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Abstract

Inferring the depth of transparent or mirror (ToM) sur-
faces represents a hard challenge for either sensors, algo-
rithms, or deep networks. We propose a simple pipeline for
learning to estimate depth properly for such surfaces with
neural networks, without requiring any ground-truth anno-
tation. We unveil how to obtain reliable pseudo labels by
in-painting ToM objects in images and processing them with
a monocular depth estimation model. These labels can be
used to fine-tune existing monocular or stereo networks, to
let them learn how to deal with ToM surfaces. Experimental
results on the Booster dataset show the dramatic improve-
ments enabled by our remarkably simple proposal.

1. Introduction
In our daily lives, we often interact with several objects

of various appearances. Among them are those made of
transparent or mirror surfaces (ToM), ranging from the glass
windows of buildings to the reflective surfaces of cars and
appliances. These might represent a hard challenge for an
autonomous agent leveraging computer vision to operate in
unknown environments. Specifically, among the many tasks
involved in Spatial AI, accurately estimating depth infor-
mation on these surfaces remains a challenging problem for
both computer vision algorithms and deep networks [64],
yet necessary for proper interaction with the environment
in robotic, autonomous navigation, picking, and other ap-
plication fields. This difficulty arises because ToM surfaces
introduce misleading visual information about scene geom-
etry, which makes depth estimation challenging not only for
computer vision systems but even for humans – e.g., we
might not distinguish the presence of a glass door in front
of us due to its transparency. On the one hand, the defini-
tion of depth itself might appear ambiguous in such cases:
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Figure 1. Depth estimation on ToM surfaces. Two examples
for both monocular (top) and stereo (bottom) images. In the cen-
tral column, the depth/disparity maps predicted by DPT [37] and
CREStereo [22] original weights. In the rightmost column, the
depth/disparity maps predicted by the models after being fine-
tuned by our strategy without exploiting any ground-truth depth.

is depth the distance to the scene behind the glass door or to
the door itself? Nonetheless, from a practical point of view,
we argue that the actual definition depends on the task it-
self – e.g., a mobile robot should definitely be aware of the
presence of the glass door. On the other hand, as humans
can deal with this through experience, depth sensing tech-
niques based on deep learning, e.g., monocular [38, 37] or
stereo [26, 22] networks, hold the potential to address this
challenge given sufficient training data [64].

Unfortunately, light reflection and refraction over ToM
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surfaces violate also the working principles of most ac-
tive depth sensors, such as Time-of-Flight (ToF) cameras
or devices projecting structured-light patterns. This has two
practical consequences: i) it makes active sensors unsuited
to deal with ToM objects in real-world applications, and ii)
prevents the use of these sensors for collecting and anno-
tating data to train deep neural networks to deal with ToM
objects. As evidence of this, very few datasets featuring
transparent objects provide ground-truth depth annotations,
which have been obtained through very intensive human
intervention [64], graphical engines [40], or based on the
availability of CAD models [5] for ToM objects.

In short, accurately perceiving the presence (and depth)
of ToM objects represents an open challenge for both sens-
ing technologies and deep learning frameworks. Purposely,
this paper proposes a simple yet effective strategy for ob-
taining training data and, thereby, dramatically boosting the
accuracy of learning-based depth estimation frameworks
dealing with ToM surfaces. Driven by the observation that
ToM objects alone are responsible for misleading recent
monocular networks [38, 37], which would otherwise gen-
eralize well to most unseen environments, we argue that
replacing them with equivalent, yet opaque objects would
allow restoring an environment layout in which such net-
works could accurately estimate the depth of the scene. To
this end, we mask ToM objects in images by in-painting
them with arbitrary uniform colors. Then, we employ a
monocular depth network to generate a virtual depth map
out of the modified image. By repeating this process on
a variety of images featuring ToM objects, we can easily
and effectively annotate a dataset and then use it to train
the same monocular network used to distill labels, which
will now process the not-in-painted images. As a result, the
trained monocular network will learn to handle ToM ob-
jects, producing consistent depth even in their presence.

Our main contributions can be resumed as follows:

• We propose a simple yet very effective strategy to deal
with ToM objects. We trick a monocular depth estima-
tion network by replacing ToM objects with virtually
textured ones, inducing it to hallucinate their depths.

• We introduce a processing pipeline for fine-tuning a
monocular depth estimation network to deal with ToM
objects. Our pipeline exploits the network itself to
generate virtual depth annotations and requires only
segmentation masks delineating ToM objects – either
human-made or predicted by other networks [54, 60] –
thus getting rid of the need for any depth annotations.

• We show how our strategy can be extended to other
depth estimation settings, such as stereo matching.
Our experiments on the Booster dataset [64] prove how
monocular and stereo networks dramatically improve

their prediction on ToM objects after being fine-tuned
according to our methodology.

Fig. 1 highlights some specific regions where monocular
(top) and stereo (bottom) models struggle (middle column),
and how they learn to handle ToM surfaces thanks to our
strategy (rightmost column).

2. Related Work
Monocular Depth Estimation. Early methods used

CNNs for pixel-level regression [10, 11]. More recent ap-
proaches such as AdaBins [2], DPT [37], and MiDaS [38]
use adaptive bins and vision transformers for depth regres-
sion and leverage large-scale depth training by mixing mul-
tiple datasets. Self-supervised methods use view synthesis
for image reconstruction, where predicted depth is com-
bined with known or estimated camera pose to establish
correspondences between adjacent images, exploiting either
stereo pairs [10, 11] or monocular videos [70, 12]. Recent
works aim to improve the robustness of the photometric loss
based on SSIM and L1 [68] by incorporating photometric
uncertainty [57, 35], feature descriptors [66, 44, 46], 3D ge-
ometric constraints [29], proxy supervision [52, 49], optical
flow [62, 50], or adversarial losses [1, 34]. Others propose
architecture changes as in [69, 14, 33, 18, 13]. Except for
some works that address non-Lambertian depth estimation
using depth completion approaches and sparse depth mea-
surements from active sensors [8, 40], to the best of our
knowledge, we are not aware of any previous single-view
depth estimation network that can handle ToM surfaces.

Stereo Matching. Traditional algorithms [42] utilize
handcrafted features to estimate a disparity map [63, 17, 59,
58, 24, 47, 21, 3]. Then, deep learning methods replaced
traditional matching cost computation, as demonstrated in
[65], and, eventually, end-to-end approaches became the
most effective solution for disparity estimation. These net-
works can be mainly categorized into 2D and 3D architec-
tures, with the former adopting an encoder-decoder design
[30, 32, 25, 39, 45, 56, 61, 48] and the latter building a fea-
ture cost volume from extracted features on the image pair
[19, 4, 20, 67, 6, 7, 9, 55, 51, 16, 43]. A thorough review
of these works can be found in [36]. Recent papers exploit
iterative refinement paradigms [26, 22] or rely on Vision
Transformers [23, 15]. However, due to its inherently ill-
posed nature, dealing with non-Lambertian surfaces, such
as ToM objects, remains a very challenging problem for any
kind of existing stereo approach.

Non-Lambertian Object Perception. Due to the rele-
vance of dealing with ToM objects, some recent datasets fo-
cus on them. Trans10K [54] and MSD [60] consist of over
10 000 and 4 000 real in-the-wild images of transparent ob-
jects and mirrors, respectively. Both datasets provide man-
ually annotated segmentations of ToM materials, though
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Figure 2. Monocular Distillation pipeline. Given an RGB and a segmentation mask, we in-paint pixels belonging to transparent and
mirror surfaces with a random uniform color and process these augmented images with a pre-trained monocular network. The obtained
virtual depths are aggregated to obtain a pseudo-labeled dataset for fine-tuning the network itself.

none of them provide depth labels. Others provide depth
annotations: ClearPose [5] includes over 350 000 labeled
real-world RGB-D frames of 63 household objects. Clear-
Grasp [40] consists of over 50 000 synthetic RGB-D images
of transparent objects, as well as real-world test benchmark
with 286 RGB-D images. In addition, Booster [64] focuses
on stereo matching, providing high-resolution depth labels
and stereo pairs acquired in indoor scenes with specular
and transparent surfaces. TOD [28] contains 15 transpar-
ent objects, labeled with relevant 3D keypoints, compris-
ing 48 000 stereo and RGBD images. StereOBJ-1M [27]
also deals with stereo vision, but focuses on pose estima-
tion for ToM objects and do not provides depth ground
truths. Obtaining depth labels for these kinds of datasets
is expensive, challenging, and time-consuming since it re-
quires either CAD models for ToM objects [5], painting
such objects in the scene [40, 64, 28] or relies on a com-
plex multi-camera setup [53]. In contrast, our proposal ef-
fectively sidesteps these challenges, by demonstrating that
monocular and stereo networks can learn to deal with these
objects in the absence of depth annotations.

3. Method

Our goal is to generate depth annotations for images fea-
turing ToM objects in a cheap and scalable manner. This
allows for training deep networks to properly estimate their
depth as the distance of the closest surface in front of the
camera, rather than the distance of the scene content re-
fracted/reflected through it. Our strategy is simple yet dra-
matically effective and relies on the availability of recent
pre-trained monocular depth estimation models [38, 37],
which are capable of strong generalization across a vari-
ety of scenes though struggling to deal with ToM surfaces.
Based on the above state of affairs, we argue that ToM
objects are often the sole elements harming the reliability
of recent pre-trained monocular depth estimation networks.

Therefore, by virtually replacing these objects with textured
artifacts that resemble their very same shapes, the monoc-
ular model may be possibly tricked and induced into es-
timating the depth of an opaque object, ideally placed at
the very same spot in the scene. This methodology can be
realized by delineating ToM objects, through manual an-
notations or a segmentation network, masking them from
the image and then in-painting virtual textures within the
masked areas. On the one hand, since a proper detection of
ToM objects is crucial to our methodology, manual labeling
indisputably results in the most accurate choice, though it
comes with significant annotation costs. On the other hand,
relying on a segmentation network would alleviate this cost:
one would need some initial human annotations for train-
ing, but this would then allow to segment a large number
of images for free. Unfortunately, the overall effectiveness
of our methodology would be inevitably affected by the ac-
curacy of the trained segmentation model. However, we
reckon that annotating images with segmentation masks re-
quires, definitely, a vastly lower effort compared to depth
annotation [64, 27]. Hence, we settled on exploring both
the aforementioned approaches.

The reader may argue that, as a consequence of our in-
tuition, training a depth network to deal with ToM objects
might be unnecessary – indeed, it would be sufficient to seg-
ment and in-paint such objects at deployment time before
estimating depth. However, we retort that such a methodol-
ogy would rely heavily on the actual accuracy of the model
trained to segment ToM objects, which is not granted to
generalize. Moreover, it would add non-negligible compu-
tational cost – i.e., the inference by a second network. On
the contrary, an offline training or fine-tuning procedure al-
lows for exploiting human-made annotation – if available
– and, potentially, enable the trained network to learn how
to properly estimate depth on ToM surfaces and to get rid
of the second network, as well as design advanced strategies
for other depth estimation frameworks, e.g. deep stereo net-
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Figure 3. Virtual depth generation alternatives. From left to
right: RGB, ground-truth segmentation, DPT predictions on the
RGB image, on the gray-masked input, and the median of five
predictions on images masked with random colors.

works. Our experiments will highlight that the former strat-
egy results ineffective, while we achieve a large boost in
accuracy by fine-tuning depth models with our approach.

In the remainder, we describe our methodology to deal
with ToM objects. Given a dataset of images I, our pipeline
sketched in Fig. 2 builds as follows: i) surface labeling, ii)
in-painting and distillation, and iii) fine-tuning of the depth
network on virtual labels. Additionally, we show how it can
be revised to fine-tune also deep stereo networks.

Surface Labeling. For any image Ik ∈ I, we produce a
segmentation mask Mk classifying each pixel p as

Mk(p) =

{
1 if Ik(p) ∈ ToM surfaces
0 Otherwise

(1)

by labeling pixels as either 1 or 0 if they belong to a ToM
surface or not, respectively. Such a segmentation mask can
be obtained either through manual annotation or by means
of a segmentation network Θ as Mk = Θ(Ik).

In-painting and Distillation. Given an image Ik and
its corresponding segmentation mask Mk, we generated an
augmented image Ĩk applying an in-painting operation to
replace the pixels belonging to ToM objects with a color c:

Ĩk(p) =

{
c if Mk(p) = 1

Ik otherwise
(2)

Then, a virtual depth D̃k for image Ik is obtained by for-
warding Ĩk to a monocular depth network Ψ as D̃k =
Ψ(Ĩk). Colors are randomly sampled for every single frame
Ik. However, depending on the image content, certain col-
ors might result ineffective and increase the scene ambi-
guity – e.g., by in-painting white pixels into a transpar-
ent object located in front of a white wall. To discour-
age these occurrences, we sample a set of N custom colors
ci, i ∈ [0, N−1], and in-paint Ik using each of these custom
colors, so as to generate a set of N augmented images Ĩik.
Then, we obtain the final, Virtual Depth D̃k by computing
the per-pixel median between the N depth maps

D̃∗
k = med

{
Ψ(Ĩik), i ∈ [0, N − 1]

}
(3)

RGB L RGB RMask L

Virtual Mono
Generation

Merging

Stereo Depth
Network

Stereo Depth
Network

Loss

Virtual Depth Base Disparity Predicted Disparity

Merged Disparity
 pre-trained, frozen  pre-trained, fine-tuned

Figure 4. Stereo Distillation pipeline. Given a stereo pair and
a segmentation mask for the left image, we merge predictions
from a pre-trained stereo network with virtual depths obtained by
a monocular network with our strategy. We merge the monocular
or stereo maps, by taking values belonging to either ToM or other
surfaces from mono or stereo, respectively. These final merged
depth labels are used to fine-tune the original stereo network.

As depicted in Fig. 3, in some cases, the in-painted color
might be similar to the background – e.g., the transparent
object disappears when a single gray mask is used – while
it is visible by aggregating multi-color in-painting.

Fine-Tuning on Virtual Labels. The steps outlined so
far allow for labeling a dataset I with virtual depth labels
that are not influenced by the ambiguities of ToM objects.
Then, our newly annotated dataset can be used to train or
fine-tune a depth estimation network, thereby enabling it to
handle the aforementioned difficult objects robustly. Specif-
ically, during training, the original images Ik are forwarded
to the network, and the predicted depth D̂k is optimized
with respect to the distilled virtual ground-truth map D̃∗

k

obtained from in-painted images. This simple pipeline can
dramatically improve the accuracy of monocular depth es-
timation networks when dealing with ToM objects, as we
will show in our experiments.

Extension to Deep Stereo. Our pipeline can be adapted
to fine-tune deep stereo models as well, as shown in Fig.
4. Again, we argue that state-of-the-art stereo architectures
[26, 22] already expose outstanding generalization capabil-
ities while struggling with ToM objects, due to the task
of matching pixels belonging to non-Lambertian surfaces
being inherently ambiguous. Consequently, we exploit a
monocular depth estimation network to obtain virtual depth
annotations solely for these objects. Given a dataset S con-
sisting of stereo pairs (Lk, Rk), we distill virtual depth la-
bels D̃∗

k from Lk and triangulate them into disparities d̃∗k
according to extrinsic parameters of the stereo rig. Then,
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MiDaS [37] DPT [38]

Category Method

All Base
All Virtual Depth N=1
All Virtual Depth N=5

ToM Base
ToM Virtual Depth N=1
ToM Virtual Depth N=5

Other Base
Other Virtual Depth N=1
Other Virtual Depth N=5

δ < 1.25 δ < 1.20 δ < 1.15 δ < 1.10 δ < 1.05 MAE Abs. Rel RMSE
↑ (%) ↑ (%) ↑ (%) ↑ (%) ↑ (%) ↓ (mm) ↓ ↓ (mm)

94.56 91.72 85.68 74.00 50.12 90.82 0.07 120.51
96.08 93.23 87.68 75.23 49.26 83.88 0.07 112.03
96.04 93.51 87.93 75.70 49.36 82.98 0.07 110.52

87.44 83.40 72.71 59.63 36.28 122.33 0.12 140.31
94.11 91.99 84.12 68.40 41.17 76.69 0.09 86.46
93.87 91.64 83.66 68.76 43.65 76.65 0.08 86.01

94.57 91.81 85.99 74.01 50.28 91.08 0.07 119.86
95.62 92.50 86.77 74.63 48.76 88.30 0.07 116.78
95.66 92.93 87.31 75.42 49.06 86.49 0.07 114.48

δ < 1.25 δ < 1.20 δ < 1.15 δ < 1.10 δ < 1.05 MAE Abs. Rel RMSE
↑ (%) ↑ (%) ↑ (%) ↑ (%) ↑ (%) ↓ (mm) ↓ ↓ (mm)

96.79 94.45 89.71 79.00 56.26 75.35 0.06 100.68
97.59 95.88 92.06 82.75 60.14 64.99 0.05 85.96
98.43 96.74 92.86 83.42 60.18 62.46 0.05 82.06

92.77 88.77 80.98 62.46 37.70 113.14 0.10 136.28
96.00 93.67 88.88 75.79 45.26 65.58 0.07 78.24
98.94 97.19 92.24 77.52 45.97 57.19 0.06 66.86

97.10 94.84 90.08 79.76 57.31 73.19 0.06 95.63
97.63 95.96 92.09 83.11 61.01 66.10 0.05 87.37
98.29 96.50 92.57 83.51 60.90 64.17 0.05 84.06

Table 1. Virtual depth distillation by varying N . Results on Booster train set at quarter resolution. All networks use the official weights
[37, 38] without further training. Different masking strategies are applied to the RGB input image. Best results in bold.

we predict a Base disparity map dk by forwarding (Lk, Rk)
to the stereo network we aim to fine-tune. Eventually, we
replace the disparities for ToM objects with those from dk
according to Mk, this latter produced over Lk this time.
Formally, this operation namely Merging, is defined as:

dk(p) =

{
dk(p) if Mk(p) = 0

αkd̂
∗
k(p) + βk otherwise

(4)

with αk, βk being scale and shift factors, as monocular
predictions are up to an unknown scale factor. Following
[38], αk, βk are estimated through Least Square Estimation
(LSE) regression over dk for pixels not belonging to any
ToM object, i.e., having Mk(p) = 0:

(αk, βk) = argmin
α,β

∑
p|Mk(p)=0

(
αd̂∗k(p)+β−dk(p)

)2

(5)

4. Experimental Settings
Implementation Details. We employ MiDaS [38] and

DPT [37] as our monocular networks using the official pre-
trained weights, given their excellent in-the-wild general-
ization performance. To fine-tune them, we iterate for 20
epochs with batch size 8 and a learning rate of 10−7 with
exponential decay with gamma 0.95. We use random color
and brightness and random horizontal flip augmentations.
We pad/crop and resize images to match the pre-training
resolution, i.e., 384 pixels for the long or short side, pre-
serving aspect ratio with mirror pad or square crop, for
MiDaS or DPT, respectively. We normalize images as the
original networks do. Regarding stereo networks, we em-
ploy RAFT [26] and CREStereo [22], using the official
pre-trained weights, since they achieve the top rankings
in the Middlebury dataset [41] among published methods.
To fine-tune them, we run 20 epochs, with batch size 2,
fixed learning rate 10−5. Following [64], we randomly re-
size images to half or quarter of the original dataset reso-
lution, randomly crop to 456×884 and 448×880 for RAFT
and CREStereo respectively, and further randomly scale im-
ages and disparities by a factor ∈ [0.9, 1.1]. We assume

22 and 10 iterations during training for RAFT-Stereo and
CREStereo, respectively. During testing, we run 32 and 20
iterations. When creating virtual labels with our masking
strategy, we fix the random seed of color sampling to 0.

Datasets. Among the datasets, we selected Trans10K
[54], MSD[60], and Booster[64] as they focus on ToM sur-
faces and contain images acquired in many realistic envi-
ronments. Trans10K contains 5 003, 1 003, 4 431 images
for the training, validation, and test set, respectively, fea-
turing common transparent objects and stuff. It provides
segmentation masks with pixels categorized into 12 differ-
ent classes that we collapse into 2 – ToM (classes 1 to 11) or
not. MSD contains 3 066, and 958 images and binary seg-
mentation masks for the training and test set, respectively,
featuring mirrors. Booster contains 228, and 191 images for
training and testing, respectively. The dataset provides dis-
parity and segmentation maps for the training set, where the
segmentation maps are categorized into 4 classes, which we
group into 2 – classes 2-3 into “ToM” category, classes 0-1
into “Other” materials. We fine-tune on Trans10K and MSD
for monocular models and on the Booster training split for
stereo networks, without using any depth ground truths.

Evaluation Protocol. We evaluate the accuracy of the
monocular networks using several metrics, including ab-
solute error relative to the ground-truth value (ABS Rel.),
the percentage of pixels having the maximum between the
prediction/ground-truth and ground-truth/prediction ratios
lower than a threshold (δi, with i being 1.05, 1.10, 1.15,
1,20, and 1.25), the mean absolute error (MAE) and Root
Mean Squared Error (RMSE). Additionally, we evaluate
stereo networks using the metrics defined in Booster [64],
i.e. bad-2, bad-4, bad-6, bad-8, MAE, RMSE. Results are
reported on all valid pixels (All) or for those belonging to
either ToM or other objects, in order to assess the impact
of our strategy on the different kinds of surfaces. For any
metrics considered for stereo networks, the lower, the better
– annotated with ↓ in tables. The same applies to metrics
used for monocular networks except for δi, resulting in the
higher, the better – with ↑ being reported in tables. As the
predictions by monocular networks are up to an unknown
scale factor, we rescale them according to the LSE criterion
[38] defined in Eq. 5, using all valid pixels here. Monocu-
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MiDaS [37] DPT [38]

Category Method

All Base
All Ft. Base
All Ft. Virtual Depth

ToM Base
ToM Ft. Base
ToM Ft. Virtual Depth

Other Base
Other Ft. Base
Other Ft. Virtual Depth

δ < 1.25 δ < 1.20 δ < 1.15 δ < 1.10 δ < 1.05 MAE Abs. Rel RMSE
↑ (%) ↑ (%) ↑ (%) ↑ (%) ↑ (%) ↓ (mm) ↓ ↓ (mm)

94.56 91.72 85.68 74.00 50.12 90.82 0.07 120.51
94.09 91.28 85.29 73.55 49.14 93.34 0.07 124.54
95.07 92.31 86.39 75.20 50.57 88.83 0.07 118.23

87.44 83.40 72.71 59.63 36.28 122.33 0.12 140.31
86.30 82.96 72.84 61.04 37.91 126.71 0.12 145.69
91.81 89.12 81.68 70.75 47.85 93.66 0.09 104.80

94.57 91.81 85.99 74.01 50.28 91.08 0.07 119.86
94.27 91.49 85.87 73.77 49.38 92.48 0.07 122.46
95.33 92.53 86.80 75.43 50.46 89.17 0.07 119.58

δ < 1.25 δ < 1.20 δ < 1.15 δ < 1.10 δ < 1.05 MAE Abs. Rel RMSE
↑ (%) ↑ (%) ↑ (%) ↑ (%) ↑ (%) ↓ (mm) ↓ ↓ (mm)

96.79 94.45 89.71 79.00 56.26 75.35 0.06 100.68
96.83 94.60 90.14 79.46 56.89 76.00 0.06 100.98
97.99 96.65 93.55 83.94 60.46 64.93 0.05 85.93

92.77 88.77 80.98 62.46 37.70 113.14 0.10 136.28
92.69 89.49 81.12 63.62 37.95 118.84 0.11 141.27
96.68 95.96 92.23 79.96 54.67 70.68 0.06 83.06

97.10 94.84 90.08 79.76 57.31 73.19 0.06 95.63
97.15 95.02 90.97 80.77 58.05 72.45 0.06 94.07
98.07 96.64 93.52 84.30 61.19 64.70 0.05 85.57

Table 2. Monocular networks fine-tuning - ground-truth segmentation. Training on all MSD and Trans10K, results on the Booster train
set at quarter resolution. All models start from the official weights [37, 38]. Best results in bold.

MiDaS [37] DPT [38]

Category Method

All Base
All Virtual Depth (Proxy)
All Ft. Virtual Depth (GT)
All Ft. Virtual Depth (Proxy)

ToM Base
ToM Virtual Depth (Proxy)
ToM Ft. Virtual Depth (GT)
ToM Ft. Virtual Depth (Proxy)

Other Base
Other Virtual Depth (Proxy)
Other Ft. Virtual Depth (GT)
Other Ft. Virtual Depth (Proxy)

δ < 1.25 δ < 1.20 δ < 1.15 δ < 1.10 δ < 1.05 MAE Abs. Rel RMSE
↑ (%) ↑ (%) ↑ (%) ↑ (%) ↑ (%) ↓ (mm) ↓ ↓ (mm)

94.56 91.72 85.68 74.00 50.12 90.82 0.07 120.51
91.78 87.52 79.57 66.00 42.21 105.67 0.09 140.00
94.99 92.12 86.32 74.99 49.91 88.63 0.07 117.40
95.00 92.17 86.48 75.46 50.24 88.10 0.07 117.10

87.44 83.40 72.71 59.63 36.28 122.33 0.12 140.31
86.37 79.35 69.91 54.84 32.31 112.92 0.12 124.10
91.85 89.93 83.25 70.63 47.55 92.05 0.09 103.54
91.12 88.36 81.18 69.15 45.02 96.33 0.09 107.59

94.57 91.81 85.99 74.01 50.28 91.08 0.07 119.86
91.80 87.47 79.41 65.86 41.95 108.09 0.09 143.64
95.27 92.30 86.60 75.43 49.95 88.81 0.07 118.48
95.27 92.42 86.84 76.02 50.48 88.07 0.07 117.99

δ < 1.25 δ < 1.20 δ < 1.15 δ < 1.10 δ < 1.05 MAE Abs. Rel RMSE
↑ (%) ↑ (%) ↑ (%) ↑ (%) ↑ (%) ↓ (mm) ↓ ↓ (mm)

96.79 94.45 89.71 79.00 56.26 75.35 0.06 100.68
93.23 89.43 81.98 68.06 43.62 98.09 0.08 128.36
98.09 96.85 93.91 83.50 58.74 65.52 0.05 86.41
98.11 96.68 93.48 83.00 58.13 66.43 0.05 87.18

92.77 88.77 80.98 62.46 37.70 113.14 0.10 136.28
89.75 85.26 75.17 56.57 31.75 110.74 0.11 123.28
96.95 96.26 93.27 81.84 55.49 67.95 0.06 80.88
96.82 96.05 92.57 80.62 53.74 70.67 0.06 83.44

97.10 94.84 90.08 79.76 57.31 73.19 0.06 95.63
93.22 89.39 82.07 68.30 43.88 98.64 0.08 129.48
98.19 96.85 93.85 83.70 58.93 65.65 0.05 86.30
98.20 96.67 93.35 83.20 58.40 66.51 0.05 87.06

Table 3. Monocular networks fine-tuning – ground-truth vs proxy segmentation. Training on only the test set of MSD and Trans10K,
results on the Booster train set at quarter resolution. All models start from the official weights [37, 38]. Best results in bold.

RGB Mask GT Mask Proxy

Base Virtual Depth (GT) Virtual Depth (Proxy)

Figure 5. Virtual Depth Qualitatives – GT vs Proxy. From left to
right - Top: RGB, ground-truth and proxy segmentations; Bottom:
prediction with DPT on the RGB image prediction with DPT on
the median of five predictions by in-painting with either the ground
truth or semantic proxy masks on Booster.

lar networks are evaluated on the Booster training set, while
stereo models are evaluated on the Booster test set.

5. Experiments

In this section, we report the outcome of our findings
concerning both monocular and stereo depth estimation.

5.1. Monocular Depth Estimation.

Number of In-Paintings. We investigate the quality of
the virtual depth labels by varying N . When using N = 1
we generate a single in-painted image that is forwarded to

the monocular network, while with N = 5 we generate
virtual depths from 5 masked images with different col-
ors which are then aggregated by selecting the pixel-wise
depth median. In Tab. 1, we report the accuracy of depth
maps produced by the two strategies, together with those
of the Base architectures, i.e. without applying any in-
painting strategy. Firstly, with both MiDaS and DPT, both
in-painting strategies obtain virtual depths that are much
more accurate for ToM regions w.r.t. the Base architec-
ture. Secondly, N=5 maps yield slightly better results in
most metrics, especially when looking at DPT performance.
We ascribe it to the higher robustness of the second strategy.
For the remaining experiments, we fix N = 5 as we did not
observed any further improvement with larger values.

Fine-tuning Results (GT Segmentation). In Tab. 2, we
report results on the Booster train set, obtained after fine-
tuning MiDaS and DPT on all available data from Trans10K
and MSD. In the Base row, we report the results of the net-
work using the officially released weights without any fur-
ther training, and we compare with those in row Ft. Virtual
Depth, i.e., the results of our method. We notice that the
accuracy on All pixels is improved with our approach. In
particular, we achieve a significant boost in performances
for ToM surfaces, of 4.37, 5.72, 8.97, 11.12 and 11.57%,
28.67mm, 0.03%, 35.51mm for MiDaS [38], and 3.91,
7.19, 11.25, 16.8 and 16.97%, 42.46mm, 0.04%, 53.255mm
for DPT[38] in the δ1.25, δ1.20, δ1.15, δ1.10, δ1.05, MAE,
Abs.Rel, and RMSE, respectively. We highlight that, after
fine-tuning, the accuracy on ToM is only slightly worse than
on Other. Moreover, class Other metrics are also slightly
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MiDaS [37] DPT [38]

Category Method

All Base
All Ft. Virtual Depth

δ < 1.25 δ < 1.20 δ < 1.15 δ < 1.10 δ < 1.05 MAE Abs. Rel RMSE
↑ (%) ↑ (%) ↑ (%) ↑ (%) ↑ (%) ↓ (mm) ↓ ↓ (mm)

91.68 87.13 79.17 64.77 39.04 27.17 0.09 40.16
90.38 85.89 77.97 63.74 38.57 29.40 0.09 44.37

δ < 1.25 δ < 1.20 δ < 1.15 δ < 1.10 δ < 1.05 MAE Abs. Rel RMSE
↑ (%) ↑ (%) ↑ (%) ↑ (%) ↑ (%) ↓ (mm) ↓ ↓ (mm)

91.78 87.61 80.44 67.42 42.60 26.42 0.09 40.10
90.97 86.74 79.56 66.45 42.12 27.72 0.09 42.56

Table 4. Monocular networks fine-tuning – results on NYU-V2 [31]. After training on MSD and Trans10K, both MiDaS and DPT show
a negligible drop in accuracy on non-ToM surfaces of existing datasets.

RAFT-Stereo [26] CREStereo [22]

Category Method

All Base
All Ft. Base
All Ft. Virtual Depth
All Ft. Merged

ToM Base
ToM Ft. Base
ToM Ft. Virtual Depth
ToM Ft. Merged

Other Base
Other Ft. Base
Other Ft. Virtual Depth
Other Ft. Merged

bad-2 bad-4 bad-6 bad-8 MAE RMSE
↓ (%) ↓ (%) ↓ (%) ↓ (%) ↓ (px) ↓ (px)

17.42 13.49 11.59 10.11 4.07 8.63
18.44 14.04 12.02 10.49 4.33 8.92
16.81 12.34 9.98 8.09 2.60 6.04
14.68 9.63 7.35 5.57 1.95 4.58

56.77 44.38 38.43 33.31 13.45 16.56
58.56 44.40 38.02 32.99 13.83 16.47
57.09 42.89 34.70 27.61 8.47 10.75
47.54 30.56 22.83 16.61 5.83 7.43

8.48 5.74 4.52 3.83 1.58 3.79
9.22 6.23 4.91 4.16 1.71 3.99
7.97 5.03 3.81 3.15 1.19 3.20
7.14 4.08 2.87 2.22 0.96 2.63

bad-2 bad-4 bad-6 bad-8 MAE RMSE
↓ (%) ↓ (%) ↓ (%) ↓ (%) ↓ (px) ↓ (px)

15.13 10.70 8.91 7.57 3.15 7.40
14.65 10.14 8.39 6.97 2.86 6.64
18.85 14.35 12.42 10.87 5.11 9.83
10.86 6.13 4.41 3.13 1.51 3.64

51.83 37.88 32.86 28.19 12.42 15.60
49.45 34.49 29.00 24.24 10.25 13.01
49.70 35.45 29.84 24.79 11.99 13.94
36.96 20.79 15.38 10.67 5.04 6.73

8.11 4.83 3.50 2.78 1.14 2.77
7.02 4.20 3.15 2.53 1.00 2.56

11.45 8.24 7.03 6.30 2.73 5.45
5.27 2.73 1.82 1.34 0.68 1.70

Table 5. Stereo networks fine-tuning – ground truth segmentation. Results on Booster test set at quarter resolution. All models start
from the official weights [26, 22] and are fine-tuned according to different strategies. Best results in bold.

better, probably because of the enhanced features extracted
by the network, which has a better understanding of the
scene context. Finally, we have reported in Ft. Base the
fine-tuning results obtained by self-training the networks
on their own predictions without any in-painting strategy.
As expected, without the appropriate virtual depth labels,
the networks cannot effectively learn from the new dataset,
yielding results comparable to the Base architecture. Exper-
iments on additional datasets are in the supplement.

Fine-tuning Results (Proxy Segmentation). Even
though obtaining semantic labels is cheaper than collecting
depth ground truths, using the predictions of a segmentation
network as proxy semantic annotations would accelerate the
dataset collection process. Thus, we investigate the impact
of replacing manually annotated masks in our pipeline with
the predictions of Trans2Seg[54] and MirrorNet[60], pre-
trained on the training set of Trans10K and MSD, respec-
tively, on the unseen test set of each dataset. We use weights
made available by the authors. For a fair comparison, we
also re-train again the models exploiting GT segmentations
only on the test sets of the two datasets. Tab. 3 highlights
that both models, using either GT - Ft. Virtual Depth (GT) -
or proxy segmentations - Ft. Virtual Depth (Proxy), achieve
much more accurate results compared to the Base network.
Interestingly, the two networks yield comparable results in
the class Other, while the one using GTs is slightly better
than the other in the class ToM, yet still comparable. Fi-
nally, in row Virtual Depth (Proxy), we report the results
of our in-painting methodology (i.e., without fine-tuning)
but coloring pixels according to the proxy segmentations.
We note that performances are even worse than the Base
method. Indeed, the segmentation network struggles to gen-

RGB Left Mask GT Virtual Disparity (Stereo)

Virtual Depth (Mono) Base Stereo Merged

Figure 6. Qualitative comparison – disparity virtual labels. On
top: left RGB image, ground truth segmentation mask, and vir-
tual disparities by CREStereo processing masked stereo pairs. At
bottom: depth by DPT on the in-painted left image, disparities by
CREStereo, and their final merged labels.

eralize to the Booster dataset, making the depth model in-
capable of estimating the correct values, e.g., due to some
overextended in-painted ToM areas, as shown in Fig. 5.
Yet, depth networks, fine-tuned on the test set of MSD and
Trans10K (row Ft. Virtual Depth (Proxy)), generalize prop-
erly on Booster.

Performance on non-ToM surfaces. To prove the ef-
fectiveness of the fine-tuned models on scenes with only
a few ToM surfaces, we test the MiDaS and DPT trained
over our proxy labels on the NYU-V2 dataset [31], report-
ing the results in Tab. 4. We notice only negligible drops in
performances – the strictest metric δ1.05 drops by less than
0.5%, which we consider a small price to pay for the large
improvement on ToM surfaces observed before.
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RAFT-Stereo [26] CREStereo [22]

Category Method

All Base
All Ft. Merged (Proxy)
All Ft. Merged (GT)

ToM Base
ToM Ft. Merged (Proxy)
ToM Ft. Merged (GT)

Other Base
Other Ft. Merged (Proxy)
Other Ft. Merged (GT)

bad-2 bad-4 bad-6 bad-8 MAE RMSE
↓ (%) ↓ (%) ↓ (%) ↓ (%) ↓ (px) ↓ (px)

17.42 13.49 11.59 10.11 4.07 8.63
19.56 13.53 10.53 8.28 2.51 5.37
14.68 9.63 7.35 5.57 1.95 4.58

56.77 44.38 38.43 33.31 13.45 16.56
51.85 35.32 27.17 20.88 6.56 8.04
47.54 30.55 22.81 16.62 5.83 7.43

8.48 5.74 4.52 3.83 1.58 3.79
11.95 7.36 5.31 4.15 1.41 3.41

7.14 4.08 2.87 2.22 0.96 2.63

bad-2 bad-4 bad-6 bad-8 MAE RMSE
↓ (%) ↓ (%) ↓ (%) ↓ (%) ↓ (px) ↓ (px)

15.13 10.70 8.91 7.57 3.15 7.40
12.60 7.42 5.24 3.64 1.41 3.33
10.86 6.13 4.41 3.13 1.51 3.64

51.83 37.88 32.86 28.19 12.42 15.60
40.85 23.66 16.83 11.10 4.18 5.61
36.96 20.79 15.38 10.67 5.04 6.73

8.11 4.83 3.50 2.78 1.14 2.77
6.56 3.69 2.53 1.88 0.82 2.02
5.27 2.73 1.82 1.34 0.68 1.70

Table 6. Stereo networks fine-tuning – ground truth vs proxy segmentation. Results on Booster test set at quarter resolution. All
models start from the official weights [26, 22] and are fine-tuned according to different strategies. Best results in bold.

5.2. Stereo Depth Estimation

Virtual Disparity Generation Alternatives. We in-
quire about two main alternatives to generate virtual dis-
parities: i) Virtual Disparity: masking both left and right
images according to material segmentation masks – as ma-
terials annotations are provided for the left image only, we
warp it over the right image according to ground-truth dis-
parity – and then processing the two with the stereo network
we are going to fine-tune similar to Monocular networks,
ii) Merged: merging disparity labels produced by the stereo
model itself with those generated by original DPT weights
[37], as detailed in Eq. 4. Although the former might appear
as the natural extension of our proposal from the monocular
to the stereo case, we will demonstrate its ineffectiveness.

Fine-tuning Results (GT Segmentation). Tab. 5 col-
lects the results obtained by fine-tuning RAFT-Stereo and
CREStereo through our technique. From top to bottom, we
report the results achieved by the original models (Base)
as well as the instances fine-tuned on their own predictions
(Ft. Base) or on pseudo labels obtained according to the
two strategies (Ft. Virtual Depth, Ft. Merged).

Not surprisingly, fine-tuning the networks on their own
predictions is harmful (RAFT-Stereo) or scarcely effec-
tive (CREStereo). Applying the first of the two strategies
sketched before yields just a negligible improvement over
the original models on ToM classes. This evidence con-
firms that our pipeline designed for the monocular case can-
not naı̈vely be extended to the stereo case by in-painting the
two images since masking ToM objects with constant col-
ors does not ease matching – on the contrary, it introduces
textureless regions, which are likely to be labeled as planar
surfaces by stereo models. Conversely, the second strat-
egy consistently improves the predictions with both RAFT-
Stereo and CREStereo. In particular, the former achieves
9.23, 13.83, 15.62, and 16.69% absolute reductions on
bad-2, bad-4, bad-6, and bad-8, respectively, as well 7.62
and 9.13 reductions on MAE and RMSE on ToM regions.
CREStereo obtains 14.93, 17.13, 17.48, and 17.54% on bad
metrics, and 7.40 and 8.91 reductions on MAE and RMSE.
Moreover, the accuracy over Other pixels is also improved,

RGB Left Mask GT Left Mask Proxy Left

Base Merged (GT) Merged (Proxy)

Figure 7. Stereo depth merging with GT or Proxy semantic la-
bels. From left to right: RGB left image, ground-truth semantic
mask, proxy semantic mask, prediction by CREStereo on the RGB
images, and the final merged labels using either the GT or Proxy
segmentation masks.

although with minor margins. Fig. 6 provides a qualitative
comparison between the labels obtained by the two strate-
gies. The former produces a planar surface for the mirror
completely misaligned with respect to the wall, whereas
the latter combines the virtual depth labels from DPT on
masked images with disparity labels at best.

Fine-tuning Results (Proxy Segmentation). Finally,
we replace the manually annotated segmentation masks
with those predicted by Trans2Seg and MirrorNet and then
distill virtual disparities for fine-tuning both stereo net-
works. As pointed out before, both Trans2Seg and Mirror-
Net have not been trained on Booster. Thus, Merging pro-
duces significant differences with respect to the use of man-
ually annotated masks, as shown in Fig. 7. Nevertheless,
Tab. 6 shows that our pipeline improves the performance
of both RAFT-Stereo and CREStereo on ToM objects, even
in the case of extremely noisy proxy semantic annotations.
More precisely, CREStereo seems to benefit more from the
Proxy segmentation configuration than RAFT-Stereo. In-
deed, on the one hand, we can notice how RAFT-Stereo
improves on ToM regions at the expense of accuracy on
other pixels when using Proxy segmentations. This yields,
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MiDaS[38] DPT[37]

RGB Base Ft (Proxy mask) Ft (GT mask) Base Ft (Proxy mask) Ft (GT mask)

RAFT-Stereo[26] CREStereo[22]

RGB Left Base Ft (Proxy mask) Ft (GT mask) Base Ft (Proxy mask) Ft (GT mask)

Figure 8. Qualitative post fine-tuning results. Examples of predictions by MiDaS and DPT (top), RAFT-Stereo and CREStereo (bottom).
For each model, we show results achieved by the original model and by fine-tuned instances using proxy or GT segmentation masks.

on All pixels, an increase in the bad-2 and bad-4 error rates,
whereas bad-6, bad-8, MAE, and RMSE remain lower. On
the other hand, CREStereo seems capable of exploiting fine-
tuning much better, yielding more accurate results on any
metric with both Proxy or GT masks. This outcome proves
that our pipeline is effective for fine-tuning stereo models
even without manually annotated masks. Nonetheless, seg-
menting images through human labeling unleashes its full
potential, whose cost is much lower compared to that that
would be required to annotate depths.

5.3. Qualitative Results

To conclude, Fig. 8 shows the effect of the fine-tuning
carried out according to our proposal, with two examples
for monocular (top) and stereo (bottom) networks from the
Booster train and test sets respectively. We highlight how
MiDaS, DPT, RAFT-Stereo, and CREStereo learn to deal
with ToM surfaces either when relying on proxy segmenta-

tion masks provided by neural networks or accurately anno-
tated by humans. More qualitative examples are reported in
the supplementary material.

6. Conclusion

We have proposed an effective methodology for train-
ing depth estimation networks to deal with transparent and
mirror surfaces. By in-painting these surfaces on RGB im-
ages, we can quickly annotate a dataset with virtual depth
labels, that can be used to fine-tune both monocular and
stereo networks, with outstanding results. A promising fu-
ture direction would be to extend our technique to instance
segmentation masks to get better virtual depth maps in the
presence of multiple ToM objects in the same scene.
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