet loss µ is set to 0.3. To re-
duce computational overhead, we use 512 monte carlo sam-
ples and 4 Adaptive Multiple Instance Sampling (AMIS)
iterations. For F2D(·) we use VGG-16 [74] whereas Fdc(·)
consists of a rotation and translation head described in [49].
The learned rotation and frozen translation head predicts
(64 × 64) 3D points z ∈ R64×64×3 and weights w ∈
R64×64×2. We set the weighting factor λ balancing Lpiv

and Lreg as 0.1. Finally, Levenberg-Marquardt (LM) PnP
solver – a robust variation of the Gauss-Newton algorithm,
with Huber kernel [72] and adaptive threshold computes
pose given 2D-3D correspondence6.
Evaluation Metric: In line with FG-SBSR research [91],
we use Acc.@q, i.e. percentage of sketches having true
matched photo in the top-q list. For category-level SBSR,
we follow the widely-adopted metrics such as: (i) Nearest
Neighbor (NN) computes percentage of 3D shapes in the
top-1 list. (ii) First/Second Tier (FT/ST) measures the per-
centage of correctly labeled 3D shapes in the top (C − 1)
or 2(C − 1) list, where C is the number of 3D samples
in query’s class. (iii) E-Measure (E) combines precision
and recall into a single number. (iv) Discounted Cumulated
Gain (DCG) weighs the correctly retrieved results towards
the beginning of the ranked list more than those towards its
end. (v) Mean Average Precision (mAP) computes average
precision for each query sketch. We use the source code in
[62] to compute category-level SBSR metrics.

4.1. Competitors
We compare against (i) state-of-the-art (SOTA) that im-
prove 3D shape representation. These methods are divided
into (a) encode 3D shape information without 2D projec-
tions [61, 29], i.e., non-projection based 3D encoders. FG-
PointNet use PointNet++ [60] for 3D shape and VGG-16
[74] for 2D shape encoding respectively. Training pro-
gresses over triplet loss [91]. FG-Spherical replaces Point-

6See supplementary for a detailed PyTorch-like code
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Net++ with Spherical CNN [29]. (b) capture 3D shape
information via multiple 2D projections [77, 23, 58] to
overcome view variance between 2D sketch and 3D shape.
MVCNN [77] projects 3D shape into (n = 24) 2D views.
Each view is separately encoded with a shared 2D encoder
followed by max-pooling to get the resulting 3D shape
feature. MVAvg [23] follows MVCNN but replaces max-
pooling with average-pooling. MVAttn by Qi et al. [58]
improves upon MVCNN and MV-Avg via cross-modal view
attention to dynamically determine relevant 2D projections
given a 2D sketch for a weighted sum. (ii) Focusing on im-
proving the 2D sketch representation, we adopt techniques
from sketch-based 3D modeling literature [93, 92, 82]. A
better 2D sketch and 3D shape mapping is learned using
non-photo realistic renderings [38, 53, 27] to generate large-
scale datasets of synthetic sketch and 3D shape. To achieve
robustness to freehand sketch deformations, GANSketch
[82] transforms a freehand sketch to the synthesised sketch
domain. We train it using synthetic sketch with triplet loss.
For evaluation, a pretrained standardized module is used
to transform freehand sketch to synthetic domain for re-
trieval. AdaptSketch [92] employs a domain discrimina-
tor that trains our 2D sketch encoder adversarially for ro-
bustness to synthetic and freehand sketches. While the re-
trieval model is trained using large-scale synthetic sketches
and triplet loss, the domain discriminator additionally re-
quires a small set of freehand sketches. StylisedSketch [93]
applies a set of random global and local deformations to
each stroke in a synthesised sketch. The resulting sketch is
given to a CNN [81] that consolidates and simplifies to give
style-unified sketch. Training progresses using style-unified
sketch with triplet loss. (iii) An alternative to improving
2D sketch encoder is injecting 3D aware knowledge for
fine-grained SBSR via 2D sketch to 3D shape reconstruc-
tion. SDFSketch employs DeepSDF [57] as an auxiliary
task only during training to generate 3D shape from a 2D
sketch representation. The reconstruction module predicts
signed distance field [21] trained using L1 loss. PSGNS-
ketch follows SDFSketch but uses PSGN [30] to predict a
point-based shape representation trained using chamfer dis-
tance [85] as reconstruction loss.

4.2. Evaluation on Fine-Grained SBSR
We evaluate on ‘chairs’ and ‘lamps’ [58]. Our setup in-
cludes: (i) zero-shot that use pivoting to train with fine-
grained sketch-photo instances in QMUL-Chair-V2 [91]
and freely available 3D shapes – 2D projections in Qi et
al. [58]. (ii) Although not our main goal, we further re-
port the upper-bound/all-shot that fine-tunes the zero-shot
model using paired 2D sketch – 3D shape in Qi et al. [58].
Performance Analysis: From Table. 1, we observe: (i) 2D
Enc. perform lower than 3D Enc.. This shows training with
synthetic sketches does not generalise to freehand sketch

Figure 4. Qualitative top-5 fine-grained retrieved results on Qi et
al. [58] using our proposed method. RED denotes GT 3D shape.

deformations. (ii) Injecting 3D aware knowledge in Lift im-
proves performance over 2D Enc. and is competitive with
3D Enc.. It confirms our intuition that instead of lower-
ing 3D shapes to 2D space with multiple 2D projections,
one can “lift” 2D sketches to 3D space for improved fine-
grained matching. (iii) Ours (zero-shot) is competitive with
existing SOTA 3D Enc. without using any labelled training
data. (iv) zero-shot performance is lower in ‘lamps’ than in
‘chairs’. This is because the training data (src→ piv) [91]
used in pivoting only contains ‘chairs’ and not ‘lamps’. See
supplementary for more details on ‘lamps’. (v) Combining
pivot-based pretraining along with 3D aware knowledge, in-
jected using BPnP [10] outperforms existing methods with-
out using expensive 2D projections (n = 24). (vi) Fig. 4
visualises top-10 retrievals on Qi et al. [58].

Table 1. Comparative fine-grained SBSR results on Qi et al. [58].
Following section 4.1, we compare across groups of methods (i)
3D Enc.: improves 3D encoders F3D(·), (ii) 2D Enc.: improves
2D encoders F2D(·), and (iii) Lift: injects 3D aware knowledge
into F2D(·) using auxiliary 2D sketch to 3D reconstruction task.

Method Chairs Lamps
Acc.@1 Acc.@5 Acc.@1 Acc.@5

3D
E

nc
. FGPointNet [61] 0.50 4.48 0.90 3.60

FGSperical [29] 11.77 40.13 12.61 38.44
MVCNN [77] 47.60 81.26 49.25 83.48
MVAvg [23] 45.12 77.94 48.56 80.11
MVAttn [58] 56.72 87.06 57.66 87.39

2D
E

nc
. GANSketch [82] 37.53 65.92 35.91 66.10

AdaptSketch [92] 34.66 65.66 35.47 65.46
StylisedSketch [93] 30.21 64.76 31.34 63.75

L
ift SDFSketch [57] 56.91 87.43 58.11 87.40

PSGNSketch [30] 57.42 88.10 58.35 87.76

O
ur

s zero-shot 55.79 86.12 21.63 57.66
upper-limit/all-shot 58.53 89.67 58.74 87.95

4.3. Evaluation on Category-Level SBSR
Although we focus on fine-grained matching between 2D
sketch and 3D shapes, to evaluate the generalisability of
our method, we evaluate on category-level SBSR bench-
mark datasets SHREC’13 [45] and SHREC’14 [47]. (i) For
zero-shot, following [88] we split seen/unseen categories
into 79/11 for SHREC’13 [45], and 151/20 for SHREC’14
[47]. (ii) To encourage future work (not our goal), we report
upper-limit/all-shot with paired 2D sketch – 3D shapes.
Performance Analysis: From Tab. 2, we observe: (i) The
performance gap between 2D Enc. and 3D Enc. is slightly
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Table 2. Comparative category-level SBSR results on benchmark SHREC’13 [45] and SHREC’14 [47] datasets.

Method SHREC’13 [45] SHREC’14 [47]
NN FT ST E DCG mAP NN FT ST E DCG mAP

3D
E

nc
. FGPointNet [61] 82.3 82.8 86.0 40.3 88.4 84.3 80.4 74.9 81.3 39.5 87.0 78.0

FGSperical [29] 80.4 80.9 83.6 40.1 87.3 82.9 77.9 72.6 79.9 39.1 86.3 76.8
MVCNN [77] 76.3 78.7 84.9 39.2 85.4 80.7 58.5 45.5 53.9 27.5 66.6 47.7
MVAvg [23] 71.2 72.5 78.5 36.9 81.4 75.2 40.3 37.8 45.5 23.6 58.1 40.1
MVAttn [58] 83.4 85.4 90.1 41.8 90.1 87.2 78.7 81.2 84.9 41.9 88.2 83.1

2D
E

nc
. GANSketch [82] 67.5 68.3 72.8 36.3 77.4 68.6 30.4 28.9 36.0 18.9 52.4 30.6

AdaptSketch [92] 64.3 63.1 71.6 34.4 76.3 67.1 27.9 28.3 34.9 18.5 50.1 29.4
StylisedSketch [93] 62.6 63.4 68.8 35.8 74.3 64.7 23.5 25.6 31.7 15.4 44.9 26.1

L
ift SDFSketch [57] 66.7 67.1 70.5 36.0 77.1 68.2 28.5 28.3 35.1 18.6 50.5 29.9

PSGNSketch [30] 67.4 68.1 72.4 36.0 76.9 68.1 29.6 28.5 35.3 18.7 51.2 30.1

O
ur

s zero-shot 55.3 49.5 67.5 37.4 70.1 55.7 43.1 35.9 46.8 19.6 59.5 37.6
upper-limit/all-shot 84.9 85.4 90.7 42.3 90.7 87.6 80.1 81.3 86.2 43.3 88.9 83.7

Figure 5. Visualising the importance of Ldist on pivot-based learn-
ing with triplet loss. Using Ldist, the t-SNE plots of fIs and fIg
are more closely aligned. This helps pivoting s to g.

lower than its fine-grained counterpart (in Tab. 1). This
indicates that the issue of freehand sketch deformation is
more pronounced in fine-grained setup. (ii) Injecting 3D
aware knowledge in Lift fails to improve performance over
3D Enc. Reconstructing 3D shape from category-level 2D
sketches is a difficult problem thus leading to unstable gen-
eralisation. (iii) Instead of generating 3D shape our Pro-
posed Method only predicts 3D coordinates of visible 2D
points. This softer constraint [13] helps in better gener-
alisation to category-level retrieval, making our Proposed
Method competitive with existing SOTAs.

Table 3. Ablative study on ‘chairs‘ in Qi et al. [58]. Piv denotes
pivot-based learning and all-shot represents the use of paired 2D
sketch and 3D shape from train-set in [58].

Piv Ldist BPnP all-shot Acc.@1 Acc.@5

✗ ✗ ✗ ✓ 10.5 38.7
✓ ✗ ✗ ✓ 48.7 80.7
✓ ✗ ✗ ✗ 46.5 78.5
✓ ✓ ✗ ✗ 49.3 82.2
✓ ✓ ✓ ✗ 55.8 86.1
✓ ✓ ✓ ✓ 58.5 89.7

4.4. Ablation
Importance of Pivoting: We remove constraints like Ldist

(w/o – Ldist), BPnP solver (w/o – BPnP), and compare (Ta-
ble. 3) our baseline (w/o – Piv, w – all-shot) against using
pivoting as pretraining (w–Piv, w–all-shot). We observe
38.2/42.0 rise in Acc.@1/Acc.@5 while pivoting.

Figure 6. Visualising predicted 3D points z from sketch (Eq. 7).

Importance of enforcing Ldist: To evaluate contribution
of Ldist, we compare zero-shot performance using only piv-
oting (w – Piv, w/o – Ldist) against Ldist with pivoting
(w – Piv, w – Ldist). Tab. 3 shows 2.8/3.7 improvement
in Acc.@1/Acc.@5 when using Ldist. Additionally, t-SNE
plot in Fig. 5 shows better alignment between photos paired
with sketches (Is) and 2D projections (Ig) of 3D shapes
when using Ldist. This alignment helps map source 2D
sketch (s) with target 3D shape (g).
Importance of solving BPnP: From Tab. 3, we measure
the effect of adding the auxiliary BPnP solve during train-
ing. Comparing pivoting with Ldist (w – Piv, w – Ldist,
w/o – BPnP) against adding a BPnP auxiliary training loss
(w – Piv, w – Ldist, w – BPnP), we observe 6.5/3.9 im-
provement in Acc.@1/Acc.@5. Furthermore, Fig. 6 visu-
alises the predicted 3D points from 2D sketch via our dense
correspondence network Fdc(·) in Eq. 7.
Limitations and Future Improvements: From our abla-
tion study (Tab. 3), we observe that even after using Ldist,
pivoting, and BPnP solver, fine-tuning our proposed method
on labelled 2D sketch and 3D shape pairs improves by
2.7/3.6 in Acc.@1/Acc.@5. This gap between zero-shot
and all-shot shows an important limitation of all FG-SBSR
methods – despite being an ill-posed problem, collecting
2D sketch for 3D shapes (all-shot) is still necessary to out-
perform its zero-shot setup (using unpaired 2D sketch and
3D shapes). Our future work would thus aim to overcome
this zero-shot gap without the need of any FG-SBSR train-
ing data. Our intuition is that adapting CLIP [63] for gen-
eralised cross-category FG-SBIR along with pivoting and
BPnP solver can finally resolve this important limitation.
Failure Cases: As mentioned in Sec. 4.2, the performance
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Figure 7. Failure cases for Fine-Grained SBSR for ‘Lamps’ [58].

in ‘lamps’ is lower than ‘chairs’, as no 2D sketch/photo
‘lamps’ dataset was available for training via pivot learn-
ing (unlike Chair-V2 [91] for ‘chairs’). We thus attempted
the harder problem of training on ‘chairs’ and evaluating on
‘lamps’. This led to a significant performance drop for fine-
grained SBSR on ‘lamps’. Fig. 7 shows some failure cases
for fine-grained SBSR on ‘lamps’. Future works can exploit
the zero-shot generalisation of CLIP [63] for cross-category
fine-grained retrieval [65] and help remove the need to col-
lect a 2D sketch/photo datasets for pivot learning.

5. Conclusion
In this paper, we scrutinise two important bottlenecks in
fine-grained sketch-based shape retrieval: (i) view variance
– collecting 2D sketches for 3D shapes is difficult since
the viewpoints often needs to be pre-defined that arguably
makes sketch collection for 3D shapes an ill-posed problem
to start with. There is no one good view that caters for ev-
eryone. (ii) freehand sketch deformation – existing methods
that rely on synthesising pseudo-sketches ignore the dispar-
ity between freehand and synthetic sketches. For this, we
overcome the need of collecting large-scale 2D sketches for
3D shapes by first introducing pivot-based learning for 3D
shape retrieval. Next, we inject 3D-aware knowledge in our
2D sketch encoder to “lift” 2D sketch to 3D space that pro-
vides additional geometric cues to improved fine-grained
2D sketch – 3D shape matching. Empirical evidence shows
remarkable performance gain, even in zero-shot setups.
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