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Abstract

We present accumulator-aware quantization (A2Q), a
novel weight quantization method designed to train quan-
tized neural networks (QNNs) to avoid overflow when using
low-precision accumulators during inference. A2Q intro-
duces a unique formulation inspired by weight normaliza-
tion that constrains the ℓ1-norm of model weights according
to accumulator bit width bounds that we derive. Thus, in
training QNNs for low-precision accumulation, A2Q also
inherently promotes unstructured weight sparsity to guar-
antee overflow avoidance. We apply our method to deep
learning-based computer vision tasks to show that A2Q can
train QNNs for low-precision accumulators while main-
taining model accuracy competitive with a floating-point
baseline. In our evaluations, we consider the impact of
A2Q on both general-purpose platforms and programmable
hardware. However, we primarily target model deployment
on FPGAs because they can be programmed to fully ex-
ploit custom accumulator bit widths. Our experimentation
shows accumulator bit width significantly impacts the re-
source efficiency of FPGA-based accelerators. On average
across our benchmarks, A2Q offers up to a 2.3x reduction in
resource utilization over 32-bit accumulator counterparts
with 99.2% of the floating-point model accuracy.

1. Introduction
Quantization is the process of reducing the range and

precision of the numerical representation of data. When
applied to the weights and activations of neural networks,
integer quantization reduces compute and memory require-
ments, usually in exchange for minor reductions in model
accuracy [14, 19, 20, 47]. During inference, most of the
compute workload is concentrated in operators such as con-
volutions and matrix multiplications, whose products are
typically accumulated into 32-bit registers that we refer to
as accumulators. It has been shown that reducing accumu-
lators to 16 bits on CPUs and ASICs can increase inference
throughput and bandwidth efficiency by up to 2x [9, 45],
and reducing to 8 bits can improve energy efficiency by over

4x [32]. However, exploiting such an optimization is highly
non-trivial as doing so incurs a high risk of overflow. Due
to wraparound two’s complement arithmetic, this can intro-
duce numerical errors that degrade model accuracy [32].

Previous works have sought to either reduce the risk of
overflow [25, 37, 45] or mitigate its impact on model ac-
curacy [32]. However, such approaches struggle to main-
tain accuracy when overflow occurs too frequently [32], and
are unable to support applications that require guaranteed
arithmetic correctness, such as finite-precision fully homo-
morphic encryption computations [28, 40]. Thus, we are
motivated to avoid overflow altogether. As the first princi-
pled approach to guarantee overflow avoidance, we provide
theoretical motivation in Section 3, where we derive com-
prehensive accumulator bit width bounds with finer gran-
ularity than existing literature. In Section 4, we present
accumulator-aware quantization (A2Q); a novel method de-
signed to train quantized neural networks (QNNs) to use
low-precision accumulators during inference without any
risk of overflow. In Section 5, we show that our method
not only prepares QNNs for low-precision accumulation,
but also inherently increases the sparsity of the weights.

While our results have implications for general-purpose
platforms such as CPUs and GPUs, we primarily target
model deployment on custom FPGA-based inference ac-
celerators. FPGAs allow bit-level control over every part
of a low-precision inference accelerator and can therefore
take advantage of custom data types to a greater extent
than general-purpose platforms, which are often restricted
to power-of-2 bit widths. In doing so, we show in Section 5
that reducing the bit width of the accumulator can in turn
improve the overall trade-off between resource utilization
and model accuracy for custom low-precision accelerators.

To the best of our knowledge, we are the first to explore
the use of low-precision accumulators to improve the design
efficiency of FPGA-based QNN inference accelerators. As
such, we integrate A2Q into the open-source Brevitas quan-
tization library [35] and FINN compiler [1] to demonstrate
an end-to-end flow for training QNNs for low-precision ac-
cumulation and generating custom streaming architectures
targeted for AMD-Xilinx FPGAs.

This ICCV paper is the Open Access version, provided by the Computer Vision Foundation.
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2. Background
2.1. Quantization-Aware Training (QAT)

The standard operators used to emulate quantization dur-
ing training rely on uniform affine mappings from a high-
precision real number to a low-precision quantized num-
ber [20]. The quantizer (Eq. 1) and dequantizer (Eq. 2) are
parameterized by zero-point z and scaling factor s. Here,
z is an integer value that ensures that zero is exactly rep-
resented in the quantized domain, and s is a strictly pos-
itive real scalar that corresponds to the resolution of the
quantization function. Scaled values are rounded to the
nearest integers using half-way rounding, denoted by ⌊·⌉,
and elements that exceed the largest supported values in
the quantized domain are clipped such that clip(x;n, p) =
min(max(x;n); p), where n and p depend on the data
type of x. For signed integers of bit width b, we assume
n = −2b−1 and p = 2b−1 − 1. For unsigned integers, we
assume n = 0 and p = 2b − 1 when unsigned.

quantize(x; s, z) := clip(
⌊x
s

⌉
+ z;n, p) (1)

dequantize(x; s, z) := s · (x− z) (2)

It has become common to use unique scaling factors for
each of the output channels of the learned weights to adjust
for varied dynamic ranges [31]. However, extending this
strategy to activations requires either storing partial sums
or introducing additional control logic. As such, it is stan-
dard practice to use per-tensor scaling factors for activations
and per-channel scaling factors on the weights. It is also
common to constrain the weight quantization scheme such
that z = 0 [14]. Eliminating these zero points reduces the
computational overhead of cross-terms during integer-only
inference [21]. During training, the straight-through esti-
mator (STE) [3] is used to allow local gradients to permeate
the rounding function such that ∇x⌊x⌉ = 1 everywhere,
where ∇x denotes the local gradient with respect to x.

2.2. Low-Precision Accumulation

As activations are propagated through the layers of a
QNN, the intermediate partial sums resulting from convolu-
tions and matrix multiplications are typically accumulated
in a high-precision register before being requantized and
passed to the next layer, as depicted in Fig. 1. Reducing
the precision of the accumulator incurs a high risk of over-
flow which, due to wraparound two’s complement arith-
metic, introduces numerical errors that can degrade model
accuracy [32]. As shown in Fig. 2, the rate of overflows
per dot product often grows exponentially as the accumula-
tor bit width is reduced (please see Appendix A for details).
The increased overflow rate introduces numerical errors that
proportionally increase the mean absolute error on the log-
its, decreasing classification accuracy. The industry stan-

N-bit Input DataM-bit Weights

P-bit Accumulator

Requantize

N-bit Output Data

K Times

Previous Layer

Next Layer

Figure 1: A simplified illustration of fixed-point arithmetic
in neural network inference. The accumulator bit width (P )
needs to be wide enough to fit the dot product between the
M -bit weight vector and the N -bit input vector, which are
assumed to both be K-dimensional.
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Figure 2: We evaluate the impact of overflow as we reduce
the accumulator bit width using a 1-layer QNN trained to
classify binary MNIST [10] images using 8-bit weights. We
show that using A2Q (green dots) to avoid overflow sig-
nificantly improves model accuracy over both wraparound
arithmetic (black stars) and clipping (blue triangles) when
using extremely low-precision accumulators.

dard for avoiding overflow is to either use high-precision
accumulators or naı̈vely saturate values as they are accu-
mulated. However, such clipping can still: (1) introduce
numerical errors that cascade when propagated through a
QNN; and (2) require additional logic that can break asso-
ciativity while adding to latency and area requirements [2].
In breaking associativity, the final result of the dot product
is made dependent on the order of additions. This can in-
troduce non-deterministic errors when modern processors
use optimizations that improve hardware utilization by re-
ordering operations [13, 22] (please see Appendix A.1 for
details). This further motivates us to train QNNs to com-
pletely avoid overflow rather than simply reduce its impact
on model accuracy. This way, A2Q entirely circumvents
these numerical errors while delivering improved resource
efficiency and increased accuracy.
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3. Accumulator Bit Width Bounds

Figure 1 illustrates a simplified abstraction of accumu-
lation in QNN inference. To avoid overflow, the register
storing the accumulated values needs to be wide enough to
not only contain the result of the dot product, but also all
intermediate partial sums.

Consider the dot product of input data x and learned
weights w, which are each K-dimensional vectors of in-
tegers. Let y be the scalar result of their dot product given
by Eq. 3, where xi and wi denote element i of vectors x
and w, respectively. Since the representation range of y is
bounded by that of x and w, we use their ranges to derive
lower bounds on the bit width P of the accumulation regis-
ter, or accumulator.

y =
∑K

i=1 xiwi (3)

It is common for input data to be represented with un-
signed integers either when following activation functions
with non-negative dynamic ranges (e.g., rectified linear
units, or ReLUs), or when an appropriate zero point is
adopted (i.e., asymmetric quantization). Otherwise, signed
integers are used. Since weights are most often represented
with signed integers, we assume the accumulator is always
signed in our work. Therefore, given that the scalar result of
the dot product between x and w is a P -bit integer defined
by Eq. 3, it follows that

∑K
i=1 xiwi is bounded such that:

−2P−1 ≤
∑K

i=1 xiwi ≤ 2P−1 − 1 (4)

To satisfy both sides of this double inequality, it follows that
|
∑K

i=1 xiwi| ≤ 2P−1−1. However, the accumulator needs
to be wide enough to not only store the final result of the dot
product, but also all intermediate partial sums.

Since input data is not known a priori, our bounds
must consider the worst-case values for every MAC. Thus,
because the magnitude of the sum of products is upper-
bounded by the sum of the product of magnitudes, it fol-
lows that if

∑K
i=1 |xi||wi| ≤ 2P−1−1, then the dot product

between x and w fits into a P -bit accumulator without nu-
merical overflow, as shown below.

|
∑

i xiwi| ≤
∑

i |xiwi| ≤
∑

i |xi||wi| ≤ 2P−1 − 1 (5)

3.1. Deriving Lower Bounds Using Data Types

The worst-case values for each MAC can naı̈vely be in-
ferred from the representation range of the data types used.
When xi and wi are signed integers, their magnitudes are
bounded such that |xi| ≤ 2N−1 and |wi| ≤ 2M−1, re-
spectively. In scenarios where xi is an unsigned integer,
the magnitude of each input value is upper-bounded such
that |xi| ≤ 2N − 1; however, we consider the case where
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Figure 3: We visualize the differences between our accumu-
lator bit width bounds as we vary the size of the dot product
(K) as well as the bit width of both the weights (M ) and
inputs (N ), which we jointly refer to as “data bit width.”

|xi| ≤ 2N to simplify our derivation1. Combining these
upper bounds, it follows that |xi| ≤ 2N−1signed(x), where
1signed(x) is an indicator function that returns 1 if and only
if x is a vector of signed integers.

Building from Eq. 5, it follows that the sum of the prod-
uct of the magnitudes is bounded such that:∑K

i=1 |xi||wi| ≤ K · 2N+M−1−1signed(x) ≤ 2P−1 − 1 (6)

Taking the log of both sides of Eq. 6, we can derive a lower
bound on the accumulator bit width P :

log2

(
2log2(K)+N+M−1−1signed(x) + 1

)
+ 1 ≤ P (7)

This simplifies to the following lower bound on P :

P ≥ α+ ϕ(α) + 1 (8)
α = log2(K) +N +M − 1− 1signed(x) (9)

ϕ(α) = log2(1 + 2−α) (10)

In Fig. 3a, we visualize this bound assuming that x is a
vector of unsigned integers. There, we show how the lower
bound on the accumulator bit width increases as we vary the
size of the dot product (K) as well as the bit width of both
the weights and input activations.

3.2. Deriving Lower Bounds Using Weights

Since learned weights are frozen during inference time,
we can use knowledge of their magnitudes to derive a
tighter lower bound on the accumulator bit width. Build-
ing again from Eq. 5, the sum of the product of magnitudes
is bounded by Eq. 11, where ∥w∥1 denotes the standard ℓ1-
norm over vector w.∑K

i=1 |xi||wi| ≤ 2N−1signed(x) · ∥w∥1 ≤ 2P−1 − 1 (11)

1Note that our simplification of the upper bound for unsigned input data
means that the lower bound on the accumulator is not as tight as possible,
but it does not compromise overflow avoidance.
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Accounting for ∥w∥1 in our derivation allows us to tighten
the lower bound on P as follows:

P ≥ β + ϕ(β) + 1 (12)
β = log2(∥w∥1) +N − 1signed(x) (13)

ϕ(β) = log2(1 + 2−β) (14)

In Fig. 3b, we visualize this bound, again assuming that
x is a vector of unsigned integers. Because Eq. 13 is de-
pendent on the values of the learned weights, we randomly
sample each K-dimensional vector from a discrete Gaus-
sian distribution and show the median accumulator bit width
along with the minimum and maximum observed over 1000
random samples. Across K, M , and N , we visualize how
using knowledge of the weights provides a tighter lower
bound on the accumulator bit width than using data types.

4. A2Q: Accumulator-Aware Quantization
To train QNNs to use low-precision accumulators with-

out overflow, we use weight normalization as a means of
constraining learned weights w to satisfy the bound derived
in Section 3.2. Building from Eq. 11, we transform our
lower bound on accumulator bit width P to be the upper
bound on the ℓ1-norm of w given by Eq. 15. Note that be-
cause each output neuron requires its own accumulator, this
upper bound needs to be enforced channelwise.

∥w∥1 ≤
(
2P−1 − 1

)
· 21signed(x)−N (15)

4.1. Constructing Our Quantization Operator

Weight normalization, as originally proposed by Sali-
mans et al. [38], reparameterizes each weight vector w in
terms of a parameter vector v and a scalar parameter g as
given in Eq. 16, where ∥v∥2 is the Euclidean norm of the
K-dimensional vector v [38]. This simple reparameteriza-
tion fixes the Euclidean norm of weight vector w such that
∥w∥2 = g, which enables the magnitude and direction to
be independently learned.

w = g · v

∥v∥2
(16)

Inspired by this formulation, we reparameterize our
quantizer such that each weight vector w is represented in
terms of parameter vectors v and g. Similar to the standard
weight normalization formulation, this reparameterization
decouples the norm from the weight vector; however, un-
like the standard formulation, our norm is learned for each
output channel rather than per-tensor. To enforce our con-
straint during QAT, we also replace the per-tensor ℓ2-norm
with a per-channel ℓ1-norm. This reparameterization, given
by Eq. 17, allows for the ℓ1-norm of weight vector w to be
independently learned per-channel such that gi = ∥wi∥1

for all i ∈ {1, · · · , C}. Here, wi denotes the weights of
channel i and gi denotes element i in parameter vector g for
a given layer with C output channels.

wi = gi ·
vi

∥vi∥1
∀ i ∈ {1, · · · , C} (17)

Similar to the standard weight quantizer, our weight
normalization-based quantization operator relies on a uni-
form affine mapping from the high-precision real domain
to the low-precision quantized domain using learned per-
channel scaling factors s = {si}Ci=1. Thus, by constraining
gi to satisfy Eq. 18, we can learn quantized weights that sat-
isfy our accumulator bit width bound and avoid overflow.

gi ≤ si ·
(
2P−1 − 1

)
· 21signed(x)−N (18)

Below, we articulate our weight normalization-based
quantizer. For clarity and convenience of notation, we con-
sider a layer with one output channel (i.e., C = 1) such that
parameter vectors g = {gi}Ci=1 and s = {si}Ci=1 can be
represented as scalars g and s, respectively.

quantize(w; s, z) := clip(
⌊
g

s

v

∥v∥1

⌋
+ z;n, p) (19)

We construct accumulator-aware quantization (A2Q)
from our weight normalization-based quantizer (Eq. 19) and
the standard dequantizer (Eq. 2). During training, A2Q ap-
plies the following four elementwise operations in order:
scale, round, clip, then dequantize. As is standard practice,
we eliminate the zero points in our mapping such that z = 0.
We use an exponential parameterization of both the scaling
factor s = 2d and the norm parameter g = 2t, where d and t
are both log-scale parameters to be learned through stochas-
tic gradient descent. This is similar to the work of [21] with
the difference that we consider the more common scenario
of floating-point scaling factors. The scaled tensors are then
rounded towards zero, which we denote by ⌊·⌋, to prevent
any upward rounding that may cause the norm to increase
past our constraint2. Note that this is another difference
from the conventional quantization operators, which pri-
marily use half-way rounding [14, 21]. Finally, once scaled
and rounded, the elements in the tensor are then clipped
and dequantized. To update learnable parameters through-
out training, we use STE [3] as is common practice.

q(w; s) := clip
(⌊

g

s

v

∥v∥1

⌋
;n, p

)
· s (20)

where s = 2d (21)

and g = 2min(T,t) (22)

and T = 1signed(x) + log2(2
P−1 − 1) + d−N (23)

2It is important to note that rounding towards zero is functionally dif-
ferent from floor or ceiling rounding [27].
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We apply A2Q to only the weights of a QNN. To avoid t
getting stuck when t > T , we introduce the following reg-
ularization penalty for the l-th layer of the network: Rl =∑

i max{ti − Ti, 0}. This penalty is imposed on every hid-
den layer and combined into one regularizer: Lreg =

∑
l Rl.

When quantizing our activations, we use the standard quan-
tization methods discussed in Section 2.1. All activations
that follow non-negative functions (i.e., ReLU) are repre-
sented using unsigned integers, otherwise they are signed.

5. Experiments
Without guaranteed overflow avoidance, one cannot re-

liably design hardware accelerators around low-precision
accumulators. Therefore, in our experiments, we do not
compare against methods that cannot provide such guar-
antees. Given that, we consider two scenarios in the fol-
lowing evaluations. In Section 5.2, we optimize QNNs for
accumulator-constrained processors, where the goal is to
maximize task performance given a user-defined accumu-
lator bit width. Such a scenario is a direct application of
our method and has implications for both accelerating in-
ference on general-purpose platforms [9, 32, 45] and reduc-
ing the computational overhead of homomorphic encryp-
tion arithmetic [28, 40]. In Section 5.3, we optimize QNNs
for overall resource utilization within a hardware-software
(HW-SW) co-design setting. In this scenario, the goal is
to maximize task performance given a user-defined hard-
ware resource budget. Our experiments show that including
the accumulator bit width as part of the design space can
improve the trade-off between resources and accuracy. We
target model deployment on custom FPGA-based accelera-
tors, rather than CPUs or GPUs, as they allow bit-level con-
trol over every part of the network and can therefore take
advantage of custom data types to a greater extent. To do
so, we adopt FINN [4, 41], an open-source framework de-
signed to generate specialized streaming architectures for
QNN inference acceleration on AMD-Xilinx FPGAs. We
build on top of FINN v0.8.1 [1] and open-source our A2Q
implementation3 as part of Brevitas v0.10 [35].

5.1. Experiment Setup

We apply A2Q to the following two computer vision
tasks: (1) image classification on CIFAR10 [24] using Mo-
bileNetV1 [18] and ResNet18 [15]; and (2) single-image
super resolution on BSD300 [29] using ESPCN [39] and
UNet [36]. For each model, we measure task perfor-
mance over the test dataset, where image classification and
single-image super resolution models are evaluated using
top-1 classification accuracy and peak signal-to-noise ratio
(PSNR), respectively. We include more details on model
and training settings in Appendix B.

3https://github.com/Xilinx/brevitas/tree/
master/src/brevitas_examples

Throughout our experiments, we constrain our quantiza-
tion design space to uniform-precision models. For every
hidden layer in each network, we enforce the same weight,
activation, and accumulator bit width, respectively denoted
as M , N , and P . We perform a grid search over our quan-
tization design space, focusing our attention on weight and
activation bit widths between 5 and 8 bits. Doing so allows
even comparisons across bit widths, as reducing the pre-
cision below 5 bits often requires unique hyperparameters
to maximize performance. For each weight and activation
bit width combination, we calculate the largest lower bound
on the accumulator bit width for each model. In a model
with L layers, this is determined by the data type bound
of the layer with the largest dot product size K∗, where
K∗ = argmaxKl

{Kl}Ll=0. Using this to guide our grid
search over P for each model, we evaluate up to a 10-bit
reduction in the accumulator bit width to create a total of
160 configurations per model.

5.2. Optimizing for Accumulator Constraints

To the best of our knowledge, A2Q is the first to allow
a user to train a QNN to avoid overflow by only specify-
ing a target accumulator bit width P . As an alternative, a
designer can choose to heuristically reduce data bit widths
based on our data type bound given by Eq. 8. Such an ap-
proach would still guarantee overflow avoidance for a user-
defined P , but is a limited and indirect means of enforcing
such a constraint. By heuristically manipulating data bit
widths, the minimum attainable P is bounded by both the
quantization design space and the architecture of the QNN
because it is a function of M , N , and the size of the dot
product K. Conversely, A2Q exposes P as an independent
variable to be directly specified in the design, orthogonal to
the rest of the design space. To compare the performance of
models trained with A2Q against the baseline heuristic ap-
proach, we vary M , N , and P across our benchmark mod-
els. We visualize this comparison as a Pareto frontier in
Fig. 4 and provide the floating-point task performance as
reference. For each model and each algorithm, the Pareto
frontier shows the maximum observed task performance for
a given target accumulator bit width P .

It is important to note that, while this is not a direct com-
parison against the algorithm proposed by [9], the experi-
ment is similar in principle. Unlike [9], we use the more
advanced quantization techniques detailed in Section 2.1
and constrain our quantization design space to uniform-
precision models. Within this design space, we observe
that A2Q can push the accumulator bit width lower than
what is attainable using current methods while also main-
taining task performance. Furthermore, most models show
less than a 1% performance drop with a 16-bit accumulator,
which is often the target bit width for low-precision accu-
mulation in general-purpose processors [9, 25, 45].
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Figure 4: We visualize the trade-off between accumulator bit width and task performance using Pareto frontiers. We observe
that A2Q (green dots) dominates the baseline QAT (blue stars) in all benchmarks, showing that we can reduce the accumu-
lator bit width without sacrificing significant model performance even with respect to a floating-point baseline.
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Figure 5: As a result of our ℓ1-norm constraints, reducing
the accumulator bit width exposes opportunities to exploit
unstructured sparsity (left) without sacrificing model accu-
racy relative to the floating-point baseline (right). We ob-
served that these trends were similar for each model; thus,
to simplify our analysis, we provide the average and stan-
dard deviation calculated over all of our benchmark models.

5.2.1 Accumulator Impact on Model Sparsity

Given a target accumulator bit width P , our quantization
method constrains the ℓ1-norm of model weights accord-
ing to the upper bound given by Eq. 15. Consequently,
these constraints exponentially tighten as P is reduced (see
Eqs. 18 and 23). Previous work has studied the use of ℓ1-
norm weight regularization as a means of introducing spar-
sity [6, 46]. We observe A2Q to inherently have a similar
effect when training QNNs for low-precision accumulation.

In Fig. 5, we visualize how the sparsity and relative task
performance are affected by reductions to P . We use the
models from our grid search described in Section 5.1, but
focus on configurations where the weight and input activa-
tion bit widths are the same (i.e., M = N ) to simplify our
analysis. For each accumulator bit width, we plot the aver-
age sparsity and relative task performance observed across
all of our benchmark models and provide the standard devi-
ation. On average, we observe that constraining the hidden
layers of our QNNs to use less than 32-bit accumulators
yields up to 92% unstructured weight sparsity while main-
taining 99.2% of the floating-point model accuracy.

5.3. Optimizing for Resource Utilization

To evaluate the trade-offs between resource utilization
and task performance within our quantization design space,
we target QNN model deployment on AMD-Xilinx FPGAs.
We use the FINN framework to generate specialized hard-
ware architectures that are individually customized for the
network topology and data types used. This exposes con-
trol over the accumulators used in each layer so that we can
take advantage of custom data types in our experiments.
At the core of FINN is its compiler, which typically re-
lies on FPGA look-up tables (LUTs) to perform multiply-
and-accumulates (MACs) at low precision. In such sce-
narios, LUTs are often the resource bottleneck for the low-
precision inference accelerators it generates. Therefore, we
simplify our analysis by configuring the FINN compiler to
assume that LUTs are the only type of resources available,
and we leverage the LUT utilization estimates for each of
QNN trained in our grid search. We include additional de-
tails on FINN in Appendix C.

Previous work has shown that reducing the precision
of weights and activations provides resource utilization
savings in exchange for minor reductions to model accu-
racy [41]. We observe that adding the accumulator bit width
to the design space can improve this trade-off. To demon-
strate the impact, we consider four HW-SW co-design set-
tings. First, we consider a fixed accumulator bit width and
remove P from the quantization design space discussed in
Section 5.1. We use the baseline QAT to train each model
and configure the generated accelerator to use a constant
32-bit accumulator for all layers. Second, we again use
the baseline QAT, but configure FINN to use the minimum
accumulator bit width P according to the data type bound
(Eq. 8) per-layer. Third, we again use the baseline QAT,
but configure the FINN compiler to further minimize P for
each layer according to the ℓ1-norm of the final weight val-
ues post-training (Eq. 13). Finally, we evaluate the end-to-
end design flow when using A2Q to train QNNs for a speci-
fied weight, activation, and accumulator bit width. For each
co-design setting, we visualize the trade-offs between re-
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Figure 6: We visualize the trade-off between resource utilization and model accuracy using Pareto frontiers. We compare
A2Q (green dots) to baseline QAT with: (1) a fixed accumulator bit width P (red triangles); (2) layer-wise selection of P
using data type bounds (blue dots); and (3) post-training minimization (PTM) of P using weight values (yellow squares).
We observe that A2Q provides a better trade-off between LUT utilization and task performance than existing baselines.

source utilization and task performance as a Pareto frontier
in Fig. 6 and provide the floating-point task performance for
reference. For each model and each co-design setting, the
Pareto frontier shows the maximum observed task perfor-
mance for a given total LUT utilization.

As expected, we observe that the layer-wise minimiza-
tion of the accumulator bit width provides a better resource-
to-accuracy trade-off than using a fixed 32-bit accumulator.
We also observe that post-training minimization of P ac-
cording to the final weight values provides consistent im-
provements over the data type bounds. Furthermore, our
results show that using A2Q to train models for reduced
accumulator bit widths provides a dominant Pareto frontier
across all models. For the tasks at hand, A2Q pushes the
best attainable task performance above the baselines. Thus,
for a given target accuracy or resource budget, A2Q can of-
fer a better trade-off between LUT utilization and task per-
formance, confirming the benefits of including the accumu-
lator bit width in the overall HW-SW co-design space.

5.3.1 Evaluating Resource Savings

Because we configure the FINN compiler to use LUTs
wherever possible, we provide a deeper analysis of where
the resource savings come from. To do so, we separate LUT
utilization into compute and memory resources but ignore
control flow overhead, which remains constant for each net-
work because neural architecture is not impacted by the data
types used. In Fig. 7, we visualize this break down for each
of the Pareto optimal models that correspond to the A2Q
Pareto frontier provided in Fig. 6.

We observe that LUT savings along the A2Q Pareto fron-
tier come from reductions to both compute and memory
resources. The accumulator bit width affects not only the
width of the register storing intermediate partial sums, but
also the width of the adder circuit doing the accumulation.
Therefore, the reductions in compute resources primarily
come from the reduced cost of MACs, which are directly
impacted by the precision of the weights, inputs, and accu-

mulators. Furthermore, because FINN implements activa-
tion functions as threshold comparisons, their resource uti-
lization exponentially grows with the precision of the accu-
mulator and output activations [4, 42]. Therefore, the reduc-
tions in memory resources are largely from the reduced stor-
age costs of thresholds and intermediate activation buffers.

6. Discussion

The primary contribution of our work is A2Q, which
trains QNNs to use low-precision accumulators during in-
ference without any risk of overflow. Without guaranteed
overflow avoidance, one cannot reliably design hardware
accelerators around low-precision accumulation. In such
scenarios, empirical estimates of overflow impact rely on
a priori knowledge of input data, which is impractical to
assume in many real-world use cases. Our guarantees allow
for models and hardware to be jointly co-designed for low-
precision accumulation. A2Q exposes the accumulator bit
width P as an independent variable that can be specified by
a user. Our experiments show that including the accumula-
tor bit width in the quantization design space can improve
the trade-offs between resource utilization and model accu-
racy. Furthermore, while reducing the size of the accumu-
lator invariably degrades model accuracy, using A2Q yields
higher performing models than existing baselines.

It is important to highlight that our results have im-
plications outside of the accelerators generated by FINN.
Constraining the accumulator bit width has been shown
to increase inference performance on general-purpose plat-
forms [9, 32, 45] and reduce the compute overhead of ho-
momorphic encryption arithmetic [28, 40]. Furthermore,
in training QNNs for low-precision accumulation, A2Q
also inherently promotes unstructured weight sparsity. This
exposes opportunities that can be exploited by both pro-
grammable hardware [7, 33] as well as general-purpose pro-
cessors [12, 13] as the most common use of sparsity in ma-
chine learning workloads is to accelerate inference by re-
ducing compute and memory requirements [17].
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Figure 7: We break down LUT utilization for each of our Pareto optimal models from Fig. 6.

Limitations. The flexibility of FPGAs is a double-edged
sword. The bit-level control allows for the precisions of
weights, activations, and now accumulators to be individu-
ally tuned for each layer in a QNN; however, this vast de-
sign space introduces a complex optimization problem. Our
study only considers uniform-precision models, but mixed-
precision methods have shown promise [11, 43]. State-of-
the-art neural architecture search algorithms may be able to
navigate this large design space more efficiently.

Finally, we observe that round-to-zero performs poorly
in post-training quantization (PTQ) scenarios. Since A2Q
relies on round-to-zero to prevent rounding errors from vi-
olating our constraints, we observe poor results for A2Q in
this scenario. We conjecture that adaptive rounding tech-
niques [30] could alleviate the issue.

7. Related Work
Another approach to training QNNs to use lower preci-

sion accumulators is to mitigate the impact of overflow on
model accuracy. Xie et al. [45] and Li et al. [25] sought
use adaptive scaling factors to reduce the expected overflow
rate as empirically estimated over the training data. Their
formulation is unable to guarantee overflow avoidance as it
is data dependent. Ni et al. [32] proposed training QNNs
to be robust to overflow using a cyclic activation function
based on modulo arithmetic. They report training instabil-
ity when the overflow rate is too large, which is common
when using extremely low-precision accumulators (please
see Appendix A for more details). Furthermore, both ap-
proaches model overflow using only the result of the dot
product without accounting for intermediate partial sums.
Accounting for these partial sums is not easily supported by
off-the-shelf deep learning frameworks nor easily general-
ized across target platforms. In our work, we train QNNs to
completely avoid overflow rather than simply reducing its
impact on model accuracy.

Most similar to our work is that of [9], which pro-
posed an iterative layer-wise optimization strategy to select
mixed-precision bit widths to avoid overflow using compu-
tationally expensive heuristics. Their derived bounds on ac-
cumulator bit width do not guarantee overflow avoidance
for all edge cases and assume only signed bit widths for all

data types. Our proposed quantization method adds negli-
gible training overhead and constrains QNNs to guarantee
overflow avoidance while accounting for both signed and
unsigned input data types.

Prior research has also sought to leverage weight normal-
ization for quantization, but as a means of regularizing long-
tail weight distributions during QAT [5, 26]. Cai et al. [5]
replace the standard ℓ2-norm with an ℓ∞-norm and derive
a projection operator to map real values into the quantized
domain. Li et al. [26] normalize the weights to have zero
mean and unit variance and observe increased stability. In
our work, we replace the ℓ2-norm with an ℓ1-norm to use
the weight normalization parameterization as a means of
constraining learned weights during training to use a user-
defined accumulator bit width during inference.

Tangential to our work, [44] and [37] study the impact
of reducing the precision of floating-point accumulators
for the purpose of accelerating training. Such methods do
not directly translate to integer quantization and fixed-point
arithmetic, which is the focus of this work.

8. Conclusion

We present accumulator-aware quantization (A2Q), a
novel quantization method designed to train QNNs for low-
precision accumulation during inference. Unlike previous
work, which has sought to either reduce the risk of overflow
or mitigate its impact on model accuracy, A2Q guarantees
overflow avoidance and exposes the accumulator bit width
as an independent variable to be specified. To do so, A2Q
constrains the ℓ1-norm of weights according to accumulator
bounds that we derive, inherently promoting unstructured
weight sparsity. As the first principled approach to avoid-
ing overflow, we provide theoretical motivation and derive
comprehensive bounds on the accumulator bit width with
finer granularity than existing literature. We explore the use
of low-precision accumulators as a means of improving the
design efficiency of FPGA-based QNN inference acceler-
ators. Our experiments show that using our algorithm to
train QNNs to use low-precision accumulators improves the
trade-offs between resource utilization and model accuracy
when compared to existing baselines.
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